植物—GTY联合对含盐偶氮染料废水脱色的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偶氮染料因其容易合成,性质稳定,颜色多样等优点被广泛应用于印染、化工等行业,占染料种类的80%以上。同时一些沿海印染、化工等企业将海水直接用作工业生产用水,导致大量含盐偶氮染料废水的产生。偶氮染料造成的污染,成为日益严重的环境问题。在众多偶氮染料废水处理的技术中,植物—微生物联合修复以其成本低,效果好,可进行原位修复等优势,越来越受到人们的关注。
     本论文首先考察了耐盐菌GTY在5%NaCl浓度下对偶氮染料酸性金黄G、酸性大红GR和酸性红B的脱色效果。发现GTY对三种偶氮染料的脱色效率由高到低依次为:酸性红B、酸性大红GR、酸性金黄G。GTY在厌氧条件下脱色较好,高溶解氧会严重抑制脱色效果,但在微量溶解氧条件下(DO值1.80左右),对GTY脱色影响不大,并且此溶解氧浓度下植物可以正常生长。
     然后考察了NaCl和上述三种偶氮染料对紫花苜蓿、田菁、盐角草和盐地碱蓬种子萌发的影响,实验结果表明紫花苜蓿和田菁对偶氮染料有较好的耐受性,但耐盐性较差;盐角草和盐地碱蓬对NaCl有较好的耐受性,但对偶氮染料的耐受性较差。
     根据四种植物的特性,考察不同的条件下的脱色效果。在5 g/L NaCl浓度下,紫花苜蓿对100、500、1000 mg/L偶氮染料的脱色率分别为70%、50%、30%;田菁的脱色率约为:30%、22%、9%。在添加GTY后,紫花苜蓿对100、500、1000 mg/L偶氮染料的脱色率分别提高约10%、7%、5%;田菁脱色率分别提高约:35%、20%、15%。在15 g/LNaCl浓度下,盐角草和盐地碱蓬对100 mg/L酸性金黄G和酸性大红GR脱色率在10%左右,对酸性红B脱色率在25%~45%之间。在添加GTY后,盐角草对偶氮染料的脱色率提高约33%;盐地碱蓬对偶氮染料的脱色率提高约39%。并且盐地碱蓬和盐角草脱色率提高的部分大于GTY单独对偶氮染料的脱色率,说明植物与微生物二者之间具有一定的相互促进作用。提取四种植物的根系分泌物,发现根系分泌物对GTY的生长均具有一定促进作用,并且根系分泌物的量越多,对GTY生长促进作用越大,从而间接提高其对偶氮染料的脱色能力。
Because azo dyes usually have good stability and can be easily synthesized, they are widely used in textile and chemical industry. It is estimated that Azo dyes account for more than 80% of total dyeing stuffs. Meanwhile, more and more textile and chemical industries use seawater for producing process, a large amount of salty wastewater is discharged. The pollution of azo dyes is more and more serious. Compaired to traditional wastewater techniques, soil phytoremediation consistes of microorganisms and plants obtained more and more attention because of the low cost, high efficiency, and in-situ remediation.
     Firstly, salt-tolerant bacteria GTY was researched to three azo dyes (acid yellow G, acid scarlet GR, acid red B) decolorization under 5% NaCl concentration. And the decolorization rate of the three azo dyes was acid red B> acid scarlet GR>acid yellow G. The decolorization would be seriously inhibited when DO>7.00, but it had little effect on decolorization when DO≤1.80 and it was able to provide enough oxygen for the root of plants.
     Secondly, the effect of salt and azo dyes concentration on germination, root's length in Medicago sativa L. (MSL), Sesbania cannabina Pers (SCP), Salicornia europaea L. (SEL) and Suaeda salas L. (SSL) were researched. Results showed that MSL and SCP could tolerance azo dyes, SEL and SSL could tolerance NaCl.
     According to the plant feature, decolorization of azo dyes by plants-GTY under different conditions was studied.The decolorization rates of 100,500,1000 mg/L azo dyes by MSL was about 70%,50%,30%; and the decolorization rates by SCP was about 30%,22%,9% under 5 g/L NaCl. While the decolorization rates of 100,500,1000 mg/L azo dyes by MSL-GTY Mutualism System raised about 10%,7%,5%; and the decolorization rates by SCP-GTY Mutualism System raised about 35%,20%,15%. The decolorization rates of 100 mg/L acid yellow G and acid scarlet GR by SSL and SEL was about 10% respectively, and the decolorization rates of 100 mg/L acid red B was 25%-45% under 15g/L NaCl. While the decolorization rates by SEL-GTY Mutualism System raised about 33% and the decolorization rates by SSL-GTY Mutualism System raised about 39%. The decolorization rates by GTY was only about 11%. So it is obviously that Plants-GTY Mutualism System enhanced the decolorization of azo dyes.
     Finally, the effects of plants'root extract on the growth of microorganisms were studied. Results showed that the root extract promoted the growth of GTY and increased its biomass. The increasing of decolorization mainly came from increasing of GTY by plants, so the root extract indirect enhanced the decolorization of azo dyes.
引文
[1]安虎仁.合成染料生物降解性能与染料工业废水处理的研究[D].北京:清华大学,1993.
    [2]王慧,周月霞,柏仕杰,等.染料废水生物法处理技术的研究进展[J].厦门大学学报,2008,47:286-290.
    [3]Chekol T, Vough L R, Chaney R L. Phytoremediation of polychlorinated biphenyl-contaminated soils:The rhizosphere effect. Environmental International, 2004,30:799~804.
    [4]李家珍.染料、染色工业废水处理[M].北京:化学工业出版社.1997:1-7.
    [5]田利明.中国染料工业发展回顾与展望——2008年中国染料工业经济运行分析[J].江苏纺织,2009,(3):5-10.
    [6]李茵.染料废水处理技术的研究进展.化工时刊,2005,19(10):60-63.
    [7]程云,周启星,马奇英,等.染料废水处理技术的研究与进展.环境污染治理技术与设备,2003,4(6):56-60.
    [8]Nagarathnamma R, Bajpal P. Decolorization and detoxification of extraction-stage effluent from chlorine bleaching of kraft pulp by Rhizopus oryzae[J]. Applied. Environment Microbiology,1999,65:1078-1082.
    [9]李杏.耐盐菌-碱蓬共生系统对偶氮染料的脱色研究[D].大连:大连理工大学,环境与生命学院,2007.
    [10]贾金平,申哲民,王文华.含染料废水处理方法的现状与进展[J].上海环境科学,2000,19(1):26-29.
    [11]李颖,岳钦艳,高宝玉,等.活性炭纤维对活性染料的吸附动力学研究[J].环境科学,2007,28(11):2647-2651.
    [12]卢然,蒋文举,李莎璐,等.麻疯树果壳活性炭处理活性艳红B-3BF废水[J].四川化工,2009,12(1):51-54.
    [13]李冬,陈华军.活性炭吸附水中罗丹明B的研究[J].陕西科技大学学报,2008,26(6):95-98.
    [14]李桂芳,孟范平.污水污泥对染料废水的吸附脱色性能研究[J].中国海洋大学学报,2005,35(1):91-94.
    [15]王娟,陆雍森,赵大传.活性染料废水的电解絮凝预处理研究[J].给水排水,2005,31(2):51-54.
    [16]谭国民,柳荣展,李群,等.内电解法白腐菌生物处理活性染料染色废水[J].环境工程,2004,22(3):7-8,19.
    [17]罗旌生,曾抗美,左晶莹,等.铁碳微电解法处理染料生产废水[J].水处理技术,2005,31(11):67-70.
    [18]余琼卫,周元全.直接电解法处理染料废水的研究[J].环境污染治理技术与设备,2004,5(7):64-69.
    [19]杨蕴哲,杨卫身,杨凤林,等.电化学法处理高含盐活性艳蓝KN-R废水的研究[J].化工环保,2005,25(3):178-181.
    [20]范娟,詹怀宇,尹覃伟.球形木质素基离子交换树脂的合成及其对阳离子染料的吸附性能[J].造纸科学与技术,2004,23(5):26-2,48.
    [21]田永静,舒情,王红卫.等离子体技术制备ES基离子交换纤维及其性能研究[J].中国给水排水,2008,24(17):71-74.
    [22]赵宗山,刘景富,邰超.离子交换树脂负载零价纳米铁快速降解水溶性偶氮染料[J].中国科学B辑(化学),2008,38(1):60-66.
    [23]王东立.脱色混凝及混凝剂在染料废水处理中的应用[J].河北化工,2007,30(6):77-78.
    [24]姚晓亮,林金清,周峰,等.镁盐复合混凝剂应用于活性染料印染废水脱色的实验研究[J].环境污染治理技术与设备,2006,7(2):93-96.
    [25]许晓峰,刘春前,卢小钦,等.染料废水脱色混凝剂(PSDC-Ⅲ)的开发及工程应用[J].水处理技术,2008,34(9):85-87.
    [26]吴永强,刘跃辉.接触絮凝-氧化法处理活性染料废水[J].环境工程,2005,23(6):10-12.
    [27]郑怀礼,刘宏,李方.光助Fenton试剂氧化降解染料直接耐晒黑G的研究[J].光谱学与光谱分析,2006,26(12):2360-2363.
    [28]王东辉,李立民,孟超.微波诱导氧化法处理染料废水工艺技术研究[J].环境科学和管理,2007,32(5):98-100.
    [29]郑冀鲁,范娟,阮复昌.印染废水脱色技术与理论述评[J].环境污染治理技术与设备,2000,1(5):29-35.
    [30]李雅婕,王平.生物技术在印染废水处理工艺中的应用[J].工业水处理,2006,26(5):14-17.
    [31]Howell J A. Future of membranes and membrane reactors in green technologies and for water reuse[J]. Desalination,2004,162(10):1-11.
    [32]徐静,徐高田,秦哲,等.膜生物反应器在印染废水处理中的应用[J].工业水处理,2007,27(4):5-8.
    [33]曾国驱,任随周,许玫英,等.ABR结合SBR法处理印染废水的研究[J].微生物学报,2005,32(6):68-72.
    [34]洪俊明,洪华生.厌氧-好氧MBR组合工艺处理蒽醌活性染料废水[J].中国给水排水,2008,24(1):51-53.
    [35]赵若尘,周黎,姚阔为.染料废水处理工程实例[J].环境科学与管理,2007,32(4):110-112.
    [36]王涛,朱文亭,魏双勤,等.循环移动载体膜生物反应器处理印染废水的研究[J].给水排水,2007,32:243-246.
    [37]丁华,金若菲,周集体.基因工程菌在厌氧膜生物反应器中对偶氮染料废水的脱色[J].环境工程学报,2007,1(3):25-29.
    [38]Turk S S, Simonic M, Petrinic I. Wastewater treatment after reactive printing[J].Dyes and Pigments,2005,64(2):147-152.
    [39]杨秀敏,胡桂娟,杨秀红.生物修复技术的应用及发展[J].中国矿业,2007,16(12):58-60.
    [40]涂书新,韦朝阳.我国生物修复技术的现状与展望[J].地理科学进展,2004,23(6):20-32.
    [41]王晓坤.耐盐植物根际微域对含盐环境中偶氮染料的脱色研究[D].大连:大连理工大学环境与生命学院,2008.
    [42]司友斌,彭军.固定化微生物技术及其在污染土壤修复中的应用[J].土壤,2007,39(5):673-676.
    [43]赵百锁,王慧,毛心慰.嗜盐微生物在环境修复中的研究进展[J].微生物学报,2007,34(6):1209-1212.
    [44]徐文东,文湘华.微生物在含染料废水处理中的应用.环境污染治理技术与设备,2000,1(2):9-16.
    [45]陈勇,沈日华.染料废水的微生物处理法.应用基础与工程科学学报.1998,6(4):353-359.
    [46]张志杰.染料在厌氧塘内净化的可行性与转移规律的研究.环境科学学报,1993,13(4):198-404.
    [47]刘厚田,杜晓明,刘金齐,等.藻菌系统降解偶氮染料的机理研究.环境科学学报,1993,13(3):332-338.
    [48]Zimmermann T, KullaHG, LeisingerT. Properties of Purified Orange Ⅱ azo reductase, the Enzyme Initiating Azo Dyes Degradation by Pseudomonas KF46. European Journal of Biochemistry,1982,129:197-203.
    [49]鲜海军,杨惠芳.多种染料的微生物脱色研究.环境科学学报,1988,8(3):266-273.
    [50]鲜海军,贾省芬,杨惠芳,等.用高效染料脱色菌和PVA降解菌混合培养液处理印染废水.环境科学学报,1993,13(4):420-426.
    [51]闵一珏.ZE-1号印染废水脱色菌群的选育及适用条件的研究.环境污染与防治,1992,14(6):14-16.
    [52]曾丽璇,罗国维.优势菌处理印染废水中水解池的脱色机理.中国环境科学,1998,18(5):423-426.
    [53]何晓丽,何云芳.植物修复技术在水体污染治理中的应用[J].浙江林业科技,2007,27(6):61-65.
    [54]周启星.活性X-3B红染料在水-土壤-作物连续体中的迁移模型研究.应用生态学报,2002,13(2):130-132.
    [55]郭沛涌,朱荫湄,宋祥甫.陆生植物黑麦草(Lolium multiflorum)对富营养化水体修复的围隔实验研究[J].浙江大学学报,2007,34(5):560-564.
    [56]缪灿,李堃,贾良清.串联植物塘净化巢湖湖水的中试研究及启示[J].安徽农业科学,2007,35(29):9222-9323,9330.
    [57]王文星,曹成有,崔振波,等.紫花苜蓿对土壤中铜的富集效应及其生理响应[J].东北大学学报,2006,27(10):1161-1164.
    [58]Euliss K, Chi-hua Ho, Schwab A P, et al. Greenhouse and field assessment of phytoremediation for petroleum contaminants in a riparian zone[J]. Bioresource Technology,2008(99):1961-1971.
    [59]Sandermann H J. Plant metabolism of xenobiotics. Trends Biochem Sci, 1992,17:82-84.
    [60]Wenzel W W, Salt D, Smith R, et al. Phytoremediation:A plant-microbe-based remediation system. Bioremediation of Contaminated Soils. USA, Madison:SSSA Special Monograph,1999,457-510.
    [61]Wang S J, Hu J C, Zhang X W. Prospect of Chinese soil microbiology in the new century[J]. Microbiol,2002,22(1):36-39.
    [62]Schnoor J L, Licht L A, Mccutcheon S C, et al. Phytoremediation of organic and nutrient contaminants. Environmental Science and Technology,1995,29:318-323.
    [63]Wu H, Zheng S Z. Effect of root exudates from Eichhornia crassipes on phenol-degrading[J]. Enterobacter sp. nov. Appl Ecol Chin,1993,4(1):78-84.
    [64]Paterson S, Mackay D, Tam D, et al. Uptake of organic chemicals by plants:A review of processes, correlations and models. Chemosphere,1990,21(3):297-331.
    [65]Betts K S. Getting to the root of phytoremediation. Environmental Science and Technology,1998,32:18A.
    [66]Donnelly P K, Hodge R S, Fletcher J S. Growth of PCB-degrading bacteria on compounds from photosynthetic plants. Chemosphere,1994,28:981-988.
    [67]Yoshitomi K J, Shann J R. Corn (Zeamays L) root exudates and their impact on 14C-Pyrene mineralization [J]. Soil Biology and Biochemistry, 2001,33 (12-13):1769-1776.
    [68]Chekol T, Vough L R, Chaney R L. Phytoremediation of polychlorinated biphenyl-contaminated soils:The rhizosphere effect. Environmental International,2004,30:799-804.
    [69]Mehmannavaz R, Prasher S 0, Ahmad D. Rhizospheric effects of alfalfa on biotrans-formation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium meliloti. Process Biochem,2002,37:955-963.
    [70]盛江梅,吴小芹.菌根真菌与植物根际微生物互作关系研究[J].西北林学院学报,2007,22(5):104-108.
    [71]邱木清.偶氮染料废水的植物—微生物复合净化系统的研究[D].浙江,浙江大学生命科学学院,2007.
    [72]Chopra B K, Bhat S, Mikheenko I P, et al. The characteristics of rhizosphere microbes associated with plants inarsenic-contaminated soils from cattle dip sites[J]. Science of the Total Environment,2007(378):331-342.
    [73]Woolard C R, Irvine R L. Response of a periodically operated halophilic biofilm reactor to changes in salt concentration[J]. Water Science and Technology,1995, 31:41-50.
    [74]张禄艳.高盐偶氮染料废水的生物处理研究[D].大连:大连理工大学环境与生命学院,2008.
    [75]尤作亮,蒋展鹏,祝万鹏.海水直接利用及其环境问题分析[J].给水排水,1998,24(3):64-67.
    [76]刘洪斌.我国海水淡化和海水直接利用事业前景的分析[J].海洋技术,1995,14(4):76-78.
    [77]文湘华,占新民,王建龙,等.含盐废水的生物处理研究进展[J].环境科学,1999,20(3):104-106.
    [78]平淑珍,林敏,安道昌.耐盐联合固氮菌在盐渍化土壤改良中的应用.高技术通讯,1999(9):60-62.
    [79]杨芳,徐秋芳.土壤微生物多样性研究进展.浙江林业科技,2002,22(6):39-43.
    [80]于海英,李延轩,周健民,等.设施土壤次生盐渍化及对土壤性质的影响.土壤,2005,37(6):581-586.
    [81]王龙昌,玉井理,永田雅辉,等.水分和盐分对土壤微生物活性的影响.垦殖与稻作,1998(3):40-42.
    [82]范君华,刘明,黄伟.南疆温室和菜地土壤微生物学特性比较.土壤肥料,2003(1):31-33.
    [83]张瑜斌,王文卿,庄铁诚,等.厦门西港西南部潮间带光滩土壤微生物的数量变化.台湾海峡,2000,19(1):54-60.
    [84]刘长霞,谭天伟,翟洪杰.盐碱条件对真菌解磷能力的影响.微生物学通报,2003,30(5):69-72.
    [85]Ezekiel B, Emile B, Armand G. Metabolic fingerprint of microbial communities from distinct maize rhizosphere compartments. European Journal of Soil Biology, 2001,37(2):85-93.
    [86]罗明,邱沃.新疆平原荒漠盐渍草地土壤微生物生态分布的研究.中国草地,1995(5):29-33.
    [87]罗明,邱沃,孙健光.种草改良苏打硫酸盐草甸盐土对土壤微生物区系的影响.八一农学院学报,1995,18(3):35-39.
    [88]黄韶华,王正荣,周华荣,等.新疆荒漠区土壤微生物与土壤环境关系的初步探讨.新疆环境保护,1997,19(1):81-85.
    [89]郑洪.江苏盐场盐生植物的多样性及其保护[J].苏盐科技,2000,3(1):34-35.
    [90]马成亮.盐生植物的盐渍适应性及利用价值[J].林业科技,2003,28(6):66-67.
    [91]徐明岗,李菊梅,李志杰.利用耐盐植物改善盐土区农业环境[J].中国土壤与肥料,2006(3):6-10.
    [92]刘玉玲,陈新林,刘兴.盐生植物做除虫杀菌剂应用展望[J].垦殖与稻作,2006(2):35-36.
    [93]董晓霞.滨海盐渍地种植紫花苜蓿对土壤盐分特性和肥力的影响.山东农业科学,2001(1):24-25.
    [94]林学政,沈继红.种植盐地碱蓬修复滨海盐渍土效果的研究.海洋科学进展,2005,23(1):65-69.
    [95]赵可夫,李法曾.中国的盐生植物.植物学通报,1999,16(3):201-207.
    [96]张福锁.盐生植物根冠区土壤盐分变化的初步研究.应用生态学报,2004,15(1):53-58.
    [97]赵可夫,范海,江行玉,等.盐生植物在盐渍土壤改良中的作用[J].应用与环境生物学报,2002,89(1):31-35.
    [98]林学政,沈继红,刘克斋,等.种植盐地碱蓬修复滨海盐渍土效果的研究[J].海洋科学进展,2005,23(1):65-70.
    [99]董晓霞,郭洪海,孔令安.滨海盐渍地种植紫花苜蓿对土壤盐分特性和肥力的影响[J].山东农业科学,2001(1):24-25.
    [100]何艳,徐建民,李兆君.有机污染物根际胁迫及根际修复研究进展[J].土壤通报,2004,35(5):658-662.
    [101]喻龙,龙江平,李建军,等.生物修复技术研究进展及在滨海湿地中的应用[J].海洋科学进展,2002,20(4):99-109.
    [102]郭建博,周集体,王栋,等.耐盐菌群对高含盐染料模拟废水的脱色实验研究[J].环境污染治理技术与设备,2005,6(12):31-36.
    [103]田萍,姚秉华,杜宝中.偶氮染料活性艳红降解菌的诱变选育.西安理工大学学报,2003,19(4):344-347.
    [104]戴树桂,宋文华,庄源益,等.偶氮染料定量结构—生物降解关系(QsBR)研究[J].环境化学,1998,17(3):115-119.
    [105]张笑一,兰薇,潘渝生,等.偶氮染料分子的电子结构与生物降解活性*(Ⅰ)——电荷分布对偶氮键还原裂解的影响[J].高等学校化学学报,1998,19(8):1283-1287.
    [106]张笑一,兰薇,潘渝生,等.偶氮染料分子的电子结构与生物降解活性*(Ⅱ)——取代基非定域活性对偶氮键还原裂解的影响[J].高等学校化学学报,1998,20(2):268-271.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700