浙江楠苗期生长与生态适应性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要从以下几个方面对浙江楠进行了研究:浙江楠种子的休眠机理与发芽条件的探讨;浙江楠一年生播种苗与留床苗的年生长规律;浙江楠苗期对光照条件的适应性;浙江楠苗期对土壤水分条件的适应性;浙江楠的播种育苗技术;浙江楠苗期对低温的抵抗能力。
     (1)浙江楠种皮致密较硬,但种皮障碍不是种子休眠的主要原因,剥皮处理不适用于解除浙江楠种子的休眠。浙江楠种子的休眠属于生理休眠,低温层积处理和变温层积处理均能较好地解除浙江楠种子的休眠。赤霉素处理不适于浙江楠种子处理,处理后的种子大多数腐烂变质,种子的发芽率和发芽势均有一定程度的降低。
     (2)浙江楠种子的萌发为子叶留土型。种子大多数多胚,一粒种子出1-3棵苗,稀出4棵苗。浙江楠一年生播种苗的高生长和直径生长均呈“S”形曲线,整个生长过程可以划分为出苗期、生长初期、生长盛期、生长后期。一年中,苗木速生期的高生长有3次生长高峰。浙江楠留圃苗在一年中的生长呈阶梯状,间歇性生长明显,属于全期生长类型。速生期大致经历180天。这一时期,苗木抽稍4次,因而有4次生长高峰。浙江楠主根性明显,一年生播种苗地下部分生长量大于地上部分生长量。
     (3)播种密度与出苗率无直接相关。随着播种密度的加大,苗木径生长量明显减少,而高生长量变化不明显。浙江楠比较适宜的播种密度是160-200粒/m~2。
     (4)全光条件下,单叶干重最大,表明叶片内部干物质积累多;遮荫条件下,比叶面积增大,但比叶重减少,表现为低的光合能力。光照强度影响苗木的外部形态,遮荫条件下表现为分枝数目减少、展叶数目减少、冠幅变窄,同化面积减小。遮荫条件下叶绿素a、叶绿素b、叶绿素总量均表现为增加;全光和弱度遮荫条件下,苗木具有较大的净光合作用速率,苗木生长旺盛,碳水化合物的积累较多,单株枝干重、根系生物量和总生物量都较大;重度遮荫条件下,苗木具有较小的净光合作用速率,碳水化合物的积累较少,苗木生长缓慢。
     (5)浙江楠具有较强的水分调节能力,轻度干旱和水涝,苗木不会表现出明显的受害迹象。
     (6)在南京,浙江楠一年生苗木冬季会受到一定程度的冻害,但多为轻微冻害,而两年生及两年生以上的苗木、幼树几乎不会受到冻害。
The thesis studied mainly these contents on Phoebe chekiangensis Shang: The mechanism of dormancy and germination condition; annul growth rhythm of one-year seedlings and reserved seedlings; adaptability to light and soil moisture status in seedling stage; breeding techniques of seedlings; ability to resist cold.
    1.The seed coat of Phoebe chekiangensis Shang is hard, it is inferior in air permeability, on the other hand, it is superior in water permeability. After sacrificing seed coat, seeds were mostly decomposed, so the seed-coat obstacle is not the main cause of the seed dormancy, sacrificing seed coat treatment is not suitable for overcome the seed dormancy. We deduced that the seed dormancy of Phoebe chekiangensis Shang was caused by physiological factors, because both cold stratification and temperature -accelerated stratification treatments can overcome the seed dormancy. The treatment of GA is not also proper, because it will accelerate seeds to degenerate, percentage germination and germination capacity will decrease in some degree.
    2. Cotyledons of Phoebe chekiangensis Shang emerged when seeds germinating. One seed has more embryos, and it can germinate 1-3 seedlings, or 4 seedlings. The percentage germination of seeds was 60-78%. The growth patterns of height and diameter are fitted for S curve and can be simulated with Logister equation. At the same time, the growth period of both height and diameter is divided into 4 stages according to its growth rate: emergence phase of seedlings growth, initiation phase of seedlings growth, prosperous phase of seedlings growth, and later phase of seedlings growth. In one year, there are Stimes growth peaks. The growing of reserved seedlings present ladder-form in one year, belong to spring and summer growth type. Fast growth phase get through 180 days from the first growth peak to the last growth peak. In this phase, seedlings sprouted for 4times, so there are 4tim.es growth peaks. Taproot of Phoebe chekiangensis Shang is stronger, so the underground growth of one-year seedlings is more than the
    aboveground growth.
    3.The emergence rate of seedlings is different too, if sowing density is different, the biggest is 88.8%, the smallest is 63.2%, and average is 78.6%. The change is irregular, so there are not direct relation between the emergence rate of seedlings and sowing density. Along with the sowing density increasing, height growth almost not change, but root diameter growth falls. To ensure the seedlings quality and quantity, the best sowing density is 16-200grains/m2.
    4.On condition of sun shading, change of the individual leaf area is slight, but change of individual dried leaf weight is evident. In the full light, individual dried leaf is the heaviest, this indicate that the dried material accumulated is the most. On the other hand, on condition of sun shading, leaf area per dried leaf weight increases, but dried weight per leaf area and photosynthesis ability decrease. Light affects the
    
    
    outside forms of seedlings: branching number and leaf number get small, while crown diameter of individual tree narrows, assimilation area grow few. In addition, content of chlorophyll a, chlorophyll b and chlorophyll a+b will increase on condition of sun shading. The net photosynthetic rate is higher on condition of full light and slight sun shading, seedlings growing is vigorous, the accumulation of CH2O is more, so dried leaf weight, branch biomass, root system biomass and total biomass per seedling all is more. On condition of heavy sun shading, the net photosynthetic rate of seedlings is low, the accumulation of GH2O is few, and seedlings grow slowly.
    5.The regulate ability of Phoebe chekiangensis Shang to soil water is strong, slight drought and flood will not bring evident influence to its growth.
    6. In Nanjing, the one-year seedlings of Phoebe chekiangensis Shang will suffer certain winter killing in winter, but this will not affect seedlings growing in next year, and net growth will reach 60-90cm. In general, two-year and above two-year seedlings
引文
[1] 赵羽,楠木古今浅谈[J],四川林业科技,1980,3:87-88
    [2] 中国科学院中国植物志编辑委员会,1982,中国植物志(第31卷)[M],北京:科学出版社
    [3] 傅立国,1991,中国植物红皮书——珍稀濒危植物第一册[M],北京:科学出版社
    [4] 中国森林编辑委员会,2000,中国森林(第3卷),北京:中国林业出版社
    [5] 福建科学技术委员会,1982,福建植物志(第1-4卷)[M],福州:福建科学技术出版社
    [6] 林英,1986,江西森林[M],南昌:江西科学技术出版社
    [7] 广西科学院广西植物所,1991,广西植物志(第1卷)[M],南宁:广西科学技术出版社
    [8] 中国科学院江苏植物所,1982,江苏植物志[M],南京:江苏科学技术出版社
    [9] 中国科学院华南植物所,1987,广东植物志(1—3卷)[M],广州:广东科学技术出版社
    [10] 吴征镒主编,1986,西藏植物志[M],北京:科学出版社
    [11] 安徽植物志协作组,1985,安徽植物志(1—3卷)[M],合肥:安徽科技出版社
    [12] 贵州植物志编委会,1982,贵州植物志[M],贵阳:贵州人民出版社
    [13] 祁承经主编,1987湖南植物名录[M],长沙:湖南科技出版社
    [14] 中国科学院昆明植物所,1983,云南植物志(1-8卷)[M],北京:科学出版社
    [15] 四川植物志编委会,1988,四川植物志(1-5卷)[M],成都:四川科技出版社
    [16] 中国科学院华南植物所,1964,海南植物志(1-4卷)[M],北京:科学出版社
    [17] 湖北植物所,1976,湖北植物志(第1卷)[M],武汉:湖北人民出版社
    [18] 刘业经等编,1988,台湾树木志[M],中兴大学农学院出版委员会
    [19] 牛春山主编,1990,陕西树木志[M],北京:北京:中国林业出版社
    [20] 中国树木志编辑委员会,1983,中国树木志(第1卷)[M],北京:中国林业出版社
    [21] 浙江植物志编委会,1992,浙江植物志(第二卷)[M],杭州:浙江科学技术出版社
    [22] 马明东,江洪等,1989,楠木人工林生物量的研究[J],教学与研究,(2):69-77
    [23] 陈辉、任承辉,1989,楠木人工林生物产量模型的研究[J],福建林学院
    
    学报,9(4):411-417
    [24] 任承辉,1990,尤溪县楠木林林分叶面积指数的研究[J],福建林学院学报,10(1):67-71
    [25] 邹惠渝,吴大荣,1997,闽楠种群生态学[M],北京:中国林业出版社
    [26] 陈祖松,1999,楠木人工林优树选择标准和方法[J],福建林业科技,26(2):29-33
    [27] 向其柏,1974,桢楠属一新种——浙江楠,植物分类学报[J],12(3):295-297
    [28] 史晓华,史忠礼,1990,浙江楠种子休眠生理初探[J],浙江林学院学报,7(4):377-682
    [29] 珍稀树种开发利用课题组,1992,珍稀树种研究论文集[C],南京林业大学树木组
    [30] 方炎明、张雪、彭冶,1998,龙王山落叶阔叶林濒危植物缀块的生态分析[J],南京林业大学学报,22(2):23-28
    [31] 江香梅、吴晟、杨刚花等,2000,楠属主要树种的资源状况及研究、护存对策[J],江西林业科技,2:30-32
    [32] 周立伟,吴乃虎,1995,濒危植物遗传多样性研究进展[J],生物工程进展,15(4):22-25
    [33] 成俊卿,1992,中国木材志[M],北京:中国林业出版社
    [34] 腰希申,1988,中国木材构造[M],北京:中国林业出版社
    [35] 任维检,1990,楠木种皮精油化学成分的研究[J],天然产物研究与开发,2(3):59-62
    [36] 端木炘,1995,浙江樟科资源综合利用[J],林产化工通讯,29(3)
    [37] 江香梅、林卫红、魏柏松等,2000,闽楠育苗初报[J],江西林业科技,4:9-10
    [39] 国家林业局国有林场和林木种苗工作总站,2000,中国木本植物种子[M],北京:中国林业出版社
    [40] 金波等,1993,现代月季种子休眠原因的探讨[J],园艺学报,20(1):86-90
    [41] 洑香香,方升佐,杜艳,2002,青檀种子休眠机理及发芽条件的探讨[J],植物资源与环境学报,11(1):9-13
    [42] 洑香香,方升佐,汪红卫等,2001,青檀一年生播种苗年生长规律的研究[J],南京林业大学学报,25(6):11-15
    [43] 赖文胜,长序榆一年生播种苗的年生长规律[J],南京林业大学学报,2001,25(4):57-60
    [44] 惠大丰,姜长鉴,1996,统计分析系统软件实用教程[M],北京:南京航空航天大学出版社
    
    
    [45] 杜荣骞,1984,生物统计学[M],北京:高等教育出版社
    [46] 陈存及,李生,曹永慧等,2002,光皮桦苗高生长期划分有序样本聚类分析[J],福建林学院学报,22[3]:197-200
    [47] 北京林学院主编,1980,造林学[M],北京:中国林业出版社
    [48] 叶镜中著,1988,森林生态学[M],南京林业大学印刷厂
    [49] 李景文主编,1994,森林生态学[M],北京:中国林业出版社
    [50] 邹琦,1995,植物生理生化实验指导[M],北京:中国农业出版社
    [51] 潘瑞炽,1996,植物生理学[M],北京:高等教育出版社
    [52] 曹福亮主编,2000,银杏培育机理及综合开发利用[M],北京:中国林业出版社
    [53] 冯玉龙、曹坤芳、冯志力等,2002,四种热带雨林树种幼苗比叶种、光和特性和暗呼吸对生长光环境的适应[J],生态学报,22[6]
    [54] 肖春旺,1999,不同光环境下的四川大头茶幼苗的生态适应[J],生态学报,19[3]
    [55] 李六林、杨佩芳、田彩芳,1999,新红星苹果不同枝类叶片中叶绿素含量变化[J],果树科学,16[1]:78-80
    [56] 周竹青、张青良,2001,小麦品种[系]叶绿素含量变化及其与光合叶面积关系的研究[J],孝感学院学报,21[6]:5-8
    [57] 汤章诚,1983,植物对水分胁迫的反应和适应性,植物对干旱的反应和适应[J],植物生理学通讯,(4):1-7
    [58] Hsiao T, C, 1973,Plant responses to water stress[J], Annual Review of Plant Physiology, 24:519-570
    [59] 徐小牛,1995,水分胁迫对三桠生理生态的影响[J],安徽农业大学学报,22[1]:42-47
    [60] 王淼、代力民、姬兰柱等,2002,土壤水分状况对长白山阔叶红松林主要树种叶片生理生态特性的影响[J],生态学报,(1):1-5
    [61] 常杰、刘珂、葛滢等,1999,杭州石荠的光和特性及其对水分的响应[J],植物生态学报,23[1]:62-70
    [62] Chazdon,R, L, 1992,Photosynthetic plasticity of two rain forest shrubs across natural gastransects [J], Oecologia, 92:586-595
    [63] McCree,K, J, and Femandez,C, J, 1989,Simulation model for studying physiological water stress responses of whole plant [J], CropSci, 29: 353-360
    [64] 浙江森林编辑委员会编,1993,浙江森林[M],北京:中国林业出版社
    [65] 黄宝龙,1998,江苏森林[M],南京:江苏人民出版社
    [66] 林植芳,Janes,R.Ehleringer.,2000,光、温度、水气压和CO_2对番木瓜光合作用的影响[J],植物生理学报,34(3):363-372
    [67] 戴新宾,翟虎渠,张红生等,2000,土壤干旱对水道叶片光和速率和碳酸
    
    酐酶的影响[J],植物生理学报,26920;133-135
    [68] 陈少云,朱学南,周国宁等,1992,水分对山茶花某些生理特性的影响[J],浙江林学院学报,9(1):49-53
    [69] Sojka, R. E. et al. 1984, Measurement variability in soybean water status and soil-nutrient extraction in a row spacing study in the U.S. southeastern Coastal Plain Commum [J]. Soil Sci. Plant Anal.15 [9]: 1111-1134
    [70] 中国树木志编辑委员会,1976,中国主要树种造林技术[M],北京:农业出版社

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700