有机酸对土壤表面电荷性质及Cd~(2+)次级吸附的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以黄褐土、黄棕壤、棕红壤、红壤和砖红壤五种地带性土壤为材料,在测试其基本性状、粘土矿物组成、表面电荷性质的基础上,研究了有机酸(乙酸、草酸、酒石酸、柠檬酸)对土壤表面电荷性质和Cd~(2+)次级吸附的影响,取得的主要研究结果如下:
     1)供试土壤的负电荷量随体系的pH升高而增加,正电荷量随体系的pH升高而降低。在同一pH条件下,土壤负电荷量由北向南呈递减趋势,正电荷量呈递增趋势。在砖红壤中,负电荷以可变负电荷为主;棕红壤和红壤既有较大数量的可变负电荷,又含有一定数量的永久负电荷;黄褐土和黄棕壤负电荷量随pH的变化较小。供试砖红壤的PZNC为4.2,其它土壤在实验pH范围内不存在PZNC。供试土壤的PZC从北到南逐渐升高。
     2)黄棕壤和黄褐土对酒石酸的等温吸附曲线属H型—高亲和力型。黄棕壤对酒石酸的吸附量小于黄褐土。红壤对草酸的等温吸附曲线属H型—高亲和力型;黄棕壤和棕红壤对草酸的吸附曲线属L型—低亲和力型;砖红壤对草酸的吸附曲线属C型—低亲和力型。由Langmuir方程计算出土壤对草酸的最大吸附量顺序为,砖红壤(54.39 mmol/kg)>黄棕壤(27.11mmol/kg)>棕红壤(18.81 mmol/kg)>红壤(11.48 mmol/kg)。
     3)黄褐土和黄棕壤吸附有机酸后,负电荷量降低,正电荷量变化不明显,PZC升高。不同有机酸对恒电荷土壤电荷量的影响大小顺序为:草酸>酒石酸>乙酸≥柠檬酸。砖红壤、棕红壤和红壤吸附有机酸后,负电荷量升高,正电荷量降低,PZC降低,其中砖红壤PNZC向酸侧移动约0.3个pH。不同有机酸对可变电荷土壤电荷量的影响大小顺序大致为:柠檬酸>酒石酸≥草酸>乙酸。高浓度有机酸对土壤PZC的影响强于低浓度的。
     4)供试五种土壤对Cd~(2+)的等温吸附曲线用Langmuir方程拟合达极显著水平(R~2>0.95)。其最大吸附量从高到低依次为黄褐土(1146mg/kg)>棕红壤(611.6 mg/kg)>黄棕壤(593.9 mg/kg)>砖红壤(463.6 mg/kg)>红壤(453.8 mg/kg)。土壤吸附草酸和柠檬酸后,对Cd~(2+)的次级吸附量明显升高且显著降低了土壤对Cd~(2+)的吸附结合能,从而增强了土壤对Cd~(2+)的
    
    有机酸对土堆表面电荷性质和Cd2+次级吸附的影晌
    吸附亲和力,使得土壤吸附有机酸后,次级吸附Cd卜等温曲线从L型向H
    型转变。同时有机酸的吸附使得土壤对CdZ+的吸附曲线的斜率增大,意味
    着土壤吸附有机配体后,对Cd2+缓冲容量增大。
The basic properties, clay mineral association and surface charge properties for zonal soils in china, including yellow cinnamon soil, yellow brown soil, brown red soil, red soil and latosol, were investigated. The effects of organic acids (acetic acid, oxalic acid, citric acid, tartaric acid) on surface charge properties and second adsorption of cadmium for different soils were also studied. The main results were shown as follows:
    1. The organic matter content of the examined soils followed the Series: latosol (43.5g/kg)>red soil(26.7g/kg)>brown red soil(17.3g/kg)>yellow brown soil(16.7g/kg) > yellow cinnamon soil(9.6g/kg). The clay content of yellow brown soil (320g/kg) was the lowest, and that of latosol(780g/kg) was the highest. For the clay association, the prominent clay mineral in yellow cinnamon soil and yellow brown soil was hydromica(75~80%), whereas the main clay mineral in latosol was kaolinite(95%).From north to south, the expansive minerals changed regularly from montmorillonite to vermiculite, then to 1.4nm integrade mineral. Gibbsite was present in latosol. The Fe and Al content extracted by DCB solution tends to increase from yellow cinnamon soil to latosol.
    2. The amount of negative charge increased with the increasing of pH value, while that of the positive charge decreased. At the same pH value, the negative charge of the examined soils tended to decrease from north to south, whereas the positive charge increased. The latosol bore variable negative charge as predominant charge, and the brown red soil and red soil bore not only some
    
    
    variable negative charge, but also some permanent negative charge. The negative charge was not significantly pH-dependent in yellow cinnamon soil and yellow brown soil. The magnitude of PZNC for the latosol is 4.2, but that for other soils was not detectable in the experimental pH range. The magnitude of PZC tended to increase from yellow cinnamon soil to latosol.
    3. Isotherms for adsorption of tartaric acid on yellow cinnamon soil and yellow brown soil belonged to "H type", which was called as high affinity type. With the content of tartaric acid in solution increasing from 0 to 4.8mmol/L, the sorption capacity on yellow brown soil was lower than that on yellow cinnamon soil. Isotherms for adsorption of oxalate on red soil also belonged to "H type", and that on yellow brown soil and brown red soil belong to "L type", which was behalf of low affinity type. The adsorption of oxalate on latosol belonged to "C type", which was behalf of high affinity type. According to the Langmuir equation, the maximum sorption capacity of oxalate on soils was: latosol (54.39mmol/kg) > yellow brown soil (27.11mmo/kg) > brown red soil (18.81mmol/kg) > red soil (11.48mmol/kg).
    4. After yellow cinnamon soil and yellow brown soil adsorbed organic acids, their negative charge quantities decreased if compared to that of original soils , and the positive charge changed slightly, whereas the magnitude of PZC increased. The effects of different organic acids on surface charge of permanent charge soil in order was: oxalic acid > tartaric acid > acetic acid > citric acid. After brown red soil, red soil and latosol adsorbed organic acids, their negative charge increased if compared to that of original soils, whereas the positive charge and the magnitude of PZC decreased. The magnitude of PZNC for latosol decreased about 0.3 pH compared to that of original soil. The effects of different organic acids on surface charge of variable charge soil in order was: citric acid > tartaric acid >oxalic acid > acetic acid. At different contents of organic acids, the effect of the high content organic acids was stronger than that of low content ones.
    
    5. The adsorption isotherms for Cd2+ on soils were in agreement with the Langmuir equation (R2>0.95, n=7). The maximum sorption capacity of Cd2+on soils followed the series: yellow cinnamon soil (1146g/kg)> brown red soil (611.6g/kg) > yellow brown soil (593.9g/kg) > latosol (463.6g/kg) > red soil (453.8g/kg). Ad
引文
1.莫淑勋.土壤中有机酸的产生、转化及对土壤肥力的影响。土壤学进展,1986,14(4):1~10
    2.袁可能.土壤化学。北京,科学出版社,1987:24~29
    3.刘芷宇.根际微域环境的研究。土壤学进展,1993,25(5):225~230
    4.马义兵,鄢来斌,张福锁.根际土壤化学研究进展。土壤学进展,1993,25(5):231~233
    5.沈阿林,李学垣,吴受容.土壤中低分子量有机酸在物质循环中的作用。植物营养与肥料学报,1997,3(4):363~371
    6. David L. Jones. Organic acids in the rhizosphere-a critrical review. Plant and Soil, 1998, 205: 25~44
    7.施卫明.根系分泌物与养分有效性。土壤,1993,25(5):252~256
    8.曹享云.营养胁迫与根际分泌物。土壤学进展,1994,22(3)27~31
    9. Takijima.Y. Studies on organic acids in Paddy field soils with reference to their effects on the growth of rice plants. Soil Sci. Plant Nutr., 1964, 10(5): 14~29
    10. Fox T R, comerford NB and McFec WW. Kinetics of phosphorus release from spodosol: Effects of oxalate and formate. Soil Sci. Soc. Am. J., 1990, 54: 1441~1447
    11. Fox T R, comerford NB and McFec W W. Phosphorus and aluminum release from a spodic horizon mediated by organic acids Soil Sci. Soc. Am. J., 1990, 54: 1763~1767
    12.李法云,高子勤.土壤—植物根际磷的生物有效性研究。生态学杂志,1997,16(5):57~60
    13. Dinkelaker, B. Romheld, V. Marschner, H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.). Plant, Cell and Envioronment, 1989, 12: 285~292
    14.刘国栋、李继云、李振声.植物高效利用磷营养的化学机理。植物营养与肥料学报,1995,(3~4):72~78
    
    
    15. Baber DA and Grund K B. The effect of mechanical forces on the exudation of organic substances by the roots of cereal plants grown under sterile condition. New phytol., 1974, 73: 30~45
    16. Boeuf-Tremblay V, Plantureux S and Guckert A Influence of mechanical impedance on root exudation of maize seedlings at two development stages. Plant and Soil, 1995, 172: 279~287
    17. F. S. Zhang, J. Ma and Y. R Cao. Phosphorus deficiency enhances root exudation of low-molecular weight organic acids and utilization of sparingly soluble inorganic phosphorus by radish (Raghanus satiuvs L.) and rape (Brassica napus L.) Plants. Plant and Soil, 1997, 196: 261~264
    18. Anna M. Szmigielska, Ken C. J. Van Rees, Grzegorz Cieslinski, Pan Ming Huang et. al. Determination of low molecular weight dicarboxylic acids in root exudates by gas chromatography. J. of Agric. and food chemistry, 1995, 43, 956~959
    19. Yoshinari ohwaki, Hiroshi Hirata. Differences in carboxylic acid exudation among P-Starved leguminous crops in relation to carboxylic acid contents in plant tissues and phosphorus level in roots. Soil Sci. Plant Nutr., 1992, 38(2), 235~243
    20. G.Cieslinski, K.C.J.VanRees, A.M.Szmigielska, et.al Low-molecutar-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant and Soil, 1998, 203: 109~117
    21. Samuel J. Traina, Garrison Sposito, Dean Hesterberg, et.al Effect of pH and organic acids on orthophosphate solubility in an acidic, Montmorillonitic soil. Soil Sci. Soc. Am. J. 1986, 50: 45~52
    22.张成娥.土壤溶液获取的新方法。土壤学进展,1994,22(5):53~55
    23. B. C. Lilieholm, L. M. Dudley, and J. J. Jurinar. Oxalate determination in soils using Ion chromatography. Soil Sci. Soc Am. J.. 1992, 56: 324~326
    24. R. Baiiramakenga, R. R. Simard, and G. D. Leroax. Determination f organic acids in soil extracts by ion chromatography. Soil Biol. Biochem.
    
    1995, 27(3): 349~356
    25. Shen Yin, Lena STR(?)M, Jan-AKE Jonsson et al. Low-molecular organic acids in the rhizosphere soil solution of beech Forest (FAGUS SYLVATICA L.) cambisols determined by ion chromatography using supported liquid membrane enrichment technique. Soil Biology & Biochemistry. 1996, 28(9): 1163~1169
    26. Shen JianBo, Zhang FuSuo, Huang Qin et al. Determination of organic acids in root exudation by high performance liquid chromatography: Ⅰ. Development and assessment of chromatographic conditions. Pedosphere, 1998, 8(2): 97~104
    27. Shen JianBo, Zhang FuSuo, Huang Qin et al. Determination of organic acids in root exudation by high performance liquid chromatography. Ⅱ. Influence of several testing conditions. Pedosphere, 1999, 9(1): 45~52
    28. Shen JianBo, Zhang FuSuo, Huang Qin et al. Determination of organic acids in root exudation by high performance liquid chromatography. Ⅲ. Effects of interfering factors. Pedosphere, 1999, 9(2): 97~104
    29.刘修才,莫淑勋.土壤中有机酸比色法测定。土壤学报,1985,22(3):290~296
    30.王卫东,谢小立,上官行健.分光光度法测定水稻土中有机酸的研究。热带亚热带土壤科学,1993,2(3):162~170
    31.张桂银.有机酸对土壤与矿物吸附—解吸镉的影响机制。华中农业大学博士研究生学位论文,1998
    32.王建林.根际化学,土壤资源的特性与利用,北京农业大学出版社,1992
    33. Huang P.M. and Bethelin J. et al. Environmental impact of soil component interaction. Vol2: Metals, Other inorganic and mierobiol activities, CRC Press Inc. Florida, USA. PP: 376~384 1995
    34. Cubin K.G. and steet J. J. Adsorption of cadmium on soil constituents in the presence of complexity ligands. J. Environ. Qual, 1981, 10: 225~228
    
    
    35. MacNaughton, M.G. James, R. O. Adsorption of aqueous mercury(Ⅱ) complexes at the oxide/water interface. J.Colloid Interf. Sci., 1974, 47: 431~440
    36. McBride M.B. Reactions controlling heavy metal solubility in soils, Advance in soil Sci., 1989, 10: 1~56
    37.刘华良.有机酸对土壤吸附重金属铜 镉的影响。华中农业大学硕士研究生学位论文,1999
    38.高彦征.湖北省几种土壤中重金属Cd(Cu)的形态与解吸。华中农业大学硕士研究生学位论文,1999
    39.周代华.铁铝氧化物表面重金属Cu~(2+)离子的吸附-解吸机理-兼论天然有机配体的影响,华中农业大学博士研究生论文,1996
    40. Anunziata De Cristofaro, Daihua Zhou Jizheng He et al. Comparison between oxalate and humate on copper adsorption on geothite. Fresenius Euvir. Bull, 1998, 7: 570~576
    41.袁可能.植物营养元素的土壤化学,北京,科学出版社,1983
    42.章钢娅,张效年.可变电荷土壤中阴离子的吸附。土壤学进展,1986,14(4):11~19
    43.熊毅,陈家坊.土壤胶体(三)-土壤胶体的性质。科学出版社,1990
    44. Elory A.C. et al. The rhizosphere springer-Verlag beidelberg, Newyork, Tokyo, 1986, 1~5
    45.陈家坊.土壤粘粒中氧化物及其特性.土壤化学原理,1984
    46.于天仁.土壤的电化学性质及其研究法。科学出版社,1965
    47.于天仁,季国亮,丁昌璞.可变电荷土壤的电化学。科学出版社,1986
    48. Perrott, K.W. Surface charge characterstics of amorphous aluminosi licates. Clay&clay Miner., 1977, 25: 417~421
    49.熊毅.土壤胶体(二)-土壤胶体研究法。科学出版社,1985
    50.陆集卿,关国华,陈大勋译,W. L. Lindsay著(美).土壤中营养及污染元素的化学平衡,1986
    51. Wann, S.S., Uehara, G. Surface charge manipulation in constant surface
    
    potential colloids: Ⅱ effect on solute transport. Soil Sci. Soc. Am. J, 1978a, 42: 886~888
    52. Wann, S.S., Uehara, G. Surface charge manipulation in constant surface potential colloids: Ⅰ. Relation to sorbed phosphorus Soil Sci. Soc. Am. J, 1978b, 42: 565~570
    53. Arnold, P. W. Soil science and the search for unifying concepts. J. Soil Sci., 1977, 28: 393~402
    54. Gallez A., Juo A. S. R., Herbiuon A. Surface and charge characteristics of selected soil in tropic. Soil Sci. Soc. Am. J. 1976, 40: 601~608
    55. Uehara, G.&Gillman, G.P. The Minerralogy, Chemistry, and physics of Tropical soil with variable charge ctays. Westriew Press: Boulder, Colorado, 1981
    56. Uehara G., Gillman G. P. Charge characteristics of soil With variable and permanent charge minerals.Ⅰ Theory. Soil Sci. Soc. Am. J., 1980, 44: 250~252
    57.张福锁.土壤与植物营养研究动态。北京农业大学出版社,1992
    58.陈家坊等.化学物质的土壤化学行为与环境污染研究进展。环境化学,1988,7(3):8~12
    59.高拯民.我国土壤环境保护科学研究现状与展望。土壤学报,1989,27(3):262~272
    60.胡钦红.土壤环境化学的研究动态。土壤,1991,23(4):193~199
    61.罗厚庭,董元彦,李学垣.可变电荷土壤吸附磷酸根后对铜,锌,镉次级吸附的影响。华中农业大学学报,1992,11.358~363
    62.虞锁富.有机质和陪伴阴离子对土壤吸附锌的影响。土壤,1990,2:118~122
    63.胡红青.有机酸影响酸性土壤与铝氧化物表面磷吸附-解吸的条件和机理。华中农业大学博士研究生学位论文,1997
    64.陆文龙,王敬国,曹一平等.低分子量有机酸对土壤磷释放动力学的影响。土壤学报,1998,35(4):491~499
    
    
    65. Mench M., Martin E. Mobilization of Cd and other metals from two soils by root exudates of Zea mays L, Nicotyiana tabacum L. and Nicotiana ruatica L. Plant and soil, 1991, 132: 187~196
    66. E.Marcano-Martinez and M.B.McBride. Comparison of the Titration and Ion Adsorption methods for surface charge measurement in Oxisols. Soil Sci. Soc. Am. J., 1989, 53: 1040~1045
    67. G.F.Gillman, G.Uehara. Charge characteristics of soils with variable and permanent charge minerals: Ⅱ. Experimental. Soil Sci. Soc. Am. J., 1980. 44: 252~255
    68.刘冬碧,贺纪正,刘凡等.中南地区几种土壤的表面电荷特性—1.几种测定电荷零点的方法比较。迈向21世纪的土壤与植物营养科学,中国农业出版社,1997,PP:97~101
    69.贺纪正,谭文峰,刘凡等.几种可变电荷土壤电荷零点的初步研究。华中农业大学学报,1995,14(5):449~454
    70.王果.Cu、Cd在两种土壤上的吸附特征。福建农业大学学报,1995,24(4):436~441
    71. J(?)rg Gerke. Kinetics of soil phosphate desorption as affected by citric acid. Z.Pflanzenern(?)hr. Bodenk., 1994, 157: 17~22
    72. Mu Lan, N.B.Comerford, T.R.Fox. Organic anion' effect on phosphorus release from Spodic Horizon. Soil Sci. Soc. Am. J., 1995, 59: 1745~1749
    73.胡红青,李学垣,贺纪正.有机酸根与铝氧化物表面吸附磷的解吸。植物营养与肥料学报,1998,4(3):249~256
    74.章永松,林咸永,倪吾钟.有机肥对土壤磷吸附—解吸的直接影响。植物营养与肥料学报,1996,2(3):200~205
    75.李学垣.土壤化学及实验指导,中国农业出版社,1995
    76.吴宏,彭中贵.离子色谱及应用。重庆出版社,1988
    77.牟世芬,刘开录.离子色谱。科学出版社,1986
    78. Giles C. H., T.H. MacEwan, S.N.Nakhwa, et al. Studies in adsorption Part Ⅺ A system of classification of solution adsorption isotherms and its use
    
    in diagnosis of adsorption mechanisms and in measurement of specific surface area of solids. Journal of the chemical society. 1960: 3973~3977
    79. D.L.Jones, D.S.Brassington. Sorption of organic acid on soils and its implication in the rhizosphere. Eur. J. of Soil Sci., 1998, 49: 447~455
    80. A. De Cristofaro, J. Z. He, D. H. Zhou et al. Adsorption of phosphate and tartrare on Hydroxy-Aluminum-Oxalate precipitates. Soil Sci. Soc. Am. J., 2000, 64(4): 1344~1355
    81. J.Z.He, A.De Cristofaro, A. Violante. Comparison of adorption of phosphate, Tartrate, and oxalate on Hydroxy Aluminum montmorillinite complexes. Clays and clay minerals, 47(2): 226~233
    82.陈宇晖,李方敏.有机酸对土壤磷吸附的影响。湖北农学院学报,1998,18(2):121~124
    83.甘海华,徐盛荣.红壤及其有机复合体对磷吸附解吸规律探讨。土壤通报,1994,25(6):265~268
    84.胡红青,贺纪正,李学垣.有机酸对酸性土壤吸附磷的影响。华中农业大学学报,1997,16(1):37~42
    85.陈铭,刘更另.可变电荷土壤中主要阴离子的吸附。土壤通报,1994,25(1):46~49
    86.何振立,袁可能,朱祖祥.有机阴离子对磷酸根吸附的影响。土壤学报,1990,27(4):377~284
    87. Bowden, J. W. et al. Describing the adsorption of phosphate, citric and selenite on a variable-charge mineral surface. Aust. J. Soil. Res., 1980, 18: 49~60
    88. Parfitt, R. L. et al. Adsorption on hydrous oxides: Oxalate and benzoate on geoethite. J. Soil Sci., 1977, 28: 29~39
    89.王果.络合作用对重金属离子吸附的影响。土壤学进展,1994,22(6):6~13
    90.中科院南京土壤研究所,土壤理化分析。上海科学技术出版社,1978

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700