南宁非饱和膨胀土流变特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于国内外关于土流变的研究现状,在综合分析的基础上,结合国家自然科学基金资助项目和湖南省自然科学基金资助项目,本文开展了对南宁膨胀土流变特性的研究。通过室内试验、理论分析和数值分析相结合的方法进行了研究,主要取得了如下几方面的结论和创新性研究成果:
     1)以南宁非饱和膨胀土为研究对象,采用分别加载、分级加载、和预压-卸载-再加载的试验研究方法,得到了如下压缩蠕变特性的研究成果:
     ①在分别加载试验中,土体蠕变曲线在没有考虑膨胀变形的影响时呈衰减蠕变;在分级加载试验中,土体蠕变曲线只有在低含水率和高应力作用下才呈非衰减蠕变。
     ②在分别加载试验中,土体瞬时应变与荷载之间呈二次曲线关系;在同一荷载作用下,土体在分别加载条件下的瞬时变形量比分级加载的大,但分级加载的累积变形量却要比分别加载的大。
     ③在预压-卸载-再加载的试验中,土体蠕变曲线在低含水率和高应力作用下呈非衰减蠕变,且预压压力越大非衰减加速蠕变现象越明显。
     ④土样的终应变随着预压压力的增大而减小,随着含水率的增大而增大。
     2)研究了南宁非饱和膨胀土在不同垂直压力作用下的剪切蠕变特性和长期强度特性,得到如下研究结果:
     ①当剪切荷载小于42.5kPa时,土样蠕变曲线呈衰减蠕变;当剪切荷载大于42.5kPa时,土样蠕变曲线呈非衰减加速蠕变。
     ②竖向荷载为50kPa和100kPa时,土样在剪切荷载加到161.5kPa后分别在第60min和第360min时出现突然被剪坏的现象。
     ③竖向荷载为200kPa和300kPa时,土样在剪切荷载加到170kPa之后出现了明显的加速蠕变阶段。
     ④在含水率为16%的条件下土样的长期强度约为短期强度的72.9%。
     3)研究了不同含水率条件下的南宁非饱和膨胀土的应力松弛特性,得出如下结论:
     ①南宁非饱和膨胀土的应力松弛曲线属于非完全衰减型,应力随时间的增加逐渐减小并趋于一个稳定值,松弛曲线可以分为明显的3个阶段:加速松弛阶段、匀速松弛阶段和稳定松弛阶段。
     ②当含水率为16%时,应力-应变曲线呈线性关系;当含水率为20.5%和22.4%时,应力-应变曲线呈非线性关系。
     ③得出的K-H体本构方程的拟合曲线与实测曲线有较好的拟合度,能够较好的反映南宁非饱和膨胀土的应力松弛特性。
     4)通过对南宁膨胀土和株洲红粘土在相同试验条件下进行的一系列对比试验,得出如下结论:
     ①膨胀土的蠕变曲线在低含水率和高应力作用的条件下呈非衰减蠕变,红粘土的蠕变曲线都为衰减蠕变,所以南宁膨胀土的加速蠕变现象比株洲红粘土明显。
     ②在相同含水率条件下,膨胀土的终应变均比红粘土的终应变大;在低含水率和低竖向荷载作用的条件下,膨胀土的回弹量要比红粘土的大。
Basing on present studies on rheological characteristics of soil at home and abroad, and together with comprehensive analysis, this dissertation carries out relevant studies on rheology behaviors of expansive soils, which is supported by the National Natural Science Project Fund and Hunan Province Natural Science Fund. By means of tests in-doors, theoretical analysis and numerical analysis, the research work has been accomplished with the following achievements:
     1) The soil sample is Nanning unsaturated expansive soils, which underwent different load tests in terms of separate-loading, step-loading and preloading-unloading-secondary loading. The results show the following compression creep characteristics:
     ①Decay creep curves are found in separate-loading tests for the soil sample without consideration of swelling deformation, while in step-loading tests, the non-decay creep could only be presented for the soil with low water contents and high compression pressures.
     ②The relation between instantaneous strains and loads follows conic law in the separate-loading tests. With the same loads, the instantaneous strains of the soil in separate-loading tests are greater than those in step-loading tests, while the accumulative deformation is reverse, with bigger values in step-loading tests comparing to the separate-loading tests.
     ③Non-decay creep characteristics are presented in preloading-unloading-secondary loading tests for the soil with low water contents and high compression pressures. Moreover, the bigger the pre-loads, the more obvious the accelerating non-decay creep would be.
     ④The ultimate strains of the soil reduce with the increase of the preloading pressure, and increases with the increase of the water contents.
     2) The shear creep characteristics and long-term strength of Nanning unsatured expansive soil under the action of different vertical pressures have been studied, which obtains:
     ①For the shear loads less than 42.5kPa, the decay creep curves of soil were presented, while for the loads more than 42.5 kPa, the non-decay creep curves of the soil were showed.
     ②Under the vertical loads of 50kPa and 100kPa respectively, the soil samples failed at 60min and 360min respectively during the shearing when the shear load was up to 161.5kPa.
     ③Under the vertical loads of 200kPa and 300kPa respectively, obviously accelerating creep phases of the soil are found with the shear load achieving to 170 kPa.
     ④The long-term strengths of the soil are about 72.9% of the short-term strengths when water content is 16%.
     3) The stresses relaxation of the Nanning unsaturated expansive soil has been studied regarding to different water contents, showing that:
     ①The stress relaxation curves fall into a non-completed decay type. The stresses gradually decrease and tend to a stable value as time elapses. The relaxation curves can be divided into three stages clearly:an accelerating relaxation stage, a uniform speeding relaxation stage and a stable relaxation stage.
     ②The curves of stress-strain are shown in a linear relationship when water content is 16%, while the curves of stress-strain are shown in a non-linear relationship when the water contents are up to 20.5% and 22.4% respectively.
     ③The K-H constitutive function well agreed with the observed data, which is able to reflect stress relaxation characteristics of Nanning unsaturated expansive soil.
     4) A series of contrast tests between the Nanning unsaturated expansive soil and Zhuzhou red clay have been done under the same conditions. The results display that:
     ①Under the conditions of low water contents and high compression pressures, the creep curves of expansive soil showed non-decay developments while the red clay showed decay developments. So the accelerating creeping phenomenon of Nanning expansive soil is more obvious than that of the Zhuzhou red clay.
     ②The ultimate strains of expansive soil were bigger than those of the red clay under the same water contents. Under the condition of low water contents and low pressures, the resilience values of expansive soil are bigger than those of the red clay.
引文
[1]杨庆.膨胀岩与巷道稳定[M].北京:冶金工业出版社,1995.
    [2]Bin Shi, Hongtao Jiang. Engineering geological characteristics of expansive soils in China[J]. Engineering Geology,2002,67:63-71.
    [3]刘特洪.工程建设中的膨胀土问题[M].北京:中国建筑工业出版社,1998.
    [4]Gerald J. Gromk. Review of expansive soils[J]. Journal of the Geotechnical Engineering Division,1974,100 (6):667-687.
    [5]Robert W. Day. California Housing Damage Eelated to expansive soils[J]. J. OF PERF-ORMANCE OF CONSTRUCTED FACILITIES.1995,8:243-247.
    [6]贺洁.膨胀土分类方法探讨以及抗剪强度的试验研究[D].大连:大连理工大学,2001.6.
    [7]缪林昌,仲晓晨,殷宗泽.非饱和膨胀土变形规律的试验研究[J].大坝观测与土工测试,1999,23(3):36-39.
    [8]肖宏彬,范臻辉,王永和等.膨胀土单向浸水膨胀规律的试验研究[C].第八届全国地基处理学术讨论会论文集,长沙:合肥工业大学出版社,2004:47-50.
    [9]徐永福,陈永站,刘松玉等.非饱和膨胀土的三轴试验研究[J].岩土工程学报,1998,20(3):14-19.
    [10]谭罗荣,孔令伟.膨胀土膨胀特性的变化规律研究[J].岩土力学,2004,25(10):1555-1559.
    [1]]李献民,王永和,肖宏彬等.击实膨胀土胀缩速度特性的对比研究[J].铁道学报,2003,25(2):115-120.
    [12]P.J. Thomas, J.C. Baker. An expansive soil index for predicting shrink-swell pot-ential. SOIL SCl. SOC. AM. J., VOL 64, JANUARY-FEBRUARY 2000.
    [13]Patrick Chege Kariuki, Freek Van der Meer. A unified swelling potential index for expansive soils[J]. Engineering Geology,2004,72:1-8.
    [14]李生林,秦素娟,薄遵昭等.中国膨胀土工程地质研究[M].南京:江苏科学技术出版社,1992.
    [15]Mitchell J K. Fundamentals of Soil Behavior[M], New York,1976.
    [16]廖世文.膨胀土与铁路工程[M].北京:中国铁道出版社,1984.
    [17]郝月清,朱建强.膨胀土胀缩变形的有关理论及其评析[J].水土保持通报,1999,19(6):58-61.
    [18]Gueze E C W A,Ton Tjong-Kie. The mechanical behaviour of clays [C].Proceedings 2nd Intenrational Congress on Rheology,1953.
    [19]Singh A,Mitchell J K. Generalstress-strain-time function for soil Mechanics and Foundation Division[J].ASCE,1968,94(1):21-46.
    [20]Mesri G Febres-Cordero E,Shields D R,Castro A. Shear Stress-strain-time behavior of clays[J].Geotechnique,1981,31(4):537-552.
    [21]Kavazanjian Jr E,Mitchell J K. Time-dependent deformation behavior of clays[J]. Journal of Geotechnical and Geoenvironmental Engineering,ASCE,1980,106(GT6):611-631.
    [22]谢宁,土流变试验设计及有关问题研究[J].云南工学院学报,1994,10(4):76-92.
    [23]谢宁,孙钧.上海地区饱和软粘土流变特性[J].同济大学学报,1996,24(3):233.237.
    [24]郑榕明.软土工程中的非线性流变分析[J].岩土工程学报,1996(9):1-13.
    [25]郭增玉,张朝鹏,夏旺民.高湿度QZ黄土的非线性流变本构模型及参数[J].岩石力学与工程学报,2000:780-784.
    [26]王祥秋,陈秋南,王文星.两种地基土非线性流变特性与模型理论研究[J].湘潭大学自然科学学报,2001,23(2):106-112.
    [27]张敏江,张丽萍,张树标,关超.结构性软土非线性流变本构关系模型的研究[J].吉林大学学报(地球科学版),2004,34(2):242-246.
    [28]张伟,茜平一,陈晓平,向慧敏.流变理论在深基坑开挖中的应用探讨[J].武汉大学学报(工学版),2003,36(2):92-96.
    [29]于新豹,刘松玉,缪林昌.连云港软土蠕变特性及其工程应用[J].岩土力学,2003,24(6):1001-1006.
    [30]朱鸿鹄.软土固结-儒变耦合效应的试验研究及有限元分析[D].广州:暨南大学,2005.6.
    [31]王艳婷.黄土流变特性试验分析及本构模型的研究[D].西安:长安大学,2006.6.
    [32]古任国,房营光.一种改进的土体直剪蠕变仪及应用[J].岩石力学与工程学报,2006,25(S.2):3552-3558.
    [33]马小杰,张建明,常小晓等.高温-高含冰量冻土蠕变试验研究[J].岩土工程学报,2007,29(6):848-852.
    [34]孔宪京,孔秀丽,邹德高.垃圾土蠕变-降解特性的室内试验研究[J].岩土力学,2008,29(2):337-341.
    [35]曾庆国,张春顺,肖宏彬.南宁膨胀土的次固结特性试验研究[J].公路工程,2008,33(1):10-13.
    [36]Contrastive Experiment Study on Rheological Characteristics for Nanning Expansive Soil [C]. 2nd International Geo-Changsha Conference,389-398.
    [37]夏才初,孙钧.蠕变试验中流变模型辨识及参数确定[J].同济大学学报,1996,24(6):498-503.
    [38]冯紫良,范厚彬.软土流变试验的数值模拟[J].同济大学学报,2003,31(4):379-381.
    [39]许宏发,钱七虎,吴华杰,陈伟.确定软土流变模型参数的回归反演法[J].岩土工程学报, 2003,25(3):365-367.
    [40]张容安.软粘土蠕变模型有限元参数的评价方法[J].港工技术,2004,3:45-48.
    [41]宋飞,赵法锁.分级加载下岩土流变的神经网络模型[J]岩土力学,2006,27(7):1187-1190.
    [42]谢宁,孙钧.土体非线性流变的有限元解析及其工程应用[J].岩土工程学报,1995,174:49-52.
    [43]熊军民,李作勤.粘土的蠕变-松弛耦合试验研究[J].岩土力学,1993,14(4):17-24.
    [44]李军世.粘土蠕变-应力松弛耦合效应的数值探讨[J].岩土力学,2001,22(3):294-297.
    [45]尹清杰,王世梅.饱和土松弛实验曲线模拟与试验验证[J].黑龙江水专学报,2006,33(2):24-26.
    [46]袁静,龚晓南,刘兴旺等.软土各向异性三屈服面流变模型[J].岩土工程学报,2004,26(1):88-94.
    [47]Valanis K C, Read H E. A new endochronic plasticity model for soils [A].In:Pande G N, Zienkiewicz 0 C,ed. Soil Mechanics-Transient and Cyclic Loads [C]. [s.1.]:[s. n.],1982.
    [48]袁建新.岩体损伤问题[J].岩土力学,1993,14(1):1-31.
    [49]沈珠江,土体变形特性的损伤力学模拟[c]//第五界全国岩土力学数值分析与解析方法讨论会论文集.重庆,1994.10.
    [50]Newland P L, Alley B H.A Study of the Consolidation Characteristics of A Clay[J]. Geotechnique,1960,10(2):62-74.
    [51]周秋娟,陈晓平,赖震环等.软土非线性流变特性的试验研究及成果分析[J].暨南大学学报:自然科学版,2006,27(1):75-80.
    [52]杨世基.膨胀土路基的压实[C]//廖世文.全国首届膨胀土科学研讨会论文集.成都:西南交通大学出版社,1990.
    [53]袁聚运,徐超,赵春风等.土工试验与原位测试[M].上海:同济大学出版社,2004.
    [54]藤军林,熊传详.基于土结构性的软土流变试验研究[J].长沙大学学报,2007,21(5):50-53.
    [55]张玉芳.京珠高速公路108滑坡及防治工程分析[J]。西南交通大学学报,2003,38(6):633-637.
    [56]朱宝龙,胡厚田,姚勇.类软土单轴剪切蠕变特性研究[J].西南科技大学学报,2006,21(2):1-6,39.
    [57]王祥秋,高文苏,陈秋南等.地基土非线性流变特性试验与归一化模型研究[J].湘潭矿业学院学报,2001,16(2):56-59.
    [58]马莉英,肖树芳,王清.黄土的流变模拟与研究[J].实验力学,2004,19(2):178-182.
    [59]苗鹏,肖宏彬.膨胀土膨胀力的改进测定及其规律研究[J].工业建筑,2008,38(7):67-70.
    [60]长江水利委员会长江科学院.SL264-2001水利水电工程岩石试验规程[S].北京:中交水运规划设计院,2001.
    [61]范志强,肖宏彬.南宁非饱和膨胀土剪切蠕变特性试验研究[J].工业建筑,2009,39(11):71-76.
    [62]范广勤.岩土工程流变力学[M].北京:煤炭工业出版社,1992.
    [63]夏明耀,孙逸明,王大玲.饱和软粘土固结、蠕变变形和应力松弛规律[J].同济大学学报,1989,17(3):319-327.
    [64]赵明华,俞晓,王贻荪.土力学与基础工程[M].武汉:武汉理工大学出版社,2000.
    [65]肖宏彬,许豪,滕珂,范志强.非饱和重塑膨胀土一维压缩蠕变特性试验研究[J].公路工程,2009,34(6):1-7.
    [66]肖宏彬,滕珂,许豪,范志强.南宁膨胀土考虑固结与蠕变耦合的变形特性研究[J].湖南工业大学学报,2009,23(5):1-4.
    [67]肖宏彬,范志强,张春顺,滕珂,许豪.非饱和膨胀土非线性流变特性试验研究[J].公路工程,2009,34(2):1-6.
    [68]肖宏彬,范志强,苗鹏.基于膨胀土蠕变试验的粘弹性模型对比研究[J].自然灾害学报,2009,18(3):72-78.
    [69]杨庆,贺洁,栾茂田.非饱和红粘土和膨胀土抗剪强度的比较研究[J].岩土力学,2003,24(1):13-16.
    [70]赵颖文,孔令伟,郭爱国,拓勇飞.典型红粘土与膨胀土的对比试验研究[J].岩石力学与工程学报,2004,23(15):2593-2598.
    [71]绕平平,陈小亮,欧刚.膨胀土与红粘土电阻率室内试验比较[J].山西建筑,2007,33(31):125-126.
    [72]欧孝夺,吴恒,周东.广西红粘土和膨胀土热力学特性的比较研究[J].岩土力学,2005,26(7):1068-1072.
    [73]周德培.流变力学原理及其在岩土工程中的应用[M].成都:西南交通大学出版社,1995.
    [74]刘冬,杨果林.中南地区红粘土工程力学特性研究[J].公路交通技术,2009,4(2):26-29.
    [75]唐朝生,施斌,王宝军.基于SEM土体微观结构研究中的影响因素分析[J].岩土工程学报,2008,30(4):560-565.
    [76]夏才初,刘大安.理论流变模型及统一模型研究[c]//中国岩石力学与工程学会第五次大会论文集.北京:科学出版社,1998:134-140.
    [77]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [78]赵维炳,施建勇.软土固结与蠕变[M].南京:河海大学出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700