载银纳米TiO_2-Al_2O_3球粒光催化室内甲醛的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
室内空气污染是当今人们最关注的重要环境问题之一,HCHO是一种无色的具有强烈刺激性的有毒气体,为引起室内空气污染的最主要的物质,对人体健康的危害极大。目前治理室内空气甲醛污染的方法有吸附法、纳米TiO_2光催化技术、臭氧催化(O_3/Catalysis)技术、非平衡等离子体技术、植物净化法等等,每一种方法都有缺点且效果不是很明显。
     本研究基于吸附和光催化的原理,首次将氧化铝球粒的优良吸附性能、纳米二氧化钛的光催化性能、银离子的光催化促进功能,很好地结合起来,制备出一种兼有吸附及光催化双重功能的载银纳米TiO_2-Al_2O_3球粒,用于光催化降解甲醛;获得了一些创新性成果,主要体现在:
     1)以活性氧化铝和二氧化硅为主要原料,添加助烧剂(氧化镁)、成孔剂(碳酸氢铵)、粘结剂(羧甲基纤维素纳),控制AL_2O_3、SiO_2、MgO、NH_4HCO_3和CMCNa的含量分别为60%、10%、5%、20%和5%,制备出粒径为5mm的球粒,在1150℃烧结获得具有良好吸附性能的产品;再通过浸渍载银纳米TiO_2在400℃温度下焙烧活化,得到兼有吸附及催化功能的最终产品。通过扫描电镜分析,产品内部的微孔很发达,孔的形态不太规则;孔隙分布比较均匀,内表面凹凸不平,具有很高的比表面;孔径大致呈三个系列分布,微孔由二部分构成,其中大气孔为造孔剂碳酸氢铵受热分解或矿化剂分解所致。
     2)确定了与甲醛光催化降解相关的因素有:电光源功率、活化温度、活化时间和载银量。当银的掺杂量为1.0%,焙烧活化温度为400℃所得的载银纳米TiO_2-Al_2O_3球粒的光催化性能最好,其原因是在400℃的焙烧温度下,掺杂的Ag~+可提供电子、空穴的浅势捕获陷阱,同时抑制电子和空穴的复合,有利于提高纳米TiO_2的光催化性能,光催化降解甲醛的效率可达到90%以上。
     3)初步探讨了球粒吸附催化甲醛的机理,HCHO在Al_2O_3上的吸附等温线可分成三段,(I)低压时,吸附量与气体分压成正比,压力的影响十分显著:(Ⅱ)压力升高,吸附量的增加开始变慢,而且出现转折;(Ⅲ)当压力达到足够高时,曲线近于水平,吸附渐趋饱和。等温线的这种形态的改变应当归因于单分子层吸附的完成。光催化反应机理是甲醛通过光催化降解反应过程中生成的中间产物甲酸,进一步被氧化为二氧化碳和水。
Indoor air pollution is one of the most concerned environmentalproblems. Air pollutant formaldehyde is a colorless and strongly incentivepoisonous gas, which is harmful to human health. Some methodsfrequently used to treat the pollution of indoor HCHO are adsorption,photocatalytic degradation, o_3/catalysis, non-equilibrium plasma andplant removal. But every one of them has some drawbacks and its effectis not strong.
     The experiment based on the principle of adsorption andphotocatalysis was conducted by combining excellent adsorbingcapability of alumina with photocatalytic capability of nano-TiO_2improved by Ag~+ to produce an adsorbing and photocatalysising silverloaded spheroid of TiO_2-Al_2O_3. It could be used to degradateformaldehyde by photocatalysising and the achievements obtained in thisstudy were as follows:
     1) Al_2O_3 and SiO_2 are primary materials with some helping sinterreagent (MgO), holing reagent (NH_4HCO_3) and felting reagent (CMCNa)in the product. Under the content of Al_2O_3, SiO_2, MgO, NH_4HCO_3 andCMCNa 60%, 10%, 5%, 20%and 5%respectively, diameter ofspheroid 5mm treated at 1150℃, an excellent adsorbing capability ofalumina particle was achieved successfully and then loaded TiO_2 on thespheroid by thermal treated at 400℃. There were many different shapesof small uniformal holes present in alumina particle. The holes weredistributed in the interior and exterior facies. Aperture showed three seriesdistribution, small hole constitute with two parts and decomposingNH_4HCO_3 and mineration reagent bring about the large hole.
     2) It was found in this study that the factores influencingphotocatalytic degradation were strength of light, activated temperatureand activated time. The result showed the silver loaded spheroid ofTiO_2-Al_2O_3 had fairly good quality and the degradation percentage offormaldehyde was over 90%after treated at 400℃and silver loaded just1%. Silver loaded could prevent complex between electrons and cavitys, which improved photocatalytic capability of nano-TiO_2.
     3) Tish paper delivered an elementarily discussion about themechanism of the alumina granule adsorbing and photocatalyticdegrading formaldehyde. There are three status in adsorption isotherm ofHCHO on the surface of Al_2O_3. (Ⅰ) The pressure is strongly affected theadsorption capacity under low pressure condition. (Ⅱ) Adsorptioncapacity increases and transition appears at high pressure. (Ⅲ)Adsorption isotherm gets to a high level when the pressure becomes highenough, and then the adsorption is in saturated condition. The chang ofconfiguration of adsorption isotherm attributes to achievement of thesingle molecule adsorption. HCHO is photocatalytically degraded to CO_2and H_2O through the middle outcome HCOOH.
引文
[1] 王有乐,张庆芳,马炜.光催化剂TiO_2改性技术的研究进展.环境科学与技术,2002,25(1):40~44.
    [2] 陈中颖.碳黑改性TiO_2薄膜光催化剂的结构性质.环境科学,2002,23(2):55~60.
    [3] 余家国,赵修建,赵青南.TiO_2纳米薄膜的溶胶-凝胶工艺制备和表征.物理化学学报,2000,16(9):792~797.
    [4] 冷文华,张莉,成少安等.负载TiO_2光催化降解水中对氯苯胺(PCA).环境化学,2001,21(6):46~50.
    [5] Manjari L, Vishal C, Pushan A. Preparation of nanosized TiO_2 by microemulsion method. Journal of Materials Research, 1998, 13(5): 1249-1256.
    [6] Qian Yitai, Chen Qianwang, Chen Zuyue, et al. Preparation of nanocrystalline silver powders by g-ray radiation combined with hydrothermal treatment. Joumal of Materials of Chemistry, 2003, 3(2): 203~209.
    [7] Harizanol O, Harizanova A. Dvelopment and investigation of sol-gel solutions for the formation of TiO_2 coatings. Solar Energy Materials & Solar Cells, 2000, 63(6): 185~195.
    [8] Djaoued Y, Simona B, Ashrit PV. Low temperature sol-gel preparation of nanocrystalline TiO_2 thin films. Journal of Sol-gel Gel Science and Technology, 2002, 24(1):247~254.
    [9] 吴自强,刘志宏,许士洪.室内甲醛污染控制进展.建筑人造板,2000,(3):11~14.
    [10] 李艳莉,尹诗,钟理.室内甲醛污染治理技术研究.环境污染治理技术与设备,2003,4(8):79~81.
    [11] 朱天乐,李国文,田贺忠编著.室内空气污染控制.北京:化学工业出版社,2003(1),19~20.
    [12] 郝郑平.我国室内空气污染现状、成因与对策.中国环保产业,2001,12:32~33.
    [13] 宫菁,刘敏.甲醛污染对人体健康影响及控制.环境与健康杂志,2001,18(6):414~415.
    [14] 王维,冯学庆,李巧玲.接触甲醛的职业危害及对嗅觉功能的影响[J].中国公共卫生,1999,15(9):787~788.
    [15] 李汉珍,杨旭,李燕等.武汉市室内装饰材料卫生状况调查[J].中国公共卫生,2000,16(1):40~41.
    [16] 刘亚平,王建华,朱春阳等.农村居室装潢后空气中甲醛及耗氧现状调查[J].环境与健康杂志,1998,15(2):78~79.
    [17] 王芳,钟伟雄.新装修后的公共场所甲醛浓度调查[J].环境与健康杂志,2000,17(2):86.
    [18] 郝郑平.我国室内空气污染现状、成因与对策.中国环保产业,2001,12:32~33.
    [19] 李景舜.装修后室内空气甲醛污染研究.中国卫生工程学,2002,3:136~137.
    [20] 朱利平.低毒耐水脲醛树脂的合成.林产工业,2003,30(4):25~28.
    [21] 徐信武.胶合板甲醛散发的研究.林产工业,1999,26(5):7~12.
    [22] 周定国.温度对刨花板甲醛散发的影响.建筑人造板,1997,4:3~8.
    [23] 胡晓玲.室内空气中甲醛污染及其变化规律探讨.现代预防医学,2003,30(3):328~329.
    [24] 吴忠标编著.大气污染控制技术.北京:化学工业出版社,2002(5),5,26~27.
    [25] Wu Ziqiang, Liu Zhihong. Advances in the control of indoor formaldehyde pollution [J]. Achitectural Artificial Board, 2002, 3: 11~15.
    [26] Mardare D, Tasca M, Delibas M, et al. On the structural properties and optical transmittance of TiO_2 r.f. sputtered thin films[J]. Applied Surface Science, 2000, 1(156): 200-206.
    [27] Linsebigler Amy L, Lu Guangquan, Yates John T. Photocatalysis on TiO_2 surfaces, principles, mechanisms and selected results [J]. Chemical Reviews, 1995, 3(95): 735.
    [28] Femandz A, Lassalecta G, Jimenez V.M, et al. Preparation and characterization of TiO2 photocatalysts supported on various rigid supports (glass, quartz and stainless steel). Comparative studies of photocatalytic activity in water purification[J]. Appl. Catal. B: Environ, 1995, 7(1-2): 49.
    [29] 戴智铭,朱中南,陈爱平等.多相光化学反应器的辐射能传递模型[J].化工学报,2001,52(2):102~106.
    [30] Lisa Stevens, John A. Lanning, Larry G. Anderson. Photocatalytic Oxi2 datton of Organic Pollutants Associated with Indoor Air Quality 98~MP9B. 06. [C]For Presentation at the Air &Waste Management Association's 91st Annual Meeting & Exhibition, June 14~18, 1998, SanDiego, California.
    [31] 周中平,赵寿堂,朱立等.室内污染检测与控制[M].北京:化学工业出版社,2002,10~11.
    [32] Sakamoto K, Fukumuro T, Ishitani O, et al. Destruction of VOC using photocatalyst under UC light irradiation o the influence of UV wavelength on mineralisation [C]. UK, Garston, BRE, 1999, proceedings of Indoor Air 99, the 8th International Conference on Indoor Air Quality and Climate, and the Air Infiltration and Ventilation Centre (ATYC) 20th Annual Conference, held Edinburgh, Scotland, 1999, 2 : 673~678.
    [33] 张云怀.纳米TiO_2光催化剂的应用[J].贵州大学学报(自然科学版),2001,18(2):132~134.
    [34] 郝郑平,程代云,何鹰.臭氧-催化技术治理低浓度气体污染物.环境污染与防治,2001,23(1),50~52.
    [35] 戴智铭,陈爱平,古政荣等.室内空气中三氯乙烯在TiO_2/AC上的光催化氧化反应动力学[J].化学反应工程与工艺,2001,17(4):297~302.
    [36] 汪耀珠,唐明德,易义珍等.低浓度臭氧净化空气中甲醛效果的实验性研究[J].实用预防医学,2002,9(1):28~29.
    [37] Yang Jianjun, Li Dongxu. Mechanism of photocatalytic oxidation of formaldehyde [J]. Chinese Journal of Physical Chemistry, 2001, 17(3) : 278~281.
    [38] Gu Zhengrong, Chen Aiping. The study and manufacture of combined photocatalytic net of active carbon fiber and titanium dioxide[J]. Journal of East China University of Science and Technology, 2002, 26(4): 367~371.
    [39] Matos J, Laine J, Herrmann J-M. Association of Activated Carbons of Different Origins with Titania in the Photocatalytic Purification of Water[J] Carbon, 1999, 37: 1870~1872.
    [40] 吴忠标、赵伟荣编著.室内空气污染及净化技术.北京:化学工业出版社,2005(1),514~528.
    [41] N S Panikov, S Paduraru, R Crowe, et al. Destruction of bacillus subtilis cells using an atmospheric-pressure dielectric capillary electrode discharge plasma[J]. IEEE Trans. on Plasma Science, 2002, 30 (4) : 1424~1428.
    [42] Stacy L, Daniels. On the Ionization of air for removal of noxious effluvia[J]. IEEE Transactions on Plasma Science, 2002, 30 (4) : 1471.
    [43] Kimberly Kelly-Wintenberg, Daniel M. Sherman, et al. Air filter sterilization using a one atmosphere uniform glow discharge plasma(the Volfilter) [J]. IEEE Transactions on Plasma Science, 2000, 28(1): 64~70.
    [44] Masaaki Okubo, Toshiaki Yamamoto, et al. Electric air cleaner composed of nonthermal plasma reactor and electrostatic precipitator[J]. IEEE Trans on IA, 2001, 37(5): 1505~1511.
    [45] Shigeru Futamura, Hisahiro Einaga, et al. Comparison of reactor performance in the nonthermal plasma chemical processing of hazardous air pollutants[J]. IEEE Trans on IA, 2001, 37(4): 978~985.
    [46] 朱天乐,李国文,田贺忠编著.室内空气污染控制.北京:化学工业出版社,2003(1),138~139.
    [47] 王桂芳,陈烈贤,宋瑞等.办公室内空气污染的调查.环境与健康杂志,2000,17(3):156~157.
    [48] Eglinton G, Hamilton R J. Leaf epicuticular waxes. Science, 1997, 156: 1322~1335.
    [49] Wolverton B C, Wolverton J D. Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from the indoor environment. J. Mississippi Acad. Sci., 1999, 38: 11~15.
    [50] Oyabu T, Sawada A, Onodera T, et al. Charateristics of potted plants for removing offensive odors. Sensors and Actuators, 2003, B89: 131~136.
    [51] 刘增新.愿我们的生存空间拥有更多绿色.谈植物对环境的保护作用.山东环境,2004,(3):37~38.
    [52] Eglinton G, Hamilton R J. Leaf epicuticular waxes. Science, 1997, 156: 1322~1335.
    [53] Hanson A D, Gage D A, Shachar-Hill Y. Plant one-carbon metabolism and its engineering. Trends Plant Sci., 2000, 5: 206~213.
    [54] Igamberdiev A U, Bykova N V, Kleczkowski L A. Origins and metabolism of formate in higher plants. Plant Physiol. Biochem., 1999, 37: 503~513.
    [55] Fall R, Benson A A. Leaf methanol-the simplest natural product from plants. Trends Plant Sci., 1996, 1: 296~310.
    [56] Harms N, Ras J, Reijinder W N M, et al. S-formylglutathione hydrolase of Paracoccus denitrificans is homologous to human esterase D: a universal pathway for formaldehyde detoxification J. Bacteriol., 1996, 178: 6296~6299.
    [57] Uotila L, Koivusalo M V. Purification of formaldehyde and formate dehydrogenases from pea seeds by affinity chromatography and S-formylglutathione as the intermediate of formaldehyde metabolism. Arch. Biochem. Biophys., 1999, 196: 33~45.
    [58] Ugrekhelidze D, Korte F, Kvesitadze G. Uptake and transformation of benzene and toluene by plant Leaves. Ecotoxicology and Environmental Safety, 1997, 37: 24~29.
    [59] Ugrekhelidze D S, Chrikishvili D I, Mitaishvili T I. Benzene hydroxylation in plants. Bull. Acad. Sci. Georgian. SSR., 1997, 88(2): 441~444.
    [60] Durmishidze S V. Cleavage of the Aromatic Ring of Some Exogenous Compounds in Plants. Tbilisi: Metsniereba, 1975.50
    [61] 崔永春.绿色植物与城市大气环境.城市,1998,(3):52~53.
    [62] Wolverton B C, Wolverton J D. Plants and soil microorganisms: removal of formaldehyde, xylene, and ammonia from the indoor environment. J. Mississippi Acad. Sci., 1998, 38: 11~15.
    [63] Oyabu T, Sawada A, Onodera T, et al. Charateristics of potted plants for removing offensive odors. Sensors and Actuators, 2003, B89:131~136.
    [64] 胡衡生,张新英,黄文珊.装修后居室空气污染及健康效应.环境与健康杂志,2004,21(1):47~49.
    [65] 白雁斌,刘兴荣.吊兰净化室内甲醛污染的研究.海峡预防医学杂志,2003,9(3):26~27.
    [66] Schwartzwalder, A. V. Somers, United States Patent, US3, 090, 094 (2003).
    [67] Sunderman, J. Viedt, United States Patent, US3, 754, 201 (1973).
    [68] Pierre A C. Porous Sol-Gel Ceramics. Ceram Int, 1997. 23:229-238.
    [69] HirsHCHOeld D A, Li T K, Liu D M. Processing of Porous Oxide Ceramics. Key Engineering Materials, 1996.115:65-80.
    [70] Omatete O, Jarmey M A1 Gelcasting-A New Ceramic Forming Process1 Amer Ceramic Society Bulletin, 2001, 70 (10) : 1641~1650.
    [71] Porous materials: expending application Am Ceram Soc Bull, 2002, (12):1770.
    [72] Ishizaki K, Takata A, Okada S1 Mechanically Enhanced Open Porous Materials by a HIP Processl J Ceram Soc Jpn, 2000, 98 (6) :533~540.
    [73] Takayuki Fukasawa, Motohide Andol Synthesis of Porous Ceramics with Complex Pore Structure by Freeze-dry Processingl J Am Ceram Soc, 2001, 84 (1):230~232.
    [74] Mezhanov A G. Ten Research Directions in the Future of SHS. International Journal of Self-Propagating High-Temperature Synthesis, 1997, 16 (2) : 119.
    [75] Fujishima A. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature.1999, 238(5358):37-38.
    [76] M. Lidner, D. W. Bahnemann, et al. Transactions of the ASME, 1997, 119, 120-125.
    [77] Hoebbel Dagobert, Nacken Manfred, Schmidt Helmut. On the existence and hydrolytic stability of titano siloxane bonds in the system: Glycidoxy propyltrime thoxysilane-water-titan iumte traeth oxide [J]. Journal of Sol-Gel Science and Technology, 1998, 13(1-3):37-43.
    [78] 高濂,郑珊,张青红等.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社,2002,167.
    [79] Music S, Gotic M, Ivanda C. Microstructure of nanosized TiO2 obtained by sol-gel synthesis [J]. Materrial Letters, 1996, 28(1-3):225-229.
    [80] 王晓慧.胶溶法合成TiO_2超微粒子[J].材料科学进展,2002,6(6):533-537.
    [81] Deguchi Seiichi, Matsuda Hitoki, Hasatani Masanobu, et al. Formation mechanism of TiO_2 fine particles prepared by the spray pyrolysis method [J]. Drying Technology, 2004, 12(3):577-591.
    [82] 高濂,陈锦元.醇盐水解法制备二氧化钛纳米粉体[J].无机材料学报,1999,10(4):423-427.
    [83] Kim EuiJung, Hahn Sung-Hong. Microstructure and photoactivity of Titania nanopartieles prepared in nonionic W/O microemulsions [J]. Matedal Science and engineering: A, 2001, 303(1-2):24-29.
    [84] Li G L, Wang G H. Synthesis of nanometer-sized TiO2 particles by a microemulsion method [J]. Nanostructured mater, 1999, 11 (5):663-668.
    [85] 钟永科,唐国凤.水热法合成锐钛型纳米的研究[J].功能材料,2003,34(1):86-87.
    [86] 全学军,李大成,谢扩军等.微波能在制备超细TiO_2中的应用[J].电子元件与材料,1998,17(2):33-40.
    [87] 陈代荣,孟永德.由工业硫酸钛液制备TiO_2纳米微粉[J].无机化学学报,1999,11(3):228-231.
    [88] 雷闫盈,俞行.均匀沉淀法制备纳米二氧化钛工艺条件研究[J].无机盐工业,2001,33(2):3-5.
    [89] Min Cho, Hyenmi Chung, Wonyong Choi, et al. Liner correlation between inactivation of E.coli and OH radical concentration in TiO2 photocatalytic disifection[J]. Water Reaearch, 2004, 38(4): 1069-1077.
    [90] Saito T, Iwase T, Morioka T. Mode of photocatalytic bactericidal action of powdered semiconductor TiO_2 on mutants streptococci [J].Photochemistry and Photobiology B: Biology, 2002, 59:1668-1670.
    [91] Byunghoon Kim, Dohwan Kim, Donglyum Cho, et al. Bactericidal effect of TiO_2 photocatalyst on selected food-borne pathogenic bacteria [J]. Chemosphere, 2003, 52(1): 277-281.
    [92] Kawahara K, Tsuruda K, Morishuita M. Antibacterial effect of silver-zeolite on oral bacteria under anaerobic condition [J]. Dental Materials, 2000, 16(6):452-455.
    [93] Kayano S, Yosihiko K, Kazuhito H, et al. Bactericidal and detoxification effects of TiO2 thin film photocatalysts [J]. Environmental Science and Technology, 1998, 32(5):726-728.
    [94] 戴智铭,陈爱平,陶咏等.制备条件对新颖负载型TiO_2光催化活性的影响[J].化学世界,2002,(3):115-119.
    [95] 岳林海,徐铸德.半导体的表面修饰及其光电化学应用[J].化学通报,1998,(9):28-34.
    [96] 刘秀珍,施利毅,华彬.二氧化钛形态结构及其光催化活性的研究进展[J].上海环境科学,2000,19(9):414-417.
    [97] Ranjit K T, Viswanathan B. Photocatalytie reduction of nitrite and nitrate ions over doped TiO_2 catalysts[J]. Journal of Photochemistry and Photobiology A:Chemistry, 1997, 107(1-3):215-220.
    [98] Zhang L Z, Yu J C, Yip Ho Yin, et al. Ambient Light Reduction Strategy to Synthesize Silver Nanoparticles and Silver-Coated TiO_2 with Enhanced Photocatalytic and Bactericidal Activities [J]. Langmuir, 2003, 19(24): 10372-10380.
    [99] R. L. Pozzo, M. Baltanas, A. Cassano, Supported titanium oxide as photo-catalyst in water decontamination: State of thin eart, Catal. Today, 1997, 39,219-231.
    [100] D. Beydoun, R. Amal, et al. Novel photocatalyst titanium-coated magnetic, activity and photodissolution, J. Phys. Chem. B, 2000, 104, 4387-4396.
    [101] F. Hiroshi, H. Yukiko,Y Michichiro, et al. JP Patent, 06154620, 2004.
    [102] J. C hen, W. H. R ulkens, H. B runing, Photochemical elimination of phenol sand COD in industrial wastewaters, Water Sci. Technol., 1997, 35(4), 231-237.
    [103] Retuert, R. Quijada, V. M. Fuenzalida, Titania coatings on high and low surface areas pherical silica particles by a sot-gel method,J. M ater.C hem.,2000,10, 2818-2822.
    [104] S .Bordiga,S .Coluccia,C .Lamberti,et al .,X AFS study of Ti-silicalite:st ructure of framework Ti(IV) in the pretense and absence of reactions molecules (H_2O, NH_3) and comparison with ultraviolet-visible and IR results, J. Phys. Chem. 2004,98,4125-4132.
    [105] X .Gan,S .R .Bare,J. L .G .Fierro,et al.,Preparation and in-situs pectroscopic aracterization of molecularly dispersed titanium oxide on silica, J. Phys. Chem. B, 1998, 102,5653-5665.
    [106] S .Ramesh,Y Koltypin,R .Prozorov,A .Gedanken,Sonochemicalde position and characterization of naonophasica morphous nikel on silicam icrospheres,Chem.M ater. 1997,9,546-549.
    [107] S. Ramesh, R. Prozorozv, A. Gedanken, Ultrasound driven deposition and reactivity of nanophasic amorphous iron clusters with surface silanols of submicrospherical silica, Chem. Mater., 1997,9,2996-3004.
    [108] S .R amesh,H .Minti,R .Reisfeld,A .Gedanken,Synthesis and optical p roperties of europium oxiden anoparticlesim mobilizedo namorphous silicam icrospheres,Optical materials, 1999,13,67.
    [109] N. A. Dhas, A. Gedanken, Characterization of sonochemically prepared unsupported and silica-supported nanostructure pentavalent molybdenum oxide,J. Plays.C hem.B ,1997,10 1,9495-9503.
    [110] A .Gedanken,R .Reisfeld,E .Sominski,et al.,Sonochemical preparation and characterization of europium oxide doped in and coated on ZrO_2 and y ttrium -stabilized zirconium,J. Plays,Chem.B,2000,104,7057-7065.
    [111] Z .Y Zhong,YMatasi,R .A .Salker,et al ..Preparation and coating of moly bdenum oxide on alumina submicrospheres by Sonochemical method,J. M ater.R es.,2000,15(2),393-401.
    [112] Z. Y. Zhong,Y M. Zhao,Y Koltypin, et al., Coating nanosized iron oxide particles on submicrosphericala luminab ya Sonochemical method,J. Mater.Chem.,1998,8(10),2 167-2168.
    [113] Patra, E. Sominska, S.Ramesh, et al., Sonochemical synthesis and characterization of iron oxide coated on submicrosphericala lumina:a direct observation of in teraction between iron oxide and alumina, J. Phys.Chem.B ,1 999,103,33 61-3365.
    [114] K. S. Suslick, Hyeon, M. Fang, et al., "Sonochemical Preparation of Nanostructured Catalysts, In Advanced Catalysts and Nanostruclure Materials, ed. W. R. Moser, Academic Press: New York, 1999, p197-211.
    [115] S. Deki, Y. Aoi, Y Asaoka, et al., Monitoring the growth of titanium oxide thin films by the liquid-phased eposition method with a quartz crystal micro balance, J. M ater. Chem., 1997, 7(5), 733-736.
    [116] 王晓萍,于云,高镰,胡行为.TiO_2薄膜的液相沉积法制备及其性能表征.无机材料学报,2000,15(3),573-576.
    [117] D. Byun, Ylin, B. Kim, J. K. Lee, D. Park, Photocatalytic TiO_2 deposition by chemicalvap or deposition, J. Hazard. Mater. B, 2000,73,199-206.
    [118] N. Negishi, K. Takeuchi, Preparation of photocatalytic TrOz transparent thin film by thermal decomposition of Ti-alk oxide with a-terpineolas a solvent, Thin Solid Film, 2001, 392, 249-253.
    [119] 陈士夫,赵梦月,陶跃武.太阳光二氧化钛薄层光催化降解有机磷农药的研究.太阳能学报,2005,16(3),234-239.
    [120] B. R Weinberger., R. B. G arber, Titanium dioxide photocatalysts produced by reactivem agnetron sputering, Appl. Phys. Let., 2002, 66, 2409-2411.
    [121] Hafedh K, Francois F. Synthesis ofhydrophobic TiO_2-SiO_2 mixed oxides for the expoxidation of cyclohexene[J]. Journal of Catalysis, 1997, 171: 420~430.
    [122] 薛光.银的分析化学.北京:科学出版社,1998,158-163.
    [123] 崔九思,王钦源,王汉平主编.大气污染监测方法(第二版),化学工业出版社,北京,1997:532~539.
    [124] 中国预防医学科学院环境卫生监测所,环境空气质量监测检验方法,中国科学技术出版社.北京,2001:101~114.
    [125] 朱新文.中国科学院上海硅酸盐研究所博士论文,2001.
    [126] 朱时珍.多孔陶瓷材料的制备技术.材料科学与工程,1999,14(3):33.
    [127] 刘富德.多孔陶瓷材料的发展状况.材料导报,2004,14(6):33.
    [128] 王家邦.轻质氧化铝空心球陶瓷的制备研究:[博士学位论文].杭州:浙江大学,2002.
    [129] 水淼,岳林海,徐铸德.稀土镧掺杂二氧化钛的光催化特性[J].物理化学学报,2000,16 (5):459~463.
    [130] Harizanovl O, Harizanova A. Development and investigation of sol-gel solutions for the formation of TIO_2 coatings[J]. Solar Energy Materials & Solar Cells, 2003, 63(6): 185~195.
    [131] Djaoued Y, Simona B, Ashrit P V. Low temperature sol-gel preparation of nanocrystalline TiO_2 thin films[J]. Journal of Sol-gel Gel Science and Technology, 2002, 24(1) : 247~254.
    [132] 水淼,岳林海,徐铸德.稀土镧掺杂二氧化钛的光催化特性[J].物理化学学报,2000,16(5):459~463.
    [133] Harizanovl O, Harizanova A. Development and investigation of sol-gel solutions for the formation of TiO_2 coatings[J]. Solar Energy Materials & Solar Cells, 2000, 63(6): 185~195.
    [134] Djaoued Y, Simona B, Ashrit P V. Low temperature sol-gel preparation of nanocrystalline TIO_2 thin films[J]. Journal of Sol-gel Gel Science and Technology, 2002, 24(1): 247~254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700