石墨炉原子吸收光谱用于陶瓷材料的方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
新型陶瓷材料在信息、航空航天、生命科学等现代科学技术各个领域中,发挥了极其重要的作用,然而其化学组成及杂质极大地影响材料的性能(机械性、热稳定性电磁性、光学性等),因此测定新型陶瓷材料中的痕量杂质元素的含量成为了当今亟待解决的问题。
     常规分析要求试样制备成溶液进样,但是由于其物理和化学特性,新型陶瓷材料难以制备成溶液。悬浮液分析结合了固体和液体进样方式的显著优势,并且称取样品的总质量高,是一种相对成熟的技术,并已作为常规分析方法广泛应用于有机和无机复杂基体中微、痕量金属元素的分析测定。
     石墨炉原子吸收光谱被认为是直接分析固体样品最吸引人的技术,主要因为其能将固体物质直接引入到原子化器中,样品在原子化器停留时间较长,任何形状或挥发性的粒子都被原子化,此外,它具有低检出限、高选择性、高灵敏度的优点,综上所述,石墨炉原子吸收成为一种易于接受的测定方法和测定固体材料中痕量元素的一种常规方法。
     悬浮液勿需将样品制备成溶液,因此相比溶液进样,颗粒在原子化过程中将产生非特定吸收;石墨炉程序升温也很难避免待分析物和基体同时原子化,因此,有效的背景校正是必要的。本文采用自吸扣背景和塞曼效应背景校正两种方式进行测定。
     高纯氧化铝、碳化硅是难溶的陶瓷材料。本文采用石墨炉原子吸收法测定其中的痕量元素的含量。实验选择两种不同的进样方式,即高温高压消解样品和悬浮液,其中氧化铝和碳化硅悬浮液分别选用聚丙烯酸铵(NH4PAA)、聚醚酰亚胺(PEI)作为分散剂、旋涡混合来确保悬浮液的分散性、稳定性极其均匀性,并采用持久基体改进剂Zr进行测定,结果发现它能够有效的降低残留物的沉积,大大提高石墨管的使用寿命。
     此外,本文还对灰化温度、原子化温度及空心阴极灯的灯电流等石墨炉原子吸收工作条件进行了优化,最终确定了最佳测定条件。样品测试采用标准水溶液进行校正,方法准确性采用标准样品氧化铝AKP-30、碳化硅BAM-S003在两种进样方式下的分析测定结果,并与文献报道的其它测定方法结果进行对比。测定的校正曲线的线性相关性大于0.999,方法的检出限低,相对标准偏差小于6.6%。
     研究表明本方法简单,结果确切,适用于陶瓷材料中痕量元素的快速测定。
Advanced ceramics have been utilized in various important fields such as information science, eronautics and astronautics, life sciences. However, the mechanical, thermal, electrical, magnetic, and optical properties of ceramics are significantly affected by the chemical composition and impurities existed in the material even at very low concentration level. Thus,it is essential to determine trace impurities to characterizes the quality of ceramics.
     Routine analysis demands the sample in form of solution. However, it is chemically difficult to bring sample into dissolution because of physical and chenmiatry properties. Slurry sampling was already considered as a mature technique, due to combining the significant advantages of the solid and liquid sampling methods and allowing several replicates from just only one slurry and higher amounts of sample can be weighted. It was widely utilized for metal determination in trace and even ultra trace analysis in organic and inorganic complicated matrix, even for routine analysis.
     Graphite Furmace Atomic Absorption Spectrometry (GFAAS) has been shown to be the most attractive technique for the direct analysis of solid samples, mainly by the absence of a nebulizer system which simplifies the introduction of the solid material into the atomizers. Additionally, the large residence time of the sample into the GFAAS atomizer allows the particles to be atomized whatever their size or volatility. Moreover, it shows quite low limits of detection、high selectivity and sensitivity, which is highly desirable in trace analysis. Due to all these attributes solid analysis by GFAAS is now an accepted methodology and a very convenient way for the determination of trace elements in a broad range of solid materials.
     The slurry analysis involves by far more problems related to non-specific absorption than the analysis of solutions (or acid extracts) does. Accordingly, the graphite furnace temperature programme is really difficult to avoid the analyte and matrix simultaneous atomization, so an efficient background corrector is imperative. In this wok, Smith-Hieftje background correction (S-H) and Zeeman effect corrector were used.
     High-purity alumina and silicon carbides was considered to be the most refractory ceramic materials. Direct determination the inpurities in ceramics of was performed by slurry-GFAAS with subsequent to decomposition by sulfuric acid in PTFE pressure vessels and slury sampling. The silicon carbides slurry sample was prepared with adding dispersant Polyacrylic amine (NH4PAA) polyethyleneimine (PEI),respectively,and agitation in an vortex mixer to ensure for the dispersion,stabilization and homogenization of suspension, Zirconium coating as a permanent modifier showed that the improvement in analytical firings of the tube.
     Instrument conditions of GFAAS such as pyrolysis, atomization and hollow cathode lamp current has been optimized, the optimal experimental conditions were selected. Calibration was performed using aqueous standards method for sample analysis. The accuracy of the proposed method was shown up for the case of Al2O3 (AKP-30)、SiC (BAM-S003), and compared with those obtained by GFAAS, the results were in agreement well with values found in the literature by different methods. The linear regression coefficients of the calibration curves were better than 0.999. The detection limits were low, with a relative standard deviation were being not more than 6.6%.
     It is a simple, convenient and accurate method and it is suitable for the rapid analysis of trace element in ceramics.
引文
[1]Lima EC, Krug FJ, Ferreira AT, Barbosa F. Tungsten-rhodium permanent chemical modifier for cadmium determination in fish slurrier by electrothermal atomic absorption spectrometry [J]. J. Anal. At. Spectrom,1999,14(2):269-274.
    [2]Welz B, Vale MGR, Borges DLG, Heitmann U. Progress in direct solid sampling analysis using line source and high-resolution continuum source electrothermal atomic absorption spectrometry [J]. Anal. Bioanal. Chem.,2007,389(7-8):2085-2095.
    [3]Vale MGR, Oleszczuk N, dos Santos WNL. Current status of direct solid sampling for electrothermal atomic absorption spectrometry-a critical review of the development between 1995 and 2005[J]. Applied Spectroscopy Reviews,2006,41(4):377-400.
    [4]Puig AI, Alvarado JI. Evaluation of four sample treatments for determination of platinum in automotive catalytic converters by graphite furnace atomic absorption spectrometry[J]. Spectrochim. Acta Part B,2006,61(9):1050-1053.
    [5]NakaneK, UwaminoY, Morikawa H, Tsuge A, Ishizuka T. Determination of trace impurities in high-purity aluminium oxide by high resolution inductively coupled plasma mass spectrometry [J].Analytica Chimica Acta,1998,369(1-2):79-85.
    [6]蒋炜,任凤莲.火焰原子吸收光谱法测定氧化铝中杂质元素[J].理化检验-化学分册,2002,38(6):306-307.
    [7]Yu LL, Wood LJ, Kelly WR, Turk GC. Determination of Be in alumina by ICP-OES after Carius tube digestion[J]. J. Anal. At. Spectrom.,2007,22(11):1427-1429.
    [8]胥成民,陈宗宏ICP-AES法测定进口氧化铝中杂质元素含量[J].理化检验-化学分册,2006,42(1):46-47.
    [9]姜郁,王通胜,魏志勇,包敏,赵祥岭.微波消解ICP-AES法测定氧化铝中杂质元素[J].分析试验室,2006,25(8):57-61.
    [10]王倩,明芳.微波消解等离子体光谱法测定高纯氧化铝中杂质元素[J].冶金分析,2003,23(4):53-54.
    [11]Wende MC, Broekaert JAC. Direct solid sampling electrothermal vaporization of alumina for analysis by inductively coupled plasma optical emission Spectrometry [J]. Spectrochimi. Acta Part B,2002,57(12):1897-1904.
    [12]Wang Z, Ni ZM, Qiu DR,Chen TY, Tao GY, Yang PY. Determination of metal impurities in titanium dioxide using slurry sample introduction by axial viewing inductively coupled plasma optical emission spectrometry [J]. J. Anal. At. Spectrom., 2004,19(19):273-276.
    [13]Peng TY, Chang G, Wang L, Jiang ZC, Hu B. Slurry sampling fluorination assisted electrothermal vaporization-inductively coupled plasma-atomic emission spectrometry for the direct determination of metal impurities in aluminium oxide ceramic powders[J]. Fresenius J Anal Chem.,2001,369(5):461-465.
    [14]Jankowski K, Jackowska A, Lukasiak P, Mrugalska M, Trzaskowska A. Direct atomic spectrometric analysis of aluminium oxide by continuous powder introduction into microwave induced plasma [J].J Anal At Spectrom.,2005,20(9):981-986.
    [15]Wende MC, Broekaert JAC. Investigations on the use of chemical modifiers for the direct determination of trace impurities in Al2O3 ceramic powders by slurry electrothermal evaporation coupled with inductively-coupled plasma mass spectrometry (ETV-ICP-MS)[J]. Fresenius J Anal Chem.,2001,370(5):513-520.
    [16]Mierzwa J, Yang M H. Electrothermal vaporization-inductively coupled plasma mass spectrometry for determination of metal impurities in slurries of aluminium oxide[J].J. Anal. At. Spectrom.,1998,13(7):667-671.
    [17]Peschel BU, Andrade F, Wetzel WC, Schilling GD, Hieftje GM, Broekaert JAC, Sperline R, Denton M B, Baninaga C J, Koppenaal D W. Electrothermal vaporization coupled with inductively coupled plasma array-detector mass spectrometry for the multielement analysis of Al2O3 ceramic powders[J].Spectrochimica Acta Part B, 2006,61(1):42-49.
    [18]陈先安,贾春仙.火焰原子吸收法测定氧化铝中的钠[J].分析试验室,2000,19(1):39-41.
    [19]赵勤,牟叔全.石墨炉原子吸收光谱法测定高纯氧化铝中痕量硅[J].理化检验-化学分册,1997,33(3):114-115.
    [20]Lucic M, Krivan V. Solid sampling electrothermal atomic absorption spectrometry for analysis of aluminium oxide powders [J]. J.Anal.At.Spectrom.,1998,13(10): 1133-1139.
    [21]Sakka Y, Bidinger DD, Aksay IA. Processing of Silicon Carbide-Mullite-Alumina Nanocomposites [J].J.Am.Ceram.Soc.,1995,78(2):479-486.
    [22]Takada H, Nakahira A, Ohnishi H,Ueda S,Niihara K. Improvement of Mechanical Properties of Natural Mullite/SiC Nanocomposite[J]. J. Powder Met.,1991,38(3): 348-351.
    [23]Graule T, Vonbohlen A, Broekaert JAC, Grallath E, Klockenkamper R, Tschopel P, Tolg G. Atomic emission and atomic absorption spectrometric analysis of high-purity powders for the production of ceramics [J].Fresenius Z. Anal. Chem.,1989,335(7): 637-642.
    [24]Docekal B, Broekaert JAC, Graule T, Tschopel P, Tolg G. Determination of impurities in silicon carbide powders[J]. Fresenius J. Anal. Chem.,1992,342(1-2): 113-117.
    [25]Broekaert JAC, Brandt R., Leis F, Pilger C, Pollmann D, Tschopel P, Tolg G. Analysis of alumium oxide and silicon carbide ceramic materials by inductively coupled plasma mass spectrometry[J]. J. Anal. At. Spectrom.,1994,9(9):1063-1070.
    [26]Larrea MT, Pinilla IG, Farinas JC. Microwave-assisted Acid Dissolution of Sintered Advanced Ceramics for Inductively Coupled Plasma Atomic Emission Spectrometry[J].J. Anal. At. Spectrom.,1997,12 (11):1323-1332.
    [27]Broekaert JAC, Lathen C, Brandt R.,Pilger C, Pollmann D, Tschopel P, Tolg G. The use of plasma atomic spectrometric methods for the analysis of ceramic powders [J].Fresenius J. Anal. Chem.,1994,349(1-3):20-25.
    [28]Schaffer U, Krivan V. Anal.Chem,.Multielement Analysis of Graphite and Silicon Carbide by Inductively Coupled Plasma Atomic Emission Spectrometry using Solid Sampling and Electrothermal Vaporization[J].1999,71(4):849-854.
    [29]Barth P, Krivan V. Electrothermal vaporization inductively coupled plasma atomic emission spectrometric technique using a tungsten coil furnace and slurry sampling[J].J. Anal.At. Spectrom.,1994,9(7):773-777.
    [30]Wang Z, Ni ZM, Qiu DR,Tao GY, Yang PY. Characterization of stability of ceramic suspension for slurry introduction in inductively coupled plasma optical emission spectrometry and application to aluminium nitride analysis [J]. J. Anal. At. Spectrom., 2005,20(4):315-319.
    [31]Franek M, Krivan V. Multielement characterization of silicon carbide powders by instrumental neutron activation analysis and ICP-atomic emission spectrometry [J]. Fresenius J. Anal. Chem.,1992,342(1-2):118-124.
    [32]Zaray G, Leis F, Kantor T, Hassler J, Tolg G. Analysis of silicon carbide powder by ETV-ICP-AES[J]. Fresenius J. Anal. Chem.,1993,346(12):1042-1046.
    [33]Kohl F, Jakubowski N, Brandt R., Pilger C, Broekaert JAC. New strategies for trace analyses of ZrO2,SiC and Al2O3 ceramic owders[J].Fresenius J. Anal. Chem.,1997, 359(4-5):317-325.
    [34]Morita Y, Tanaka A, Isozaki A, Okutani T. Direct Determination of Iron in Silion Carbide and Silicon Nitride by Electrothermal Atomic Absorption Spectrometry with Slurry-Introduction[J].J. Anal. Sci.,1999,15(11):1145-1148.
    [35]Minami H, Yada M, Yoshida T, Zhang Q, Inoue S, Atsuya I. Simultaneous Direct Determination of Aluminum,Calcium and Iron in Silicon Carbide Silicon Nitride Powders by Slurry-Sampling Graphite Furnace AAS[J].J. Anal. Sci.,2004,20(3): 455-459.
    [36]Wang Z, Ni ZM, Qiu DR, Tao GY, Yang PY. Determination of impurities in titanium nitride by slurry introduction axial viewed inductively coupled plasma optical emision spectrometry[J].Spectrochimica. Acta Part B,2005,60(3):361-367.
    [37]Chen CL, Danadurai KSK, Huang SD. Direct and simultaneous determination of copper, manganese and molybdenum in seawater with a multi-element electrothermal atomic absorption spectrometer[J]. J. Anal. At. Spectrom.,2001,16(4):404-408.
    [38]Nobrega JA, Rust J, Calloway CP, Jones BT. Use of modifiers with metal atomizers in electrothermal atomic absorption spectrometry:a short review [J]. Spectrochimica. Acta Part B,2004,59(9):1337-1345.
    [39]Resano M, Vanhaecke F, de Loos-Vollebregt MTC. Electrothermal vaporization for sample introduction in atomic absorption,atomic emission and plasma mass spectrometry—a critical review with focus on solid sampling and slurry analysis[J]. J. Anal. At. Spectrom,2008,23(11):1450-1475.
    [40]Cal-Prieto MJ, Felipe-Sotelo M, Carlosena A, Andrade JM, Lopez-Mania P, Muniategui S, Prada D. Slurry sampling for direct analysis of solid materials by electrothermal atomic absorption spectrometry (ETAAS). A literature review from 1990 to 2000[J]. Talanta,2002,56(1):1-51.
    [41]Vinas P, Pardo-Martinez M, Hernandez-Cordoba M. Slurry atomization for the determination of arsenic in baby foods using electrothermal atomic absorption spectrometry and deuterium backgroundcorrection[J]. J. Anal. At. Spectrom.,1999, 14(8):1215-1219.
    [42]陈世忠.悬浮液进样石墨炉原子吸收光谱法测定琥珀中微量铅[J].岩矿测试,2003,22(3):228-230.
    [43]邓世林,李新凤,邓富良,郭小林.悬浮液进样石墨炉原子吸收光谱法测定苎麻中镉[J].理化检验-化学分册,2004,40(2):79-81.
    [44]问思恩.悬浮液进样石墨炉原子吸收光谱法测定紫菜中镉[J].微量元素与健康研究,2006,23(5):38-39.
    [45]戴秀丽,王沁,李绍南.悬浮液直接进样塞曼石墨炉平台原子吸收法测定土壤中痕量铅[J].中国环境监测,2002,18(1):24-26.
    [46]苏耀东,刘宏,王伟锋,倪亚明,程祥圣,徐韧.超声搅拌悬浮液进样石墨炉原子吸收测定海洋沉积物中的痕量镉[J].理化检验-化学分册,2000,36(11):506-507.
    [47]苏耀东,王中平,倪亚明,程祥圣.悬浮液进样石墨炉原子吸收测定痕量铅[J].分析化学,2000,28(5):660-662.
    [48]汪正,陈天裕,陶光仪,杨芃原.悬浮液进样端视电感耦合等离子体发射光谱法直接测定二氧化钛中铌[J].光谱学与光谱分析,2005,25(4):556-559.
    [49]Wang Z, Ni ZM, Qiu DR, Tao GY, Yang PY. Direct determination of impurities in high purity silicon carbide by inductively coupled plasma optical emission spectrometry using slurry nebulization technique[J]. Analytica Chimica Acta,2006, 577(2):288-294.
    [50]Torrence KM, McDaniel RL, Self DA, Chang M J. Slurry sampling for the determination of arsenic, cadmium, and lead in mainstream cigarette smoke condensate by graphite furnace-atomic absorption spectrometry and inductively coupled plasma-mass spectrometry [J]. Anal. Bioanal.Chem.,2002,372(5-6): 723-731.
    [51]淦五二,隋梦,何友昭.草酸铵作稳定剂石墨炉原子吸收法直接测量土壤悬浮液中微量镉[J].光谱学与光谱分析,1999,19(6):861-863.
    [52]Vinas P, Pardo-Martinez M, Loopez-Garcia I, Hernandez-Cordoba M. Slurry atomisation for the determination of arsenic, cadmium and lead in food colourants using electrothermal atomic absorption spectrometry [J]. J. Anal. At. Spectrom., 2001,16(10):1202-1205.
    [53]涂卫东,林燕奎,赵琼晖.石墨炉原子吸收光谱法悬浮液直接进样测定螺旋藻干粉中铅[J].理化检验-化学分册,2004,40(4):217-220.
    [54]Lilleengen B, Wibetoe G. Graphite furnace atomic absorption spectrometry used for determination of total, EDTA and acetic acid extractable chromium and cobalt in soils[J]. Anal. Bioanal. Chem.,2002,372(1):187-195.
    [55]Tokman N. The use of slurry sampling for the determination of manganese and copper in various samples by electrothermal atomic absorption spectrometry [J]. Journal of Hazardous Materials,2007,143(1-2):87-94.
    [56]邓勃.石墨炉原子吸收光谱分析中化学改进技术的进展.现代科学仪器,2009,(1):100-115.
    [57]Aucelio RQ, Curtius AJ. Evaluation of electrothermal atomic absorption spectrometry for trace determination of Sb, As and Se in gasoline and kerosene using microemulsion sample introduction and two approaches for chemical modification[J]. J. Anal. At. Spectrom.,2002,17(3):242-247.
    [58]Vaisanen A, Suontamo R, Rintala J. Sodium nitrate and tungsten as matrix modifiers for the determination of arsenic in shotgun pellets by electrothermal atomic absorption spectrometry [J]. J. Anal. At. Spectrom.,2001,16(5):533-537.
    [59]吴旺喜,刘延湘,刘汉东,郭光辉,徐国宇,龚涛.悬浮液进样石墨炉原子吸收光谱法测定饲料样品中痕量铜[J].湖北化工,2001,(5):47-48.
    [60]Baralkiewicz D, Gramowska H, Kozka M, Kanecka A. Determination of mercury in sewage sludge by direct slurry sampling graphite furnace atomic absorption spectrometry[J]. Spectrochim. Acta Part B,2005,60(3):409-413.
    [61]Husakova L, Cernohorsky T, Sramkova J, Vavrusova L. Direct determination of arsenic in beer by electrothermal atomic absorption spectrometry with deuterium background correction (D2-ET-AAS)[J]. Food Chemistry,2007,105(1):286-292.
    [62]Dobrowolski R. Determination of selenium in soils by slurry-sampling graphite-furnace atomic-absorption spectrometry with polytetrafluoroethylene as silica modifier[J]. J. Anal. Chem.,2001,370(7):850-854.
    [63]Wang FY, Jiang ZC, Peng TY. Use of polytetrafluoroethylene slurry for silica matrix removal in ETAAS direct determination of trace cobalt and nickel in silicon dioxide powder[J]. J. Anal. At. Spectrom.,1999,14(6):963-966.
    [64]Tsalev DL, Slaveykova VI, Lampugnani L, D'Ulivo A, Georgieva R. Permanent modification in electrothermal atomic absorption spectrometry-advances, anticipations and reality[J]. Spectrochim. Acta. Part B,2000,55(5):473-490.
    [65]Loureiro VR, Saleh MAD, Moraes PM, Neves RCF, Silva FA, Padilha CCF, Padilha PM. Manganese Determination by GFAAS in Feces and Fish Feed Slurries [J]. J. Braz. Chem. Soc,2007,18(6):1235-1241.
    [66]Flores AV, Perez CA, Marco AZ. Arruda. Evaluation of zirconium as a permanent chemical modifier using synchrotron radiation and imaging techniques for lithium determination in sediment slurry samples by ETAAS[J]. Talanta,2004,62 (3): 619-626.
    [67]Resano M, Briceno J, Aramendia M, Belarra MA. Solid sampling-graphite furnace atomic absorption spectrometry for the direct determination of boron in plant tissues[J]. Analytica Chimica Acta,2007,582 (2):214-222.
    [68]Da Silva JBB, da Silva MAM, Curtius A J, Welz B. Determination of Ag, Pb and Sn in aqua regia extracts from sediments by electrothermal atomic absorption spectrometry using Ru as a permanent modifier[J].J. Anal. At. Spectrom.,1999, 14(11):1737-1742.
    [69]Meeravali NN, Kumar SJ. Zirconium-iridium coating as a permanent modifier for determination of tin in stream sediment, oyster tissue and total diet slurries by electrothermal atomic absorption spectrometry[J]. J. Anal. At. Spectrom.,2002,17(7): 704-709.
    [70]Freschi GPG, Freschi CD, Neto JAG. Evaluation of different rhodium modifiers and coatings on the simultaneous determination of As, Bi, Pb, Sb, Se and of Co, Cr,Cu, Fe, Mn in milk by electrothermal atomic absorption spectrometry[J]. Microchim. Acta,2008,161(1-2):129-135.
    [71]Lopez-Garcia I, Rivas RE, Hernandez-Cordoba M. Use of sodium tungstate as a permanent chemical modifier for slurry sampling electrothermal atomic absorption spectrometric determination of indium in soils[J].Anal. Bioanal. Chem.,2008,391(4): 1469-1474.
    [72]Volynsky AB. Mechanisms of action of platinum group modifiers in electrothermal atomic absorption spectrometry[J]. Spectrochim. Acta Part B,2000,55(2):103-150.
    [73]Ortner HM, Bulska E, Rohr U, Schlemmer G, Weinbruch S, Welz B. Modifiers and coatings in graphite furnace atomic absorption spectrometry-mechanisms of action (A tutorial review)[J]. Spectrochim. Acta Part B,2002,57(12):1835-1853.
    [74]Volynsky AB, Wennrich R. Mechanisms of the action of platinum metal modifiers in electrothermal atomic absorption spectrometry:aims and existing approaches[J]. Spectrochim. Acta Part B,2002,57(8):1301-1316.
    [75]Volynsky AB, de Loos-Vollebregt MTC. Vaporization of Pb, As and Ga alone and in the presence of Pd modifier studied by electrothermal vaporization-inductively coupled mass spectrometry [J]. Spectrochim. Acta Part B,2005,60(11):1432-1441.
    [76]Castro MA, Aller AJ, McCabe A, Smith WE, Littlejohn D. Spectrometric study of condensed phase species of thorium-and palladium-based modifiers in a complex matrix for electrothermal atomic absorption spectrometry[J]. J. Anal. At. Spectrom., 2007,22(3):310-317.
    [77]Munoz ML, Aller AJ. Appraisal of the chemical modification process for the determination of lead by ltrasonic slurry sampling-electrothermal atomic absorption spectrometry [J]. J. Anal. At. Spectrom.,2006,21(3):329-337.
    [78]何嘉耀,何华焜.原子吸收光谱分析背景校正技术的新进展[J].分析试验室,2005,24(12):76-80.
    [79]Welz B, Becker-Ross H, Florek S, Heitmann U, Vale M G R. High-Resolution Continuum-source Atomic Absorption Spectrometry-What Can We Expect?[J].J. Braz. Chem. Soc.,2003,14(2):220-229.
    [80]Campillo N, Lopez-Garciia I, Vinas P, Arnau-Jerez I, Hernandez-Cordoba M. Determination of vanadium, molybdenum and chromium in soils,sediments and sludges by electrothermal atomic absorption spectrometry with slurry sample introduction[J].J. Anal. At. Spectrom.,2002,17(10):1429-1433.
    [81]Taylor A, Branch S, Day MP, Patriarcad M, White M. Atomic spectrometry update: Clinical and biological materials, foods and beverages[J]. J. Anal. At. Spectrom.,2008, 23(4):595-646.
    [82]Lima EC, Brasil JL, Santos AHDP. Evaluation of Rh, Ir, Ru, W-Rh, W-Ir and W-Ru as permanent modifiers for the determination of lead in ashes, coals,sediments, sludges, soils and freshwaters by electrothermal atomic absorption spectrometry [J].Anal. Chim. Acta,2003,484(2):233-242.
    [83]Lima EC, Krug F J, Jackson KW. Evaluation of tungsten-rhodium coating on an integrated platform as a permanent chemical modifier for cadmium, lead, and selenium determination by electrothermal atomic absorption spectrometry[J].Spectrochim. Acta PartB,1998,53(28):1791-1804.
    [84]Pollmann D, Leis F, Tolg G, Tschopel P, Broekaert JAC. Multielement trace determinations in Al2O3 ceramic powders by inductively coupled plasma mass spectrometry with special reference to on-line trace preconcentration[J]. Spectrochim. Acta. Part B,1994,49(12-14):1251-1258.
    [85]Broekaert JAC, Brandt R, Leis F, Pilger C, Pollmann D, Tschopel P, Tolg G. Analysis of Aluminium Oxide and Silicon Carbide Ceramic Materials by Inductively Coupled Plasma Mass Spectrometry Invited Lecture[J].J. Anal. At. Spectrom.,1994,9(9): 1063-1070.
    [86]Jakubowski N, Tittes W, Pollmann D, Stuewer D, Broekaert JAC. Comparative Analysis of Aluminium Oxide Powders by Inductively Coupled Plasma Mass Spectrometry With Low and High Mass Resolution[J]. J.Anal.At. Spectrom.,1996, 11(9):797-803.
    [87]Peschel BU, Fittschen UEA, Pepponi G, Jokubonis C, Streli C, Wobrauschek P, Falkenberg G, Broekaert JAC. Direct analysis of Al2O3 powders by total reflection X-ray fluorescence Spectrometry[J].Anal. Bioanal. Chem.,2005,382(8):1958-1964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700