杉木及邓恩桉幼龄林凋落物分解对模拟氮硫沉降的响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桉树是中国最重要的速生丰产林之一,桉树已发展成一个新兴的产业,因缺乏优良的耐寒品种而主要集中在华南地区,即使在广东北部和福建等地,桉树也常常受到冬季低温的威胁。邓恩桉具有速生性和良好的耐寒能力,对充分发挥桉树的速生优势和有效扩大桉树的发展规模具有重要的意义。杉木是我国南方重要的用材树种之一,自然分布和人工栽培都很广,是中国亚热带地区的典型生态系统。随着杉木小径材市场打开,萌芽更新杉木由于成本低、效益好已成为主产区主要更新方式。大气氮、硫干湿沉降是森林生态系统氮、硫的重要输入途径之一,有关N沉降对森林生态系统的影响的研究主要集中在欧洲和北美的温带区域,而有关硫沉降及氮、硫复合沉降对森林生态系统的影响还少见报道。因此,在酸沉降全球化背景下,本文通过模拟大气氮、硫沉降试验,研究不同氮、硫沉降水平对森林凋落物干物质释放及碳、氮、磷、钾、钙、镁等元素释放的影响,阐明森林凋落物分解对全球酸沉降的响应特征和规律,为森林可持续经营,特别是邓恩桉及杉木人工林可持续经营和酸沉降对森林生态系统及全球变化的影响提供基础数据和理论参考。
     本试验采用二次正交回归旋转设计,研究模拟氮、硫沉降增加下邓恩桉及杉木幼龄林凋落物分解过程中干物质释放及碳、氮、磷、钾、钙、镁等元素释放动态。结果表明:
     (1)氮、硫沉降显著影响邓恩桉及杉木凋落物干物质释放。邓恩桉凋落物NO1~NO9各处理凋落物分解系数分别为1.103、0.837、0.764、0.910、0.854、1.045、0.843、0.845和0.915,平均为0.892。周转期分别为2.950、3.557、3.903、3.284、3.511、2.873、3.555、3.531和3.256,平均为3.380 a;干物质残留率的平均值分别为35.1%、43.9%、48.5%、41.3%、46.6%、36.2%、46.4%、47.6%和42.2%,平均为43.1%。杉木凋落物NO1~NO9各处理凋落物分解系数分别为0.816、0.710、0.615、0.734、0.649、0.823、0.667、0.577和0.727,平均为0.702;周转期分别为3.704、4.239、4.860、4.103、4.605、3.681、4.514、5.171和4.141,平均为4.335 a;干物质残留率的平均值分别为43.5%、50.2%、55.5%、47.5%、51.4%、43.3%、53.4%、57.1%和47.8%,平均为50.0%。氮、硫沉降处理下杉木的周转期比邓恩桉的周转期大,杉木叶干物质相对较难释放。氮、硫两因子对邓恩桉和杉木凋落物分解的单因子效应相反,对邓恩桉叶凋落物残留率的影响中,硫沉降相对要大一些;对杉木叶凋落物残留率的影响中,氮要略大一些。邓恩桉及杉木叶凋落物分解过程中,前4个月均没有显著的互作效应,4个月后氮、硫两因子都表现出了交互作用且表现一致,即氮、硫两因子在[-0.5,1.414]编码范围内对凋落物干物质释放的影响存在相互拮抗作用。
     (2)氮、硫沉降显著影响邓恩桉及杉木凋落物碳、氮元素释放。凋落物分解过程中两树种各处理C残留率均呈下降趋势。氮较难释放,总体表现为以“释放——富集——释放”模式为基础的动态释放过程。邓恩桉凋落物NO1~NO9各处理凋落物碳元素分解系数分别为0.934、0.814、0.810、0.877、0.870、1.025、0.750、0.911、0.898,平均为0.877;周转期分别为3.240、3.714、3.744、3.441、3.496、2.967、4.023、3.335、3.368,平均为3.148 a。凋落物氮元素分解系数分别为0.325、0.136、0.115、0.255、0.149、0.303、0.224、0.143、0.222,平均为0.208。周转期分别为9.047、21.281、25.325、11.497、19.626、9.672、13.112、20.228、13.104,平均为15.877 a。杉木凋落物NO1~NO9各处理凋落物碳元素分解系数分别为0.684、0.729、0.691、0.671、0.655、0.714、0.670、0.760、0.760,平均为0.704;周转期分别为4.256、3.939、4.062、4.266、4.261、4.021、4.376、3.778、3.848 a,平均为4.090 a。氮元素分解系数分别为0.585、0.584、0.600、0.666、0.532、0.627、0.597、0.589、0.623,平均为0.600;周转期分别为4.978、5.070、5.037、4.469、5.659、4.733、4.808、5.029、4.736 a,平均为4.947 a。
     氮、硫两因子对两树种凋落物碳残留的影响较为复杂,随分解阶段变化而变化。中水平的氮沉降对邓恩桉凋落物碳释放表现为促进作用且在分解初期高水平的硫持续输入可能抑制碳释放,而随着分解进行,逐渐表现为促进作用;整个氮编码水平对杉木凋落物碳释放均表现出促进作用且硫在中编码水平和低编码水平抑制C释放而在高编码水平则增进碳元素释放。氮、硫两因子对两树种凋落物碳释放的互作效应表现相反而对氮释放的影响的互作效应基本一致。氮、硫两因子对邓恩桉凋落物碳残留的影响可能在[-0.5,1.414]编码范围内相互拮抗;氮、硫两因子对杉木凋落物碳残留的影响在[0.5,1.414]编码范围内相互增效。氮、硫两因子对邓恩桉凋落物氮残留的影响可能在[0,1.414]编码范围内相互拮抗。氮、硫两因子对杉木凋落物氮残留的影响可能在[0.5,1.414]编码范围内相互拮抗。
     (3)氮、硫沉降显著影响邓恩桉及杉木凋落物磷元素释放,对钾元素的释放没有显著影响。邓恩桉凋落物NO1~NO9各处理磷净释放率为65.49%、55.84%、50.50%、59.65%、51.24%、63.03%、55.33%、51.86%和58.39%,平均释放56.81%;钾净释放率为97.34%、96.92%、93.83%、97.24%、94.83%、95.68%、95.63%、94.13%和96.77%,平均释放95.82%。杉木凋落物NO1~NO9各处理磷净释放率为13.81%、0.47%、13.58%、8.39%、-8.61%、11.29%、-0.49%、-15.73%和4.19%,平均释放-0.13%;钾释放率分别为97.04%、97.70%、97.13%、96.79%、96.47%、92.88%、95.78%、94.78%和97.19%,平均释放96.20%。杉木凋落物磷较难释放,邓恩桉凋落物磷易于释放。氮、硫沉降下凋落物分解的最初3个月,氮、硫输入对凋落物磷分解的影响不显著。凋落物分解4个月后,硫素输入表现出促进作用;高水平氮素输入表现出抑制作用(促进磷固持)。凋落物分解4个月后,总体上氮、硫两因子在[-0.5,1]编码范围内对凋落物磷释放相互增效。
     (4)氮、硫沉降显著影响邓恩桉及杉木凋落物钙、镁元素的释放没有显著影响。
Eucalyptus Dunnii is the most important one of the fast-growing and high-lin in china and has developed into an emerging industry.Eucalyptus Dunnii mainly concentrated in southern china because of the lack of good cold-resistant varieties.Even in the northern part of Guangdong and Fujian,Eucalyptus Dunnii was threatened by hypothermia in winter.Dunnii Eucalyptus gives full play to the advantage of fast-growing Dunnii Eucalyptus with its growing speed and good cold endogenous capacities and Eucalyptus to expand the scale of development effectively is of great significance. Cunning hamia lanceolata (lamb.) Hook is a kind of important timber tree with natural distribution and cultivation widely and is a typical subtropical ecosystem in China.Withe the parth of the small-caliber Chinese fir wood market opened,as a result of cost-effective,budding fir updated has become a mainly way to update in the main producing areas.The wet and dry atmospheric nitrogen and sulpur deposition is one of the important input of nitrogen and sulpur in forest ecosystems The researchs about nitrogen deposition on forest ecosystems mainly concentrated in the temperate zone in Europe and North America region and the sulpur deposition and nitrogen and sulpur deposition on forest ecosytems also rare reports.Therefore,in the context of acid deposition globalization,this paper by simulating the atmosphere of nitrogen and sulfur deposition tests of different nitrogen and sulfur deposition levels on the forest litter dry matter and the elements release of C, N, P, K, Ca, Mg released the impact of forest litter decomposition to clarify the global response to acid deposition characteristics and rules of sustainable forest management,especially in Chinese fir plantation E.dunnii and sustainable management and acid deposition on forest ecosystems and the impact of global change provide the basic data and theoretical reference.
     Dynamic of the Dunnii Eucalyptus and Chinese fir plantation leaf litter decomposition and C, N, P, K, Ca, Mg release under increasing nitrogen and sulfur deposition by the quadratic rotatio-northogonal combination design were studied. The results indicated that:
     (1)The Dunnii Eucalyptus and Chinese fir plantation leaf litter decomposition was effected by the nitrogen and sulpur deposition significantly. For the 9 treatments of Dunn Eucalyptus plantation,NO1 to NO9,the decomposition coefficients determined by Olson equation were respectively 1.103, 0.837, 0.764, 0.910, 0.854, 1.045, 0.843, 0.845 and 0.915 with average of 0.892 and with the turnover time of 2.950, 3.557, 3.903, 3.284, 3.511, 2.873, 3.555, 3.531 and 3.256 with average of 3.380 a. The average mass remaining ratio were 35.1%, 43.9%, 48.5%, 41.3%, 46.6%, 36.2%, 46.4%, 47.6% and 42.2% with average of 43.1%. For the 9 treatments of Chinese fir plantation,NO1 to NO9,the decomposition coefficients determined by Olson equation were respectively 0.816, 0.710, 0.615, 0.734, 0.649, 0.823, 0.667, 0.577 and 0.727 with average of 0.702 and with the turnover time of 3.704, 4.239, 4.860, 4.103, 4.605, 3.681, 4.514, 5.171 and 4.141 with average of 4.335 a. The average mass remaining ratio were 43.5%, 50.2%, 55.5%, 47.5%, 51.4%, 43.3%, 53.4%, 57.1% and 47.8% with average of 50.0%. The dry matter of Chinese fir litter was difficult to release and the turnover time of the Chinese fir litter was bigger than the Dunn Eucalyptus litter.The main effect of the two factors,nitrogen and sulpur,to the dry matter release was opposite between the Dunn Eucalyptus and Chinese fir plantation with sulpur playing much more important to the Dunn Eucalyptus dry matter release and nitrogen playing much more important to the Chinese fir dry matter release.There wes no significant interaction effects in the first 4 months and the two factors showed a consistent performance 4 months later with the mutual antagonism in the coding range of [-0.5,1.414].
     (2)The Dunnii Eucalyptus and Chinese fir plantation leaf litter carbon and nitrogen elements release was effected by the nitrogen and sulpur deposition significantly.For NO1 to NO9,there was a decreasing tendency of the carbon remaining rate of the Dunnii Eucalyptus and Chinese fir plantation leaf litter and the nitrogen was rather difficult to release with the basic release model of“release-enrichment-release”. For the 9 treatments of Dunnii Eucalyptus plantation,NO1 to NO9,the decomposition coefficients of carbon determined by Olson equation were respectively 0.934, 0.814, 0.810, 0.877, 0.870, 1.025, 0.750, 0.911 and 0.898 with average of 0.877 and with the turnover time of 3.240, 3.714, 3.744, 3.441, 3.496, 2.967, 4.023, 3.335 and 3.368 with average of 3.148 a.The decomposition coefficients of nitrogen determined by Olson equation were respectively 0.325, 0.136, 0.115, 0.255, 0.149, 0.303, 0.224, 0.143 and 0.222 with average of 0.208 and with the turnover time of 9.047, 21.281, 25.325, 11.497, 19.626, 9.672, 13.112, 20.228 and 13.104 with average of 15.887 a. For the 9 treatments of Chinese fir plantation,NO1 to NO9,the decomposition coefficients of carbon determined by Olson equation were respectively 0.684, 0.729, 0.691, 0.671, 0.655, 0.714, 0.670, 0.760 and 0.760 with average of 0.704 and with the turnover time of 4.256, 3.939, 4.062, 4.266, 4.261, 4.021, 4.376, 3.778 and 3.848 a with average of 4.090 a. The decomposition coefficients of nitrogen determined by Olson equation were respectively 0.585, 0.584, 0.600, 0.666, 0.532, 0.627, 0.597, 0.589 and 0.623 with average of 0.600 and with the turnover time of 4.978, 5.070, 5.037, 4.469, 5.659, 4.733, 4.808, 5.029 and 4.736 a with average of 4.947 a. The effect of the nitrogen and sulpur depositon to the litter carbon release was complex and changed in the decomposition course. The Dunn Eucalyptus carbon release was promoted by the middle level nitrogen loads and may be inhibited by the high level sulpur depositon in the early stage and changed to promotion effect later.The Chinese fir carbon release was promoted by the additional nitrogen loads in the coding range of [-1.414, 1.414] and inhibited by sulpur deposition in the coding range of [-1.414, 1] and promoted in [1, 1.414] coding range. The interaction effect was opposite to the carbon release and to the nitrogen release the interaction effect was basically the same.The two factors of nitrogen and sulpur may antagonize to each other in [-0.5, 1.414] to the carbon remaining of the Dunn Eucalyptus litter and to the Chinese fir litter nitrogen and sulpur may mutual enrich in the coding range of [0.5, 1.414]. The two factors may mutual antagonize in [0, 1.414] to the nitrogen remaining of the Dunn Eucalyptus litter and in [0.5, 1.414] of the Chinese fir litter.
     (3)The Dunnii Eucalyptus and Chinese fir plantation leaf litter Phosphorus elements release was effected by the nitrogen and sulpur deposition significantly and there was no significant effect to the Potassium release. For the 9 treatments of Dunnii Eucalyptus plantation,NO1 to NO9,the Phosphorus release ratio were respectively 65.49%, 55.84%, 50.50%, 59.65%, 51.24%, 63.03%, 55.33%, 51.86% and 58.39% with average of 56.81% and with the Potassium release ratio of 97.34%, 96.92%, 93.83%, 97.24%, 94.83%, 95.68%, 95.63%, 94.13% and 96.77% with average of 95.82%. For the 9 treatments of Chinese fir plantation,NO1 to NO9,the Phosphorus release ratio were respectively 13.81%, 0.47%, 13.58%, 8.39%, -8.61%, 11.29%, -0.49%, -15.73% and 4.19% with average of -0.13% and with the Potassium release ratio of 97.04%, 97.70%, 97.13%, 96.79%, 96.47%, 92.88%, 95.78%, 94.78% and 97.19% with average of 96.20%.
     (4) There was no significant effect to the Ca and Mg release of The Dunnii Eucalyptus and Chinese fir plantation leaf litter.
引文
[1]李博.生态学[M].北京:高等教育出版社, 2000, 331~338
    [2] IGBP.Global Change and Earth System: A Planet under Pressure[R].IGBP Science Series 4,2001
    [3]陈宜瑜,陈泮勤,葛全胜,等.全球变化研究进展与展望[J].地学前缘, 2002, 9(1), 11~18
    [4] http://www.igbp.kva.se/cgi-bin/php/frameset.php
    [5]陈家瑜.中国全球变化的研究方向[J].地球科学进展, 1999, 14(1): 319~323
    [6]陈家瑜.IGBP未来发展方向[J].地球科学进展, 2001, 16(1): 15~17
    [7]李家洋. 2006,区域研究:全球变化研究的重要途径[J].地球科学进展, 2006, 21(5): 441~449
    [8] IGBP.Global Change and Earth System: A Planet under Pressure[R].IGBP Science Series 4, 2001
    [9]陈家瑜.对开展全球变化区域适应研究的几点看法[J],地球科学进展, 2004, 19(4): 495~99
    [10]秦大河.进入21世纪的气候变化科学-气候变化的事实、影响与对策[J].科技导报, 2004, (7): 4~7
    [11]郑新奇,姚慧,王筱明. 2005,20世纪90年代以来《Science》关于全球气候变化研究述评[J].生态环境, 2005, 14(3): 422~428
    [12] Working Group I of the IPCC, Summary for Policymakers,http://www.usgcrp.gov/ipcc.html/
    [13]丁一汇,孙颖.国际气候研究新进展.气候变化研究进展, 2006, 2(4): 161~167
    [14] FITTER H, FITTER RSR. Rapid changes in flowering time in British plants[J]. Science, 2002, 6(5 573): 1 689~1 691
    [15] ETTERSON JR, RUTH GS. Constraint to adaptive evolution in response to global warming[J]. Science, 2001, 10(5 540): 151~154
    [16] HUANG YS, PERROTT SFA, METCALFE SE, et al. Climate change as the dominant control on glacial-interglacial variations in C3 and C4 plant abundance [J]. Science, 2001, 8(5 535): 1 647~1 651
    [17] ALWARD RD, DETLING JK. Grassland vegetation changes and nocturnal global warming[J]. Science, 1999, 1(5 399): 229~231
    [18] SHAW MR, ZAVALETA ES, CHIARIELLO NR, et al. Grassland responses to global environmental changes suppressed by elevated CO2[J]. Science, 2002, 12(5 600): 1 987~1 990
    [19] GRIME JP, BROWN VK, MILCHUNAS DG. The response of two contrasting limestone grasslands to simulated climate change [J].Science, 2000,8(5 480): 762~765
    [20] BUSH MB, SILMAN MR, URREGO DH. 48 000 years of climate and forest change in a biodiversity hot spot [J]. Science, 2001,11(5 659): 827~829
    [21] LUCHT W, PRENTICE IC, SITCH S, et al. Climatic control of the high-latitude vegetation greening trend and Pinatubo effect[J].Science, 2002, 5(5 573): 1 687~1 689
    [22] JOLLYD, HAXELTINE A. Effect of low glacial atmospheric co2 on tropical African Montane vegetation [J]. Science, 1997, 5(5 313): 786~788
    [23] JOHNSON BJ, MILLER GH, FOGEL ML, et al. 65,000 years of vegetation change in central australia and the australian summer monsoon [J]. Science, 1999, 5(5 417) : 1 150~1 152
    [24] ZENG N, NEELIN JD, LAU KM, et al. Enhancement of interdecadal climate variability in the Sahel by vegetation interaction[J]. Science, 1999,11 (5 444): 1 537~1 540
    [25] HERBERT TD, SCHUFFERT JD, ANDREASE D, et al. Collapse of the california current during glacial maxima linked to climate change on land [J]. Science, 2001, 7(5 527): 71~76
    [26]方修琦.从农业气候条件看我国北方原始农业的衰落与农牧交错带的形成[J].自然资源学报, 1999, 7(3): 212~218
    [27] CASPERSEN JP, PACALA SW, JENKINS JC, et al. Contributions of land-use history to carbon accumulation in U.S. forests [J].Science, 2000, 11(5 494): 1 148~1 151
    [28] HOUGHTON RA, HACKLER JL, LAWRENCE KT, et al. The U.S. carbon budget: contributions from land-use change[J]. Science,1999, 7(5 427): 574~578
    [29] SCHOLES RJ, NOBLE IR. Storing Carbon on Land [J]. Science,2001, 11(5 544): 1 012~1 013
    [30] KREMEN C, NILES JO, DALTON MG, et al. Economic Incentives for Rain Forest Conservation Across Scales[J]. Science, 2000,6(5 472): 1 828~1 832
    [31] J. Houghton著,戴晓苏、石广玉、董敏、耿全震等译,丁一汇、赵宗慈校.全球变暖(第三章)[M],气象出版社,1998
    [32] International Energy Annual 1999, http://www. eia.doe.gov/emeu/iea/overview.html
    [33]樊后保.世界酸雨研究概况[J].福建林学院学报, 2002, 22(4): 371~375
    [34] Tamaki M, Katou T, Sekiguchi K, et al. Acid precipitation chemistry over Japan[J]. J.Jpn.Chmemi.Soc, 1991, 5: 667~674
    [35] Lee BK,Hong SH,Lee DS. Chemical composition of precipitation and wet deposition of major ions on the Korean peninsula [J]. Atmos.Environ, 2000, 34: 563~575
    [36]吴丹,王式功,尚可政.中国酸雨研究综述[J].干旱气象, 2006. 24(2):70~77
    [37] Charlson RT. Factors Controlling the Acidity of Natural[J].Nature, 1992, 295:683~685
    [38] Stensland G.J.Another Interpretation of pH Trend in Northeastern United States[J].Bulletin American Meteorological Society,1982, 63(12): 77~84
    [39] (独联体)伊兹拉埃尔等蓍.酸雨[M].北京:化学工业出版社,1993
    [40]樊邦棠.环境化学[M].杭州:浙江大学出版社, 1993, 96~147
    [41]赵德山,王明星.烟煤型城市污染大气气溶胶[M].北京:中国环境科学出版社, 1998, 96~147
    [42] Nordo J. Long rang transport of air pollutants in Europe and acid precipitation in Norway[A]. Dochinger LS and SeliCa TA. lst.Internat.Symp.Acid Precipitation and the Forest Ecosystem[C]. Rep.NE-23,Pennsylvania, 1976, 87~103
    [43] Carroll G. Acid rain diplomacy: The need for a bilateral resolution [J]. Alternatives, 1983, 11(2): 9~12
    [44] Arndt RL, Carmichael GR, Roorda JM. Seasonal source-receptor relationships in Asia[J].Atoms.Environ.,1998,32: 1 397~1 406
    [45] Phadnis MJ, Carmichael GR, Ichikawa Y, et al. Evalution of long-rang transport models for acidic deposition in East Asia[J]. J.App.Meteor,1998, 37: 1 127~1 142
    [46] Huang M, Wang Z, He D, et al. Modeling studies on sulfur deposition and transport in East Asia [J]. Water, Air, and Soil Pollution, 1998, 85: 1 921~1 926
    [47] Ichikawa Y, Fujita S. An analysis of wet deposition of sulfate using a trajatory model for East Asia [J].Water, Air, and Soil Pollution, 1998, 85: 1 927~1 932
    [48]王兴文,丁国安.中国降水酸度和离子浓度的时空分布[J].环境科学研究, 1997, 10(2): 1~6
    [49]李文华,杨修.环境与发展[M].北京:科技文献出版社,1984,80~83
    [50]齐文启、席俊清等.酸雨研究的现状和发展趋势[J].中国环境监测, 2002, 18(1): 6~11
    [51] Svein S, Kjell A, Nicholas C, et al. The possible influence of nitrogen and acid deposition on forest growth in Norway[J].Forest Ecology and Management, 2004, 192: 241~249
    [52] Attiwill PM, Adams MA.Nutrient cycling in forests[J].New Phytol, 1993, 124: 561~582
    [53] Sinsabaugh RL, Antibus RK, Linkins AE, et a1.Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme activity[J].Ecology, 1993, 74: 1 586~1 595
    [54] Calanni J, Berg E, Wood M, et al. Atmospheric nitrogen deposition at a conifer forest: response of free amino acids in Engelmann spruce needles.Environmental Pollution, 1999, 105: 79~89
    [55] Makarov MI, Kiseleva VV. Acidification and nutrient imbalance in forest soils subjected to nitrogen deposition[J]. Water Air and Soil Pollution, 1995, 85: 1 137~1 142
    [56] Sirpa P, Leena F, Michael S. Deposition and leaching of sulphate and base cations in a mixed boreal forest in eastern Finland[J]. Water,Air,and Soil Pollution, 2002, 131: 185~204
    [57]方运霆,莫江明,周国逸,等.森林土壤氮素转换及其对氮沉降的响应.生态学报, 2004, 24(7): 1 523~1 531
    [58]郝吉明,谢绍东,段雷,等.酸沉降临界负荷及其应用.北京:清华大学出版社.2001, 1~6
    [59] Huntington TG, Hooper RP, Johnson CE, et al. Calcium depletion in a southeastern United States forest ecosystem[J]. Soil Sci. Soc. Amer. J, 2000, 64: 1 845~1 858
    [60]周国逸,闫俊华.鼎湖区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响[J].生态学报, 2001, 21(12): 2 002~2 012
    [61] Raben G, Andreae, Meyer M. Long-term acid load and its consequences in forest ecosystems of Saxony(Germany)[J]. Water, Air, and Soil Pollution 2000, 122: 93~103
    [62]刘连贵,曹洪法,熊严军.酸雨和SO2复合污染对几种农作物的影响.环境科学, 1996, 17(2): 16~19
    [63] Dunn SM, Ferrier RC. Natural flow in managed catchments: a case study of a modeling approach[J]. Water Research, 1999, 33: 621~630
    [64]李博.生态学[M].北京:高等教育出版社, 2000, 243~257
    [65] Calvert J. Scientists collide over acid rain findings. The Energy Daily, 1983, 78~89
    [66] Hajime A, Hirohito N. Distribution of SO2, NOx and CO2 emissions from fuel combustion and industrial activities in ASIA with 1°×1°resolution[J].AtmosphereEnvironment, 1994, 28(2): 213~225
    [67] Raben G,Andreae,Meyer M. Long-term acid load and its consequences in forest ecosystems of Saxony(Germany) . Water, Air, and Soil Pollution 2000, 122: 93~103
    [68]王自发,黄美元,高会旺,等.关于我国和东亚酸性物质的输送研究—Ⅱ.硫化物浓度空间分布特征及季节变化[J].大气科学, 1998, 22(5): 693~700
    [69]冯宗炜.中国酸雨对陆地生态系统的影响和防治对策[J].中国工程科学, 2000, 2(9): 5~11
    [70]李凌浩,林鹏,何建源,等.森林降水化学研究综述[J].水土保持[J], 1994, 8(1): 84~95
    [71]刘厚田.重庆南山马尾松衰亡与土壤铝活化的关系[J].环境科学学报, 1992, 2(3): 297~305
    [72]邓仕贤,陈楚莹,张家斌.树冠及叶凋落物对模拟酸雨缓冲能力的初探[J].环境科学, 1992, 13(3): 10~17
    [73] Neil WM, Brandon JD. Growth and survival of lack pine exposed to simulated acid rain as seedlings[J]. Soil Science Society of America, 1997, 61: 295~297
    [74] Raben G, Andreae, Meyer M. Long-term acid load and its consequences in forest ecosystems of Saxony (Germany)[J]. Water, Air, and Soil Pollution 2000, 122: 93~103
    [75]肖辉林.大气N沉降的增加对森林营养和胁迫敏感性的影响[J].农业环境保护, 2000, 19(6): 378~379
    [76]曹洪法,王玮,高映新,等.森林冠层对酸雨的反应及其影响[J].中国环境科学, 1989, 9(2): 81~85
    [77] Chen MSK, Erickson LE, Fan LT. Consideration of Sensitivity and Parameter Uncertainty in Optimal Process Design[J]. Industrial and Engineering Chemistry Process, Process Design and Development, 1970, 9(4): 514~521
    [78] Gunderson P. Nitrogen deposition and leaching in European forest-preliminary results from a data compilation[J]. Water Air and Soil Pollution, 1995, 85: 1 179~1 184
    [79] Arndt RL, Carmichael GR, Roorda JM. Seasonal source-receipt correlation ships in Asia[J]. Atmospheric Environment, 1998, 32: 1 397~ 1 406
    [80] Mark SC, Raymond PM. Input-output budgets of major ions for a forested watershed inwestern Maryland[J]. Water, Air and Soil Pollution, 2000,119: 121~137
    [81] Hans MS, Per AC Valter Al, et al.中国的酸化问题—项基于重庆—广州森林监测点研究结果的评估[J]. Ambio, 1999, 8(6): 524~530
    [82]彭少麟,刘强.森林凋落物动态及其对全球变暖的响应[J].生态学报, 2002, 22 (9): 1 534~1 544
    [83]蔡小明.生态系统生态学[M].北京:科学出版社, 2002. 228~237
    [84] Wang FY. Summary of the study on litter of forest . Advancement of Ecology ,1989 ,6(2): 82~89
    [85] LIU ZW, CAO WJ, PAN KW, et al. Discussion on the study methods and models of litter decomposition[J]. Acta Ecol Sin, 2006, 28(6): 1993~2000
    [86] Scientific Office of Forestry Department of China. Positional Study of Forest Ecosystem in China. Haerbin: Northeast Forestry University Press, 1994, 73~192
    [87] Li SL, Cheng YL. Decomposition and nutrient return of the leaf litter under the pure and mixed plantations of Juglans mandshrica and Larix gmelinii[J] .Journal of Nanjing Forestry University, 2004, 28(5): 59~62
    [88] Liao LP, Lindley DK, Yang YH. Decomposition of mixed foliar litter IA microcosm study[J] .Chinese Journal of Applied Ecology, 1997, 8(5): 459~464
    [89] Briones MJ I and Ineson P. Decompositionof eucalyptus leaves in litter mixtures[J]. Soil Biol. Biochem, 1996, 28: 1 381~1 388
    [90] Olson JS. Energy storage and the balance of producers and decomposition in ecological systems[J]. Ecology, 1963, 44: 332~341
    [91]刘增文.森林生态系统凋落物分解模型研究[J].生态学报, 2002, 22(6): 954~956
    [92] Berg B, Ekbohm G. Litter mass2loss rates and decomposition patterns in some needle and leaf litter types. Long-term decomposition in a Scots pine forestⅦ[J].Canadian Journal of Botany, 1991, 69: 1 449~1 456
    [93] Paustian K, Agren GI, Bosatta E. Modeling litter quality effects on decomposition and soil orCanic matter dynamics. In: Cadisch G, Giller K E, eds.Driven by mature: plant litter quality and decomposition. CAB International, Wallingford, UK, 1997, 313~335
    [94] Melillo JM, Aber JD, Steudler PA, et al. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics[J]. Ecology, 1982, 63: 621~626
    [95] Vitousek PM, Turner DR, Parton WJ, et al. Litter decomposition on the Mauna Loa environmental matrix, Hawai I: patterns, mechanisms, and models[J]. Ecology, 1994, 75(2): 418~429
    [96] Taylor BR, Parkinson D, Parsons WFJ. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test[J]. Ecology, 1989, 70(1): 97~104
    [97] Van der Drift J. The disappearance of litter in mull and mor in connection with weather condition and the activity of the macrofauna. In : Doeksen J, Vander Drift J, eds. Sol orCanisms. North Holland Publishing Company, Amsterdam, Holland, 1963, 124~432
    [98] Crossley DA, Hoglund MP. A litter bag method for the study of microarthropods inhabiting leaf litter[J]. Ecology, 1962, 43: 571~573
    [99] Vossbrinck CR, Coleman DC, Woolley TA. Abiotic and biotic factors in litter decomposition in a semiarid grassland[J]. Ecology, 1 979, 60: 265~271
    [100] Zlotin RI. Invertebrate animals as a factor of the biological turnover. In: IV Colloquium Pedobilogiae, Dijon. 14P192IX21970, Institute Nation de la Recherche Agronomique, Paris, France, 1971, 455~462
    [101] Binkley D, Son Y, Valentine DW. Doforest receive occult inputs of nitrogen? [J]. Ecosystems, 2 000, 3: 321~331
    [102] Luo JZ. Cold-resistant varieties of eucalyptus---E.Dunn [J].Eucalyptus Technology, 2002, 55(22): 1~81
    [103] Chen JZ. E.Dunn plus tree selection criteria study [J]. Journal of Fujian College of Forestry, 2006, 26(4): 368~371
    [104] Chen JZ. E. Dunn in the distribution of extreme value to forest vertical applications to choose.[J] Journal of Fujian College of Forestry, 2006, 26(3): 262~265
    [105]赵卫红.福建省酸雨控制区污染特征及成因[J].福建环境, 2002, 19(2): 11~13
    [106] Jeff DJ, Daniel RE, Edward BS, et al.Sulfate Addition Increases Methylmercury Production in an Experimental Wetland.Environ.Sci.Technol.2006,40: 3 800~3 806
    [107] Mercury Deposition Network. http://nadp.sws.uiuc.edu/mdn/
    [108] National Atmospheric Deposition Network. http://nadp.sws.uiuc.edu/
    [109]郝吉明,谢绍东,段雷,叶雪梅,等.酸沉降临界负荷及其应用[M].北京:清华大学出版社.2001
    [110]段雷,郝吉明,谢绍东,周中平.用稳态法确定中国土壤的硫沉降和氮沉降临界负荷[J].环境科学, 2002, 23(2): 7~12
    [111]肖健.漳州市氮湿沉降量异常的形成及危害[J].能源与环境, 2005(2): 59~61
    [112]樊后保,苏兵强,林德喜,等.杉木人工林生态系统的生物地球化学循环(Ⅱ):氮素沉降动态[J].应用与环境生物学报, 2000, 6(2): 133~137
    [113]黄忠良,丁明懋,张祝平,等.鼎湖山季风常绿阔叶林的水文学过程及其氮素动态[J].植物生态学报, 1994, 18(2): 194~199
    [114]周国逸,闫俊华.鼎湖区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响[J].生态学报, 2001, 21(12): 2 002~2 012
    [115]樊建凌,胡正义,庄舜尧,等.林地大气氮沉降的观测研究[J].中国环境科学, 2007, 27(1): 7~9
    [116]洪伟,吴承祯.实验设计与分析---原理.操作.案例[M].北京:中国林业出版社, 2004, 179~197
    [117] Olosn JS. Energy storage and the balance of producers and decomposers in ecological system[J]. Ecology, 1963, 44: 322~331
    [118] Waldrop MP, Zak DR, Sinsabaugh RL, et al. Nitrogen deposition modifies soil carbon storage through changes in microbial enzymatic activity[J]. Ecological Applications, 2004, 14(4): 1 172~1 177
    [119]樊后保,刘文飞,杨跃霖,曹汉洋,徐雷.杉木人工林凋落物分解对模拟氮沉降增加的响应[J].北京林业大学学报, 2008, 2(30): 8~13
    [120] Magill AH, Aber JD. Long-term effects of experimental nitrogen additions on foliar litter decay and humus formation in forest ecosystems[J]. Plant and Soil, 1998, 203: 301~311
    [121] Neff JC, Townsend AR, Gleixner G, et al. Variable effects of nitrogen additions on the stability and turnover of soil carbon[J]. Nature, 2002, 419: 915~917
    [122] Carreiro MM, Sinsabaugh RL, Repert DA, et al. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition[J]. Ecology, 2000, 81: 2 359~2 365
    [123] Hobbie SE, Vitousek PM. Nutrient limitation of decomposition in Hawaiian forests[J]. Ecology, 2000, 81: 1 867~1 877
    [124] Berg B, Staaf H. Decomposition rate and chemical changes in decomposing needle litter ofScots pineⅡ. Influence of chemical composition[J]. Ecol. Bull, 1980, 32: 163~178
    [125]樊后保,刘文飞,徐雷,李燕燕,廖迎春,王启其,张子文.氮沉降下杉木人工林凋落叶分解过程中C、N元素动态变[J]化.生态学报, 2008, 28(6): 2 546~2 552
    [126]项文化,闫文德,田大伦,等.外加氮源及林下植物叶混合对杉木林针叶分解和养分释放的影响[J].林业科学, 2005, 41(6): 2~6
    [127]李海涛,于贵瑞,李家永,等.井冈山森林凋落物分解动态及磷、钾释放速率[J].应用生态学报, 2007, 18(2): 233~240
    [128] Melillo JM, Aber JD, Meratore JF. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics. Ecology, 1982, 63: 621~626
    [129] Enriquez S, Duarte CM, Jensen K. Patterns in decomposition rates among photosynthetic orCanisms: the importance of detritus C : N: P content[J]. Oecologia, 1993, 94: 457~471
    [130] Melin E. Biological decomposition of some types of litter from North American forests[J]. Ecology, 1930, 11: 72~101
    [131] Aerts R, Caluwe HD. Effects of nitrogen supply on canopy structure and leaf nitrogen distribution in Carex species[J]. Ecology, 1997, 78(5): 244~260
    [132] Gosz JR, Likens GE, Bormann FH. Nutrient release from decomposing leaf and branch litter in the Hubbard Brook Forest[J]. New Hampshire Ecological Monographs, 1973, 43: 173~191

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700