固体超强酸光催化剂的制备及改性降解室内甲醛气体的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由建筑材料及家具排入室内空气中的甲醛对人体健康产生不利影响,尤其是在室内装修不断普及的今天,室内空气中的甲醛污染引起了人们的极大关注。而近些年兴起的纳米TiO_2光催化氧化技术是降解室内甲醛的一种有效方法,但此技术目前存在着光生载流子的复合率较高、太阳光利用率低的问题。本课题主要通过研究改性固体超强酸光催化剂,使其能够在这两个方面有所突破。
     本论文首先制备纯的二氧化钛光催化剂粉末,基于本课题组长期研究得出的配比的基础上,加入硝酸作为水解抑制剂,不仅可以缩短溶胶凝聚的时间,而且能够在一定程度上提高光催化性能;利用数理统计中的单纯形优化方法对各个配比进行优化,并且使用X射线衍射(XRD)技术对样品的晶型进行了表征分析。接着引入硫酸以及稀土元素镧制备出改性固体超强酸光催化剂降解室内甲醛,且对制备得到的改性固体超强酸光催化剂晶型表征分析,并与纯二氧化钛光催化剂进行比较。然后将降解效果最优的光催化剂负载于涂料之上,降解室内甲醛,得到最优的负载方法。最后,通过初始浓度的不同,降解过程不同,得到以白炽灯作为模拟光源,改性固体超强酸光催化剂降解室内甲醛的动力学方程。研究结果表明:
     ①本文在制备纯纳米TiO_2时通过添加硝酸抑制水解反应,从而提高了其光催化性能。按照n(Ti):n(HNO3)分别为1:0;1:0.25;1:0.5;1:0.75;1:1来安排试验,最后得出,n(Ti):n(HNO3)=1:0.25为最佳添加量。
     ②运用单纯形优化试验进一步优化配比,得到性能更好的光催化剂。当n(H2O)/n[Ti(OC4H9)4]=3.46,n(C2H5OH)/n[Ti(OC4H9)4]=26.49,n(HNO3)/n[Ti(OC4H9)4]=0.34,n(NH(C2H5OH)2)/n[Ti(OC4H9)4]=1.21时,该光催化剂在紫外灯下对甲醛的去除率可达34%。③用正交试验制备SO42--TiO_2固体超强酸光催化剂,正交试验选择了三个影响因子:浸渍时间,浸渍浓度,煅烧温度。通过方差分析可以得出:因子A浸渍硫酸浓度最重要,煅烧温度次之,即顺序为浸渍硫酸浓度>煅烧温度>浸渍时间。④La3+-SO42--TiO_2(500℃)样品的平均粒径为21.3nm,与纯纳米TiO_2样品平均粒径为25.8 nm相比,所制备的改性固体超强酸纳米光催化样品粒径尺寸较小,比表面积较大。
     ⑤在紫外灯作为光源下,钛镧比为0.25时La3+-SO42--TiO_2光催化剂性能最强。白炽灯作为光源,SO42--TiO_2固体超强酸光催化剂在可见光下对甲醛的去除率为27.08%,La3+-SO42--TiO_2光催化剂的去除率为39.22%。
     ⑥利用有机粘结剂先与光催化剂混合分散均匀,然后再喷涂于风干涂料之上的方法研究了不同负载量、不同光强之下甲醛的去除率。紫外灯下,在涂料上负载1:0.25的光催化剂时,涂料对甲醛有了一定的去除效果,当达到1:0.75时,效果最佳,但是添加量增大到1:1时,去除率却在下降。进一步研究在白炽灯下甲醛的去除率,在白炽灯模拟太阳光源的试验中,La3+-SO42--TiO_2改性涂料的3小时光催化去除效率达到了37.25%
     ⑦通过研究白炽灯作为光源,La3+-SO42--TiO_2改性固体超强酸光催化剂负载于涂料之上降解室内甲醛的动力学方程。初始浓度不同,甲醛的去除过程也不一样。先假设各初始浓度下甲醛的降解符合一级动力学方程。通过回归分析验证其在180分钟内的降解是属于一级反应,并且得到了降解速率常数和表观吸附平衡常数分别为k=0.0036mg/m3,K=0.9769m3/mg。
Indoor formaldehyde creating by architectural materials and furnitures affected the health of human being a lot, especially as the indoor decoration was popularized nowadays, the pollution of indoor formaldehyde brought public attention significantly. nanometer TiO_2 photocatalysis technology was an efficient way which possess quite developmental potential in recent year, but it still had two problems to solve, one was the high recombination rate of carriers and the other was the lower rate of sunlight utilization. In order to make breakthrough from these fields, this theme mainly researched on modified solid super-acid.
     In this paper, firstly, the pure TiO_2 photo-catalysis powder was made based on the ratio researched by our team for a long time, adding HNO3 as catalysis, shortening the condensation time of sol, and optimizing the ratio using simplex optimization method. Secondly, the crystalline properties was characterized by X-ray diffraction (XRD). Thirdly, introducing rare earth element, La, and super-acid to create modified solid super-acid photo-catalysis and degrade indoor formaldehyde. Meanwhile, comparing the crystalline properties between the pure TiO_2 photo-catalysis powder and the modified TiO_2 photo-catalysis powder. Then, loading the best removal rate of TiO_2-photo-catalysis powder in the coating to degrade indoor formaldehyde. At last, getting the kinetic equation of modified solid superacid photo-catalysis with different initial concentration and different degradation process under the incandescent lamp.
     The results indicated that:
     ①By adding catalysis HNO3 to shorten the condensation time, in this paper, different addition amounts were introduced to prepare the tests, and the ratio of n(Ti):n(HNO3) were1:0.25;1:0.5;1:0.75;1:1 respectively. The result showed 1:0.25 was the best one.
     ②Using simplex optimization method to optimize the ratio, when it was n(H2O)/n[Ti(OC4H9)4]=3.46,n(C2H5OH)/n[Ti(OC4H9)4]=26.49,n(HNO3)/n[Ti(OC4H9)4]=0.34,n(NH(C2H5OH)2)/n[Ti(OC4H9)4]=1.21, the removal rate of formaldehyde could reach 34%.
     ③Orthogonal tests were used to make SO42--TiO_2 solid super-acid, which selected three factors, impregnation time, impregnation concentration and calcination temperature. After variance analysis, the result indicated the most important factor was impregnation concentration, following with calcination temperature. And the sequence was impregnation concentration>calcination temperature>impregnation time.
     ④Average particle size of La3+-SO42--TiO_2(500℃) was 21.3nm, comparing with average particle size of pure TiO_2 photo-catalysis powder, the modified solid superacid photo-catalysis has smaller particle size and larger specific surface area.
     ⑤Using ultraviolet lamp as light sources, when the rate of n(La):n(Ti) was 0.25, the La3+-SO42--TiO_2 photo-catalyst properties was best. While under the incandescent lamp, the rate of sunlight utilization of SO42--TiO_2 photo-catalyst was 27.08%, and La3+-SO42--TiO_2 photo-catalyst was 39.22%.
     ⑥Combine the organic binding agent and photo-catalyst uniformly, then spraying it into the glass plate painting coating already to degrade indoor formaldehyde researching on the different loading amount and different light sources. When the loading amount reach 1:0.75, the removal rate was the highest. However, the ultraviolet lamp would harm the coating, so furthering research under incandescent lamp was carried, and the removal rate reach 37.25% after spraying La3+-SO42--TiO_2 photo-catalyst on the surface of painted coating in three hours.
     ⑦Due to different initial formaldehyde concentration, the removal rate was total different. During this process, incandescent lamp was light source, La3+-SO42--TiO_2 photo-catalyst was carried on the surface of painted coating. Assuming that the degradation of formaldehyde process accord with first order kinetic equation. And the tests proofed it was right. At last, the degradation rate constant was 0.0036mg/m3, and apparent adsorbed balance constant was 0.9769m3/mg.
引文
[1]刘晓红,李伟华.不良建筑物综合症的预防控制[J].环境与健康杂志,2005, 22(4):312-314.
    [2]魏复盛,胡伟,滕恩江.空气污染对人体健康影响研究的进展[J].世界科技研究与发展,2000,22(3):14~18.
    [3]周中平,赵寿堂,朱立等.室内污染检测与控制[M].北京:化学工业出版社, 2002.
    [4]白震.室内甲醛污染的来源及影响甲醛释放的因素[J].大众标准化, 2009,S2:37-39.
    [5]宋广生.室内空气质量标准解读[M].北京:机械工业出版社, 2003.
    [6]李艳莉,尹诗,钟理.室内甲醛污染治理技术研究[J].环境污染治理技术与设备. 2003,4(8):78-80.
    [7] Anne H J, Soren K K, Lars M, Cytological Changes and Conjunctival Hyperemia in Relation to Sensory Eye Irritation, International Archives of Occupational and Environmental Health, 1998, 71: 225~235.
    [8]左志芳.室内甲醛污染危害及防治.科技经济市场[J].2009,9:27-30.
    [9] Holmstom, Bjoernsson E, Janson C, et al. Environ Med, 1995, 52(6): 385~395.
    [10]赖春钢.室内空气中甲醛污染的危害与治理[J].内蒙古环境科学. 2009,3:45-48.
    [11]俞远.室内装修环境污染控制探讨[J].中国环保产业. 2009,5:66-67.
    [12] Norbaeck, A.J.Bard. Heterogeneous Photocatalytic Oxidation of Cyanide Ion in Aqueous Solution at TiO2 Powder[J]. J. Am.Chem. Soc., 1977(99): 303-304.
    [13]郭秀珠.几种观叶植物对室内污染物的净化效果研究[J].环境工程学报,2007,1(1):84-86.
    [14]邵茂清.重庆市建筑室内空气中甲醛污染调查及植物净化甲醛的试验研究[D].重庆:重庆大学, 2005.
    [15]雷琳.室内甲醛的治理技术应用现状与发展趋势[J].科技信息.2009,4:52-55.
    [16]徐海云,杨庆平.室内空气净化技术[J].舰船防化,2008,1:12-19.
    [17]孙瑶毅.纳米TiO2薄膜的制备及光催化降解甲醛气体的实验研究[D].辽宁:大连理工大学,2004.
    [18]王岩.新型氮掺杂二氧化钛的制备及其可见光光催化性能的研究[D].河南:河南大学,2004.
    [19]刘秀华.金属离子掺杂二氧化钛光催化剂的改性研究[D].北京:中国物理工程研究院,2007.
    [20]曹沛森,王玉宝,乔安青.纳米TiO2的改性及应用研究进展[J].纳米材料与结构,2008,3:143-150.
    [21]潘甚昌,彭康华,张环华等. N掺杂锐钛矿二氧化钛光响应红移的模拟[J].化学世界,2008,3:141-143.
    [22]彭人勇,陈强,熊克思.不同介质条件下纳米二氧化钛溶胶的低温制备及其光催化性能表征[J].广州化学,2008,3,25-29.
    [23]赵芙蓉.不同温度热处理纳米TiO2光催化剂降解单苯环有机物的研究[D].浙江:浙江大学,2006.
    [24]刘肸.光催化—吸附联用技术降解室内空气中甲醛气体的试验研究[D].重庆:重庆大学,2007.
    [25]陈小开.载银纳米TiO2-Al2O3球粒光催化室内甲醛的研究[D].湖南:中南大学,2006.
    [26]于泽华.可见光响应型光催化剂Pt/TiO2的制备及降解苯酚的研究[D].黑龙江:哈尔滨理工大学,2007.
    [27] Linsebigler A L, et al. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results [J]. Chem. Rev., 1995, 95(3): 735-738.
    [28]安立超,曾桁,李海燕,等.载银TiO2催化剂的制备与性能研究[J ].环境污染治理技术与设备,2001,2(4):30~33.
    [29]程萍,金燕苹,顾明元.可见光响应型二氧化钛光催化剂研究进展[J].材料导报,2004,18(7):76-79.
    [30] Choi W,Termin A ,Hoffmann M R. The role of metal ion dopants in quantum sized TiO2 :Correlation between photoreactivity and charge carried recombination dynamics[J] . J Phys Chem,1994 ,98 (5) :13669~13679.
    [31]卢萍.过渡金属离子的掺杂对TiO2光催化性能的影响[J].感光科学与光化学,2002, 20(3):185-189.
    [32] Asahi R, Morikawa T, Ohwaki T. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science,2001,293(5528):269-271.
    [33] Burda C,Lou Y B. Enhanced nitrogen doping in TiO2 nanopaticales[J]. Nano Letters,2003,3(8):1049-1051.
    [34] Lettmann C,Hildnbrand K. Quantum-sized PbS, CdS, Ag2S, Sb2S3 andBi2S3 particles as sensitizers for various nanoporous wide-band gap semiconductors. Phys. Chem., 1994; 98(12): 3183-3185.
    [35] Liu H Y, Gao L. J . Am. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders[J]. Chem Mater,2002,14(9):3808-3816.
    [36]沈佳渊.双组分掺杂纳米TiO2光催化活性的研究[J].湖州师范学院学报, 2003, 25: 67-71.
    [37]周艺.Pr3+,Ho3+掺杂TiO2纳米粒子的光催化性能[J].湖南师范大学自然科学版, 2003, 26(2):70-72.
    [38] Kang M G, Han H E , Kim K J . Enhanced photodecomposition of 4-chlorophenol in aqueoussolution by deposition of CdS on TiO2 [J] . Chem,1999 ,125(1) :119-125.
    [39] Li X Z,Li F B,Yang CL,etal. Photocatalytic activity of Wox-TiO2 under visible light irradiation[J].J Photochem Photobiol A:Chem,2001 ,141(2/ 3) :209-217.
    [40] Chatterjee D ,Mahata A. Photoassisted detoxification of organic pollutants on the surface modified TiO2 semiconductor particulate system[J] .Catal Commun ,2001 ,2 (1) :1-3.
    [41]郭慧. SO42-/TiO2固体超强酸催化剂的制备与改性和评价[D].黑龙江:哈尔滨工业大学,2006.
    [42]罗妮.超强酸化及表面金属银掺杂二氧化钛的制备及光催化性能的研究[D].四川:四川大学,2007.
    [43]苏文悦,陈亦琳,付贤智. SO42-/TiO2固体超强酸催化剂的酸强度及光催化性能[J].催化学报,2001,2(22):175-177.
    [44]黄碧纯,固体超强酸SO42-/MoO3 - ZrO2的酸强度与酯化催化性能,工业催化[J],2000,8(2):61-63.
    [45]苏文悦,陈亦琳,付贤智. SO42-/TiO2固体超强酸的结构及其催化性能.高等学校化学学报,2002,7(23):1398-1440.
    [46] Smith K,MussonA ,DeboosGA. A novelmethod for the nitration for the simple aromatic compounds [J ]. J O rg Chem , 1998, 63: 8448~8454.
    [47] Tanabe K, Misono M, One Yet al .New Solid Acids and Bases. Kodansha,Tokyo,1999:6-7.
    [48] Sm ith K, Fry K. Para-selectivemononitration of alkylbenzenes under mild conditions by useof benzoyl nitrate in the presence of a zeolite catalyst[J ]. TetrahedronLett, 1989,30(39):533-536.
    [49]潘声. SO42-/TiO2固体超强酸催化甲苯硝化的研究[J],精细石油化工进展,2003,4(6):18-19.
    [50]卢冠忠.固体超强酸的结构及其在酯化反应中的应用[J],工业催化,1993,1(1):3-9.
    [51] Olga d H, Pierre P, David F O, Benzene and Toluene Gas-Phase Photocatalytic Degradation over H2O and HCL pretreated TiO2:by-Products and Mechanisms, Journal of Photochemistry and Photo biology A: Chemistry, 1998, 118: 197-204.
    [52] Yu J C , Yu J ,Zhao J . Enhanced photocatalytic activity and ordinary TiO2 thin films by sulfuric acid treatment [J].Appl Catall B :Environ ,2002 ,36 (1) :31-43.
    [53] Kim J S, Joo H K, Lee T K, et al, Photocatalytic Activity of TiO2 Films Preserved under Different Conditions: the Gas-Phase Photocatalytic Degradation Reaction of Trichloroethylene, Journal of Catalysis, 2000, 194:484-486.
    [54] Kozlov D V,Paukshtis E A,Savinov E N. The comparative studies of titanium dioxide in gas2phase ethanol photocatalytic oxidation by the FTIR in situ method[J] . Appl Catal B:Environment ,2000 ,24 (1) :7-12.
    [55]付贤智,丁正新,苏文悦,等.二氧化钛基固体超强酸的结构及其光催化氧化性能[J] .催化学报,1999 ,20(3) :321-324.
    [56] Muggli D S ,DingL. Photocatalytic performance of sulfated TiO2 and Degussa P225 TiO2 during oxidation of organic[J] . Appl Catal B :Environ ,2001 ,32 (3) :181-194.
    [57]冯芳,张占恩,张丽君.建筑和装饰材料导致室内污染的研究[J].新型建筑材.
    [58]车海燕,张振彦.纳米TiO2光触媒在建材领域的应用[J].科技论坛,2009,7:200-201.
    [59]彭丽.以石膏板为载体的掺氮TiO2粉末光催化降解室内甲醛污染的试验研究[D].重庆:重庆大学,2009.
    [60]桥本和仁,藤岛昭.图解光催化技术大全[M].北京:科学出版社,2007.
    [61]宋庆功.纳米TiO2改性内墙涂料的光催化降解甲醛研究[D].四川:四川大学,2006.
    [62]黄海燕.纳米TiO2/ VACF光催化层净化室内空气中甲醛的试验研究[D].重庆:重庆大学,2006.
    [63]刘春燕.进行光催化消除室内甲醛污染的研究[D].河南:郑州大学,2007.
    [64]耿晓云.二氧化钛复合型催化剂的制备及光催化性能研究[D].河北:河北工业大学,2006.
    [65]左言军,习海玲,张建洪.悬浮体系光催化降解反应动力学模型的建立[J].催化学报,2001,22 (2):198-202.
    [66] Lu Z, Lindner E, Mayer H A. Applications of Sol-Gel-Processed Interphase Catalysts [J]. Chem Rev.2002, 102(10): 3543~3578.
    [67]韩燕飞.共掺杂纳米TiO2光催化薄膜降解室内甲醛污染的实验研究[D].重庆:重庆大学,2009.
    [68]廖东亮,肖新颜,陈焕钦. TiO2薄膜制备条件对甲醛光催化降解性能的影响[J].精细化工. 2003,3(20):134-137.
    [69] Chu S Z, Wada K, Inoue S. Synthesis and Characterization of Titania Nanostructures on Glass by Sol-Gel Process [J]. Chem Mater, 2002, 14(1): 266~272.
    [70]李波.掺铁TiO2薄膜光催化降解室内苯污染的试验研究[D].重庆:重庆大学,2008.
    [71] G.Vazquez ,G.Antorrena ,J.Gonzalez, et.al.. Lignin phenol- formal dehydeadhesives for exterlopgradeply woods. Biore-source Technology .1995, 51 , 187~192.
    [72]熊沛石.单纯形优化法的应用[J].湖南有色金属, 1997,5:44-46.
    [73]贾宏敏,朱秀慧,李井会.单纯形法优化水处理药剂复合配方[J]. 2000,6(23):170-171.
    [74]郭慧清,李锦文,孔键勇.用改进单纯形优化法测定大米中的镉[J].华东地质学院学报1999,3(22):134-136.
    [75]王文生,苏俊林,矫振伟.采用对称-单纯形设计法研究工业蜂窝型煤配比[J].洁净煤技术, 2006,12:46-49.
    [76]熊沛石.初始单纯形的构造方法[J].中南工业大学学报, 1998,4:48-51.
    [77] Scheffe H- Experiments with mixtures [J] .J Roy Stat Soc B,1998:344-360.
    [78]吴燕.掺镧光催化薄膜降解室内空气中甲醛气体的试验研究[D].重庆:重庆大学,2009.
    [79]谢长红.稀土固体超强酸SO42--La3+-TiO2催化甲苯硝化的研究[D].四川:四川大学,2006.
    [80]井立强,孙晓君,辛柏福,等.掺杂镧和铈的TiO2纳米粒子的结构相变[J].材料科学与工艺,2004;12(2):148-151.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700