基于苯并噻吩砜烯桥的二噻吩乙烯光致变色体系的构建及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光致变色现象(Photochromism)是指一个化合物(A)在光电辐射的诱导下在一个或者两个方向上发生特定的化学反应,从而在具有显著不同吸收光谱性质的两种状态之间(A和B)的可逆转化。光致变色现象本质上是一种可逆的光化学反应,其显著特性在于可逆性,具有该性质的材料被称为光致变色材料。在紫外/可见光或热的调控下,化合物光致变色反应前后化学结构发生显著改变,所对应的具有不同光物理、化学性质的两者异构体(A和B)可以代表二进制数字代码“0”和“1”,因此这类材料在光信息存储以及分子逻辑门等领域具有广阔的应用前景。光致变色反应不仅引起自身性质的改变而且对周围微环境具备可逆调控作用,因而此类化合物在光控分子开关、荧光调节以及生物体系等领域同样具有重要的应用价值。
     为了开发新型光致变色体系以及满足上述应用领域要求,本论文发展了基于苯并噻吩砜烯桥的新型二噻吩乙烯光致变色材料,通过噻吩基团修饰的方式构建了一系列二噻吩乙烯光致变色体系,重点寻求优异热稳定性和抗疲劳性的突破,通过引入咪唑、吡啶等特定单元实现了对pH、离子和光等多重响应,并进一步将其应用于复杂分子逻辑门、自组装调控和荧光调控等诸多领域。论文的主要内容如下:
     前沿重点介绍了二芳基乙烯光致变色化合物的光致变色机理和基本性质,并系统地综述了其在光电功能材料领域的应用情况,最后提出了本论文的研究内容。
     设计并合成了基于苯并噻吩砜为中心烯桥的一系列新型二芳基乙烯光致变色化合物BTT-1、BTT-2、BTT-3、BTT-4和BTT-5。研究表明,通过对噻吩基团的修饰,经典型的光致变色关环反应可有效调节整个光致变色分子共轭体系,即闭环体的溶液颜色可从红色(c-BTT-1)调控为蓝色(c-BTT-2)、深蓝(c-BTT-3)、藏青(c-BTT-4),直到绿色(c-BTT-5)。通过溶剂扩散挥发法得到了化合物BTT-1、BTT-2和BTT-3的单晶。单晶结构分析表明,晶体BTT-1采取反平行构型,且活性碳之间的距离为3.516A,具备晶体变色性能;而晶体BTT-2和BTT-3采取平行构型,不具有晶体变色性能。
     设计并合成了含有两个咪唑单元的二噻吩乙烯类变色材料BIT。研究表明,BIT具有良好的光致变色性能,其荧光输出可通过光致变色反应可逆调控。在光、pH和Ag+的刺激下BTO的吸收可发生显著改变,形成一个多重态响应分子体系。由于咪唑单元和酸碱以及Ag+之间的相互作用,BIT对H+、Ag+以及365nm紫外光等三种组合输入呈现出典型的序列响应特性。利用上述多重态响应结果,通过BIT分子平台构建了INHIBIT逻辑门以及以H+、Ag+和365nm紫外光等三种组合输入,以610nm紫外吸收为输出的具有序列响应特性的分子逻辑键盘锁。
     设计合成了基于苯并噻吩砜为中心烯桥的二噻吩乙烯类化合物BTO。研究表明,BTO不仅在溶液(THF)中表现出优异的抗疲劳性和热稳定性,在晶体状态也具有良好的光致变色性能。由于吡啶单元的存在化合物BTO除了对光响应外,对H+、Cu2+和Hg2+都有良好的响应作用(BTO-H+、BTO-Cu2+和BTO-Hg2+),即H+、Cu2+和Hg2+可诱导BTO的吸收和荧光发生显著变化。离子滴定表明Cu2+和Hg2+与BTO分别以1:2和1:1的形式配位,两者配位形式的不同导致BTO的溶液颜色发生不同变化,而且Hg2+可有效将BTO的转换率和闭环量子产率从77.8%和28.5%提高到99.8%和43.1%。利用BTO对于光、H+、Cu2+和Hg2+的多重态响应结果,通过合理选择输入和输出条件,在BTO单分子平台上构建了包括半加法器(half-adder)、半减法器(half-subtractor)、4-2-编码器(4-to-2encoder)、2-4译码器(2-to-4decoder)口1:2多路分路器(1:2demultiplexer)等在内的复杂分子逻辑门。
     首次通过Pt-N配位导向自组装技术,以含双吡啶单元的BTO及其闭环体c-BTO为120°配体,分别与120°和180°铂金属配体合成了含三个或者六个光致变色单元的六边形金属大环及对应的闭环体,并利用'H NMR、31P NMR、元素分析和ESI-TOF-MS等进行了结构表征,确认了自组装体结构的正确性。需强调的是,该类六边形自组装体系及其闭环体具有以下显著特点:(i)可精确地控制自组装体系的环状结构和所引入的光致变色单元个数;(ii)在配位诱导下六边形自组装体系中所有光致变色单元都能发生闭环作用;(iii)在紫外光和可见光的交替照射下,通过BTO的光致变色反应在分子层面实现了光诱导下超分子六边形金属大环的开环体和闭环体之间的可逆、定量构型转化。
     利用自组装技术分别制备了嵌段共聚物PS-b-PAA(聚苯乙烯-b-聚丙烯酸)封装的壳核(Core-Shell)式纳米胶束BTO@Np、ED@Np和BTO-ED@Np,纳米颗粒的尺寸分布窄,在水溶液中具有高度稳定的分散性。PS-b-PAA封装作用诱导ED产生明显的聚集诱导荧光增强效应(AIE),可使纳米胶束ED@Np和BTO-ED@Np在水溶液里呈现出明显的荧光性质。与单体BTO类似,纳米胶束BTO@Np和BTO-ED@Np仍然保持着良好的光致变色性能,并且利用能量转移,在紫外光和可见光的交替照射下可以实现对BTO-ED@Np荧光的可逆调控。
     初步尝试通过噻吩基团的修饰,构建了具有AIE效应的二噻吩乙烯光致变色体系BTO-ED。研究表明,BTO-ED具有明显的AIE效应,同时AIE作用导致光致变色反应被有效限制,呈现出典型的光致变色门控作用。
Photochromism is an electromagnetic radiation induced reversible transformation of a chemical species (A) between two states (A and B) with different distinguishable absorption spectra. It is a specific kind of photo-chemical reactions with reversibility. During the photochromic reaction, the changes in chemical structures to two isomers with different physic-chemical properties, which represent the "0" or "1" binary digital codes. Therefore, photochromic materials can be expected to the application in photonic devices, such as optical information storage and molecular logic gates and so on. Moreover, the typical photochromic reaction can also be utilized to modulate the microenviorment properties making them become increasing interest in the field of photo-driven molecular devices, fluorescent modulation and biochemical systems.
     In order to develop novel photochromic systems with achieving practical applications, dithienylethene derivatives based on benzo[6]thiophene-1,1-dioxide unit as central ethene bridge were put forward, with focus on excellent thermal irreversibility and outstanding fatigue resistance. By the introduction of the specific imidazole and pyridine units, multi-addressable photochromic systems responding to chemical ions, protons and light have been successfully realized, especially for the fields such as complicated molecular logic gates, self-assemble system and fluorescence modulation. The main contents and results are outlined as follows:
     In introduction, the definitions and main parameters of organic photochromic systems have been given, and the recent progress of diarylethene photochromic materials was reviewed.
     A series of diarylethenes BTT-1, BTT-2, BTT-3, BTT-4and BTT-5containing benzo[6]thiophene-1,1-dioxide unit as central ethene bridge were designed and synthesized. The π conjunction systems of dithienylethene derivatives can be modulated by tailoring thiophene side chain, resulting in the solution color changed from red (c-BTT-1) to blue (c-BTT-2), deep blue (c-BTT-3), navy blue (c-BTT-4), and until to green (c-BTT-5). Moreover, crystals of BTT-1, BTT-2and BTT-3were obtained by slow evaporation method. As shown in X-ray diffraction, BTT-1adopted an anti-parallel conformation, and the distance between the reactive carbon atoms is3.516A, meeting the preconditions for a molecule undergoing photochromic reaction in crystalline phase, while BTT-2and BTT-3adopted a parallel conformation, resulting in no photochromic reactions in crystal state.
     A photochromic bisthienylethene derivative (BIT) containing two imidazole units was synthesized and fully characterized. The fluorescence of it can be modulated through the typical photochromic reactions. When triggered by chemical ions (Ag+), protons and light, BIT can behave as an absorbance switch, leading to a multi-addressable system. Moreover, BIT exhibited sequence-dependent responses via efficient interaction of the specific imidazole unit with protons and Ag+. An INHIBIT logic gate and a keypad lock with three inputs (H+, Ag+and365nm light) were constructed with the unimolecular platform by employing absorption mode (610nm) as outputs on the basis of appropriate combination of chemical and photonic stimuli.
     The photochromic terarylene (BTO) containing benzo[b]thiophene-1,1-dioxide unit as central ethene bridge was synthesized and characterized, exhibiting good thermal stability and fatigue resistance both in solution and bulky crystals. When triggered by chemical ions, protons and light, BTO can behave as an absorbance and fluorescence switch, leading to a multi-addressable system. The titration of the Job plot indicates that BTO forms a1:1and2:1complex with Hg2+and Cu2+, repectively. The different color changes of BTO upon adding Cu2+and Hg2+ions arise from the relative binding stoichiometry and the association affinities. Moreover, the conversion yield of BTO can be modulated with chemical ions. Impressively, an increase in conversion yield was observed by adding Hg2+to the solution of BTO, that is, the conversion yield and cyclization quantum yield are increased from77.6%and28.5%(for BTO only) to99.8%and43.1%(BTO-Hg2+), respectively. A series of molecular logic gates such as half-adder, half-subtractor,4-to-2encoder,2-to-4decoder, and1:2demultiplexer were constructed on the unimolecular platform by employing absorption and emission properties at different wavelengths as outputs with the appropriate combination of chemical and photonic stimuli.
     The first example of quantitative reversible transformation of light-triggered supramolecular hexagons were prepared through coordination-driven self-assembly between dipyridine unit BTO or its closed form c-BTO and the120°or180°di-Pt(Ⅱ) acceptor. Those multi-bisthienylethene hexagons were fully confirmed by1H NMR,31P NMR, element alanalysis, and ESI-TOF-MS. Furthermore, those hexagons possess several merits as follows:(i) precisely controlling shape and size as well as the number of the specific photochromic units,(ii) unprecedentedly achieving quantitative ring closure for all photochromic units in the hexagons due to the coordination induction, and (iii) quantitatively and reversibly interconverting between the ring-open and ring-closed conformation via alternate irradiation with the UV and visible light, respectively.
     A kind of core-shell structured silica nanoparticles containing diarylethene unit and/or aggregation-induced emission (AIE) characteristic chromophore, named BTO@Np, ED@Np and BTO-ED@Np were developed via the self-assembly of the amphiphilic block copolymer PS-b-PAA, with a narrow size distribution and excellent dispersity in aqueous solution. Moreover, the typical AIE and photochromic phenomenon were observed in those nanoparticles. The fluorescence of the BTO-ED@Np can be reversibly modulated by the specific photochromic reaction of BTO.
     The novel photochromic material BTO-ED with aggregation-induced emission (AIE) characteristic was designed and synthesized. Its AIE effects were fully studied with absorption and fluorescence spectra. Moreover, an interesting AIE induced specific gated photochromism phenomenon was observed.
引文
[1]D. M. Eigler, C. P. Lutz, W. E. Rudge. An atomic switch realized with the scanning tunnelling microscope. Nature,1991,352(6336):600-603.
    [2]樊美公.光子存储原理与光致变色材料.化学进展.1997,(2):62-70.
    [3]H. Durr, H. Bouas-Lament. Organic photochromism. Pure Appl. Chem.,2001,4(73): 639-665.
    [4]H. Durr, H. Bouas-Lament. Photochromism molecules and systems. Elsevier & Amsterdam. Boston,2003
    [5]Y. Hishberg, E. Fischer. Lower-temperature photochromism and its relation to thermochromism. J. Chem. Soc.,1953,629-636.
    [6]Y. Hirshberg, E. Fischer. Formation of colored forms of spiropyrans by low temperature irradiation. J. Chem. Soc.,1952,4522-4524.
    [7]S. Aramaki, G. H. Atkinson. Spironaphthopyran photochromism:picosecond time-resolved spectroscopy. J. Am. Chem. Soc.,1992,114(2):438-444.
    [8]A. Santiago, R. S. Becker. Photochromic fulgides. spectroscopy and mechanism of photoreactions. J. Am. Chem. Soc.,1968,90(14):3654-3658.
    [9]G. S. Kumar, D. C. Neckers. Photochemistry of azobenzene-containing polymers. Chem. Rev.,1989,89(8):1915-1925.
    [10]M. Irie, K. Sayo. Solvent effects on the photochromic reactions of diarylethene derivatives. J. Phys. Chem.,1992,96(19):7671-7674.
    [11]M. Irie. Diarylethenes for memories and switches. Chem. Rev.,2000,100(5): 1685-1716.
    [12]T. H. Lowry, K. S. Richardson. Mechanism and theory in organic chemistry,3rd Edition. Harper collins publishers:New York,1987
    [13]S. Nakamura, M. Irie. Thermally irreversible photochromic systems, a theoretical study. J. Org. Chem.,1988,53(26):6136-6138.
    [14]M. Irie, M. Mohri. Thermally irreversible photochromic systems reversible photocyclization of diarylethene derivatives. J. Org. Chem.,1988,53(4):803-808.
    [15]D. Guillaumont, T. Kobayashi, K. Kanda, H. Miyasaka, K. Uchida, S. Kobatake, K. Shibata, S. Nakamura, M. Irie. An ab initio mo study of the photochromic reaction of dithienylethenes. J. Phys. Chem. A,2002,106(31):7222-7227.
    [16]S. L. Gilat, S. H. Kawai, J. Lehn. Light-triggered molecular devices:photochemical switching of optical and electrochemical properties in molecular wire type diarylethene species. Chem.-Eur. J.,1995,1(5):275-284.
    [17]Y.Yang, Y. Xie, Q. Zhang, K. Nakatani, H. Tian, W. H. Zhu. Aromaticity-controlled thermal stability of photochromic systems based on a six-membered ring as ethene bridges: photochemical and kinetic studies. Chem.-Eur. J.,2012,18(37):11685-11694.
    [18]M. Irie, T. Lifka, K. Uchida, S. Kobatake, Y. Shindo. Fatigue resistant properties of photochromic dithienylethenes:by-product formation. Chem. Commun.,1999,8:747-750.
    [19]K. Uchida, T. Eriko, A. Yoshifumi, S. Nakamura, M. Irie. Substitution effect of on the coloration quantum yield of a photochromic bisbenzothienylethene. Chem. Lett.,1999: 63-64.
    [20]M. Takeshita, N. Kato, S. Kawauchi, T. Imase, J. Watanabe, M. Irie. Photochromism of dithienylethenes included in cyclodextrins. J. Org. Chem.,1998,63(25):9306-9313.
    [21]H. Miyasaka, M. Murakami, A. Itaya, D. Guillaumont, S. Nakamura, M. Irie. Multiphoton gated photochromic reaction in a diarylethene derivative. J. Am. Chem. Soc., 2001,123(4):753-754.
    [22]M. Murakami, H. Miyasaka, T. Okada, S. Kobatake, M. Irie. Dynamics and mechanisms of the multiphoton gated photochromic reaction of diarylethene derivatives. J. Am. Chem. Soc.,2004,126(45):14764-14772.
    [23]S. Lee, Y. You, K. Ohkubo, S. Fukuzumi, W.Nam. Photoelectrocatalysis to improve cycloreversion quantum yields of photochromic dithienylethene compounds. Angew. Chem. Int. Ed.,2012,124(52):13331-13335.
    [24]B. Gorodetsky, N. R. Branda. Bidirectional ring-opening and ring-closing of cationic 1, 2-dithienylcyclopentene molecular switches triggered with light or electricity. Adv. Funct. Mater. 2007,17(5):786-796.
    [25]B. W. R. rowne, J. J. D.de Jong, T. Kudernac, M. Walko, L. N. Lucas, K. Uchida, J. H. van Esch, B. L. Feringa. Oxidative electrochemical switching in dithienylcyclopentenes, part 1:effect of electronic perturbation on the efficiency and direction of molecular switching. Chem.-Eur. J.,2005,11(21):6414-6429.
    [26]W. R. Browne, J. J. D. de Jong, T. Kudernac, M.Walko, L. N. Lucas, K.Uchida, J. H. van Esch, B. L. Feringa. Oxidative electrochemical switching in dithienylcyclopentenes, part 2:effect of substitution and asymmetry on the efficiency and direction of molecular switching and redox stability. Chem.-Eur. J.,2005,11(21):6430-6441.
    [27]T. Nakashima, Y. Kajiki, S. Fukumoto, M. Taguchi, S. Nagao, S. Hirota, T. Kawai Efficient oxidative cycloreversion reaction of photochromic dithiazolythiazole. J. Am. Chem. Soc.,2012,134(48):19877-19883.
    [28]S. Lee, Y. You, K. Ohkubo, S. Fukuzumi, W. Nam. Mechanism and fluorescence application of electrochromism in photochromic dithienylcyclopentene. Org. Lett.,2012, 14(9):2238-2241.
    [29]V. Ramamurthy, K.Venkatesan. Photochemical reactions of organic crystals. Chem. Rev.,1987,87(2):433-481.
    [30]M. Irie, K. Uchida. Synthesis and properties of photochromic diarylethenes with heterocyclic aryl groups. B. Chem. Soc. Jpn.,1998,71(5):985-996.
    [31]S. Kobatake, T. Yamada, K. Uchida, N. Kato, M. Irie. Photochromism of 1,2-bis(2,5-dimethyl-3-thienyl)perfluoro-cyclopentene in a single crystalline phase. J. Am. Chem. Soc.,1999,121(11):2380-2386.
    [32]S. Kobatake, S. Takami, H. Muto, T. Ishikawa, M. Irie. Rapid and reversible shape changes of molecular crystals on photoirradiation. Nature,2007,446(7137):778-781.
    [33]M. Berberich, A. Krause, M. Orlandi, F. Scandola, F. Wurthner. Toward fluorescent memories with nondestructive readout:photoswitching of fluorescence by intramolecular electron transfer in a diarylethene-perylene bisimide photochromic system. Angew. Chem. Int. Ed.,2008,120(35):6718-6721.
    [34]M. Berberich, F. Wurthner. Terrylene bisimide-diarylethene photochromic switch. Chem. Sci.,2012,3(9):2771-2777.
    [35]M. Berberich, M. Natali, P. Spenst, C. Chiorboli, F. Scandola, F. Wurthner. Nondestructive photoluminescence read-out by intramolecular electron transfer in a perylene bisimide-diarylethene dyad. Chem.-Eur. J.,2012,18(43):13651-13664.
    [36]O.Yuka, F. Tuyoshi, M. Irie. Photoswitching of fluorescence based on intramolecular electron transfer. Chem. Lett.,2007,36(2):240-241.
    [37]T. Fukaminato, M. Tanaka, T. Doi, N. Tamaoki, T. Katayama, A. Mallick, Y. Ishibashi, H. Miyasaka, M. Irie. Fluorescence photoswitching of a diarylethene-perylenebisimide dyad based on intramolecular electron transfer. Photoch. Photobio. Sci.,2010,9(2):181-187.
    [38]T. Fukaminato, T. Doi, N. Tamaoki, K. Okuno, Y. Ishibashi, H. Miyasaka, M. Irie. Single-molecule fluorescence photoswitching of a diarylethene-perylenebisimide dyad: non-destructive fluorescence readout. J. Am. Chem. Soc.,2011,133(13):4984-4990.
    [39]J. A. Myles, N. R. Branda.1,2-dithienylethene photochromes and non-destructive erasable memory. Adv. Funct. Mater.,2002,12(3):167-173.
    [40]J. Karnbratt, M. Hammarson, S. Li, H. L. Anderson, B. Albinsson, J. Andreasson. Photochromic supramolecular memory with nondestructive readout. Angew. Chem. Int. Ed.,2010,122(10):1898-1901.
    [41]T. B. Norsten, N. R. Branda Axially coordinated porphyrinic photochromes for non-destructive information processing. Adv. Mater.,2001,13(5):347-349.
    [42]T. Shiozawa, M. K. Hossain, T. Ubukata, Y. Yokoyama. Ultimate diastereoselectivity in the ring closure of photochromic diarylethene possessing facial chirality. Chem. Commun.,2010,46(26):4785-4787.
    [43]M. Walko, B. L. Feringa. The isolation and photochemistry of individual atropisomers of photochromic diarylethenes. Chem. Commun.,2007,17:1745-1747.
    [44]T. J. Wigglesworth, D. Sud, T B.Norsten, V. S. Lekhi, N. R. Branda. Chiral discrimination in photochromic helicenes. J. Am. Chem. Soc.,2005,127(20):7272-7273.
    [45]H. Jin-Nouchi, M. Takeshita. Syntheses and fully diastereospecific photochromic reactions of thiophenophan-1-enes with chiral bridges. Chem.-Eur. J.,2012,18(31): 9638-9644.
    [46]R. Yasukuni, R. Boubekri, J. Grand, N. Felidj, F. Maurel, A. Perrier, R. Metivier, K. Nakatani, P. Yu, J. Aubard. Specific and nondestructive detection of different diarylethene isomers by Nir-Sers. J. Phys. Chem. C,2012,116(30):16063-16069.
    [47]N. Mataga, H. Chosrowjan, S. Taniguchi. Ultrafast charge transfer in excited electronic states and investigations into fundamental problems of exciplex chemistry:our early studies and recent developments. J. Photoch. Photobio. C:Photochemistry Reviews.,2005,6(1): 37-79
    [48]V. Balzani, M. Venturi, A. Credi. Molecular devices and machines, Wiley-VCH, Weinheim,2003.
    [49]K. Szacilowski. Digital information processing in molecular systems. Chem. Rev.,2008, 108(9):3481-3548.
    [50]A. P. de Silva, H. Q. N. Gunaratne, C. P. McCoy. A molecular photoionic and gate based on fluorescent signalling. Nature,1993,364,42-44.
    [51]C. Joachim, N. Renaud, M. Hliwa. The different designs of molecule logic gates. Adv. Mater.,2012,24(2):312-317.
    [52]A. P. de Silva. Molecular logic gate arrays. Chem.-Asian J.2011,6(3):750-766.
    [53]G. de Ruiter, M. E. van der Boom. Surface-confined assemblies and polymers for molecular logic. Accounts Chem. Res.,2011,44(8):563-573.
    [54]J. Andreasson, U. Pischel, S. D. Straight, T. A. Moore, A. L. Moore, D. Gust. All-photonic multifunctional molecular logic device. J. Am. Chem. Soc.,2011,133(30): 11641-11648.
    [55]J. Andreasson, S. D. Straight, T. A. Moore, A. L. Moore, D. Gust. An all-photonic molecular keypad lock. Chem.-Eur. J.,2009,15(16):3936-3939.
    [56]J. Andreasson, S. D. Straight, T. A. Moore, A. L. Moore, D. Gust. Molecular all-photonic encoder-decoder. J. Am. Chem. Soc.,2008,130(33):11122-11128.
    [57]S. D. Straight, P. A. Liddell, Y. Terazono, T. A. Moore, A. L. Moore, D. Gust. All-photonic molecular xor and nor logic gates based on photochemical control of fluorescence in a fulgimide-porphyrin-dithienylethene triad. Adv. Funct. Mater.,2007,17(5): 777-785.
    [58]J. Andreasson, S. D. Straight, S. Bandyopadhyay, R. H. Mitchell, T. A. Moore, A. L. Moore, D.Gust. A molecule-based 1:2 digital demultiplexer. J. Phys. Chem. C,2007, 111(38):14274-14278.
    [59]J. Andreasson, S. D. Straight., G. Kodis, C. Park, M. Hambourger, M. Gervaldo, B. Albinsson, T. A. Moore, A. L. Moore, D. Gust. All-photonic molecular half-adder. J. Am. Chem. Soc.,2006,128(50):16259-16265.
    [60]J. Andreasson, Y. Terazono, B. Albinsson, T. A. Moore, A. L. Moore, D. Gust. Molecular and logic gate based on electric dichroism of a photochromic dihydroindolizine. Angew. Chem. Int. Ed.,2005,44(46):7591-7594.
    [61]S. D. Straight, J. Andreasson, G. Kodis, S. Bandyopadhyay, R. H. Mitchell, T. A. Moore, A. L. Moore, D. Gust. Molecular and and INHIBIT gates based on control of porphyrin fluorescence by photochromes. J. Am. Chem. Soc.,2005,127(26):9403-9409.
    [62]J. Andreasson, G. Kodis, Y. Terazono, P. A. Liddell, S. Bandyopadhyay, R. H. Mitchell, T. A. Moore, A. L. Moore, D. Gust. Molecule-based photonically switched half-adder. J. Am. Chem. Soc.,2004,126(49):15926-15927.
    [63]Q. Zou, X. Li, J. J. Zhang, J. Zhou, B. Sun, H.Tian. Unsymmetrical diarylethenes as molecular keypad locks with tunable photochromism and fluorescence via Cu++and CN-coordinations. Chem. Commun.,2012,48(15):2095-2097.
    [64]Z. Li, L. Liao, W. Sun, C. Xu, C. Zhang, C. Fang, C.Yan. Reconfigurable cascade circuit in a photo-and chemical-switchable fluorescent diarylethene derivative. J. Phys. Chem. C,2008,112(13):5190-5196.
    [65]X. Meng, W. H. Zhu, Q. Zhang, Y. Feng, W. Tan, H. Tian. Novel bisthienylethenes containing naphthalimide as the center ethene bridge:photochromism and solvatochromism for combined nor and inhibit logic gates. J. Phys. Chem. B,2008,112(49):15636-15645.
    [66]H. Tian, B. Qin, R. Yao, X. Zhao, S. Yang. A single photochromic molecular switch with four optical outputs probing four inputs. Adv. Mater.,2003,15(24):2104-2107.
    [67]R. Klajn, J. F. Stoddart, G. B. A.rzybowski. Nanoparticles functionalised with reversible molecular and supramolecular switches. Chem. Soc. Rev.,2010,39(6): 2203-2237.
    [68]S. Xiao, Y. Zou, J. Wu, Y. Zhou, T. Yi, F. Y. Li, C. H. Huang. Hydrogen bonding assisted switchable fluorescence in self-assembled complexes containing diarylethene: controllable fluorescent emission in the solid state. J. Mater. Chem.,2007,17(24): 2483-2489.
    [69]Y. Feng, Q. Zhang, W. Tan, D. Zhang, Y. Tu, A. Hans, H. Tian A supramolecular photoswitch constructed by intermolecular hydrogen bond between btepy and ttf-cooh. Chem. Phys. Lett.,2008,455:256-260.
    [70]T. Hirose, M. Irie, K. Matsuda. self-assembly of photochromic diarylethenes with amphiphilic side chains:core-chain ratio dependence on supramolecular structures. Chem.-Asian J.,2009,4(1):58-66.
    [71]H. Kai, S. Nara, K. Kinbara, T. Aida. Toward long-distance mechanical communication: studies on a ternary complex interconnected by a bridging rotary module. J. Am. Chem. Soc.,2008,130(21):6725-6727.
    [72]X. Cao, J. Zhou, Y. Zou, M. Zhang, X. Yu, S. Zhang, T. Yi, C. H. Huang. Fluorescence and morphology modulation in a photochromic diarylethene self-assembly system. Langmuir,2011,27(8):5090-5097.
    [73]X. Zhou, Y. Duan, S. Yan, Z. Liu, C. Zhang, L.Yao, G. Cui. Optical modulation of supramolecular assembly of amphiphilic photochromic diarylethene:from nanofiber to nanosphere. Chem. Commun.,2011,47(24):6876-6878.
    [74]S. Yagai, K. Ohta, M. Gushiken, K. Iwai, A. Asano, S. Scki, Y. Kikkawa, M. Morimoto, A. Kitamura, T. Karatsu. Photoreversible supramolecular polymerisation and hierarchical organization of hydrogen-bonded supramolecular co-polymers composed of diarylethenes and oligothiophenes. Chem.-Eur. J.,2012,18(8):2244-2253.
    [75]M. Han, R. Michel, B. He, Y. Chen, D. Stalke, M. John, G. H. Clever. Light-triggered guest uptake and release by a photochromic coordination cage. Angew. Chem. Int. Ed., 2013,52(4):1319-1323.
    [76]T. Fukaminato, M. Irie, Reversible fluorescencewavelength shift based on photoinduced aggregate formation. Adv. Mater.,2006,18(24):3225-3228.
    [77]W. H. Zhu, L. Song, Y. Yang, H.Tian. novel bisthienylethene containing ferrocenyl-substituted naphthalimide:a photo-and redox multi-addressable molecular switch. Chem.-Eur. J.,2012,18(42):13388-13394.
    [78]M. Morimoto, H. Miyasaka, M. Yamashita, M. Irie. Coordination assemblies of [MN4] single-molecule magnets linked by photochromic ligands:photochemical control of the magnetic properties. J. Am. Chem. Soc.,2009,131(28):9823-9835.
    [79]Y. Li, Q. Li. Photochemically reversible and thermally stable axially chiral diarylethene switches. Org. Lett.,2012,14(17):4362-4365.
    [80]L. Ordronneau, H. Nitadori, I. Ledoux, A. Singh, J. A.G. Williams, M. Akita, V. Guerchais, H. Le Bozec. Photochromic metal complexes:photoregulation of both the nonlinear optical and luminescent properties. Inorg. Chem.,2012,51(10):5627-5636.
    [81]V. Aubert, L. Ordronneau, M. Escadeillas, J. A. G. Williams, A. Boucekkine, E. Coulaud, C. Dragonetti, S. Righetto, D. Roberto, R. Ugo, A. Valore, A. Singh, J. Zyss, I. Ledoux-Rak, H. Le Bozec, V. Guerchais. Linear and nonlinear optical properties of cationic bipyridyl iridium(iii) complexes:tunable and photoswitchable? Inorg. Chem.2011,50(11): 5027-5038.
    [82]M. Giraud, A. Leaustic, R. Guillot, P.Yu, P. G. Lacroix, K. Nakatani, R. Pansu, F.Maurel. Dithiazolylethene-based molecular switches for nonlinear optical properties and fluorescence:synthesis, crystal structure and ligating properties. J. Mater. Chem.,2007, 17(41):4414-4425.
    [83]B. M. Neilson, C. W. Bielawski. Photo switchable organocatalysis:using light to modulate the catalytic activities of n-heterocyclic carbenes. J. Am. Chem. Soc,2012, 134(30):12693-12699.
    [84]K. Rameshbabu, A. Urbas, Q. Li. Synthesis and characterization of thermally irreversible photochromic cholesteric liquid crystals. J. Phys. Chem B,2011,115(13): 3409-3415.
    [85]H. Hayasaka, T. Miyashita, M. Nakayama, K. Kuwada, K. Akagi. Dynamic photoswitching of helical inversion in liquid crystals containing photoresponsive axially chiral dopants. J. Am. Chem. Soc.,2012,134(8):3758-3765.
    [86]Y. Wang, Q. Li. light-driven chiral molecular switches or motors in liquid crystals. Adv. Mater.,2012,24(15):1926-1945.
    [87]J. J. Zhang, M. Riskin, R. Tel-Vered, H. Tian, I. Willner. Optically activated uptake and release of Cu2+or Ag+ions by or from a photoisomerizable monolayer-modified electrode. Langmuir,2010,27(4):1380-1386.
    [88]M. Giraud, A. Leaustic, R. Guillot, P. Yu, P. Dorlet, R. Metivier, K. Nakatani. Photo-controlled release and uptake of Cu(hfac)2 in solution for a binuclear copper complex with a photochromic dithiazolylethene bridging ligand. New J. Chem.,2009,33(6): 1380-1385.
    [89]K. Uchida, Y. Yamanoi, T. Yonezawa, H. Nishihara. Reversible on/off conductance switching of single diarylethene immobilized on a silicon surface. J. Am. Chem. Soc.,2011, 133(24):9239-9241.
    [90]Y. N. He, Y. Yamamoto, W. S. Jin, T. Fukushima, A. Saeki, S. Seki, N. Ishii, T. Aida. Hexabenzocoronene graphitic nanotube appended with dithienylethene pendants: photochromism for the modulation of photoconductivity. Adv. Mater.,2010,22(7): 829-832.
    [91]C. P. Harvey, J. D.Tovar. Main-chain photochromic conducting polymers. Polym. Chem.,2011,2(12):2699-2706.
    [92]Q. Luo, H. Cheng, H. Tian. Recent progress on photochromic diarylethene polymers. Polym. Chem.,2011,2(11):2435-2443.
    [93]N. Katsonis, T. Kudernac, M. Walko, S. J.van der Molen, B. J. van Wees, B. L. Feringa. Reversible conductance switching of single diarylethene on a gold surface. Adv. Mater., 2006,18(11):1397-1400
    [94]R. Baron, A. Onopriyenko, E. Katz, O. Lioubashevski, I. Willner, S. Wang, H.Tian. An electrochemical/photochemical information processing system using a monolayer-functionalized electrode. Chem. Commun.,2006,20:2147-2149.
    [95]O.Yehezkeli, M. Moshe, R. Tel-Vered, Y. Feng, Y. Li, H.Tian, I. Willner. Switchable photochemical/electrochemical wiring of glucose oxidase with electrodes. Analyst,2010, 135(3):474-476.
    [96]C. Sciascia, R. Castagna, M. Dekermenjian, R. Martel, A. R. Srimath Kandada, F. Di Fonzo, A. Bianco, C. Bertarelli, M. Meneghetti, G. Lanzani. Light-controlled resistance modulation in a photochromic diarylethene-carbon nanotube blend. J. Phy. Chem. C,2012, 116(36):19483-19489.
    [97]Z. Zhang, X. Liu, Z. Li, Z. Chen, F. Zhao, F. Zhang, C. H. Tung. A smart light-controlled carrier switch in an organic light emitting device. Adv. Funct. Mater.,2008, 18(2):302-307.
    [98]P. Zacharias, M. C. Gather, A. Kohnen. N. Rehmann, K. Meerholz. Photoprogrammable organic light-emitting diodes. Angew. Chem. Int. Ed.,2009,48(22):4038-4041.
    [99]M. Pars, C. C. Hofmann, K. Willinger, P. Bauer, M. Thelakkat, J. Koler. An organic optical transistor operated under ambient conditions. Angew. Chem. Int. Ed.,2011,50(48): 11405-11408.
    [100]E. Orgiu, N. Crivillers, M. Herder, L. Grubert, M. Patzel. J. Frisch, E. Pavlica, D. T. Duong, G. Bratina, A. Salleo, N. Koch, S. Hecht, P.Samori. Optically switchable transistor via energy-level phototuning in a bicomponent organic semiconductor. Nature Chem.,2012, 4(8):675-679.
    [101]F. Terao, M. Morimoto, M. Irie. Light-driven molecular-crystal actuators:rapid and reversible bending of rod like mixed crystals of diarylethene derivatives. Angew. Chem. Int. Ed.,2012,51 (4):901-904.
    [102]Y. Zou, T. Yi, S. Xiao, F. Li, C. Li, X. Gao, J. Wu, M. Yu, C. Huang. Amphiphilic diarylethene as a photoswitchable probe for imaging living cells. J. Am. Chem. Soc,2008, 130(47):15750-15751.
    [103]W. Tan, J. Zhou, F. Li, T. Yi, H.Tian. Visible light-triggered photoswitchable diarylethene-based iridim(Ⅲ) complexes for imaging living cells. Chem.-Asian J.,2011, 6(5):1263-1268.
    [104]Y. Kim, H. Jung, Y. H. Choe, C. Lee, S. K. Ko, S. Koun, Y. Choi, B. H. Chung, B. C. Park, T. L. Huh, I. Shin, E. Kim. High-contrast reversible fluorescence photoswitching of dye-crosslinked dendritic nanoclusters in living vertebrates. Angew. Chem. Int. Ed.,2012, 51(12):2878-2882.
    [105]D. Vomasta, C. Hogner, N. R. Branda, B. Konig. Regulation of human carbonic anhydrase I(HCAI) cctivity by using a photochromic inhibitor. Angew. Chem. Int. Ed., 2008,47(40):7644-7647.
    [106]U. Al-Atar, R. Fernandes, B. Johnsen, D. Baillie, N. R. Branda. A photocontrolled molecular switch regulates paralysis in a living organism. J. Am. Chem. Soc,2009,131(44): 15966-15967.
    [107]K. Fujimoto, M. Kajino, I. Sakaguchi, M. Inouye. Photoswitchable, DNA-binding helical peptides assembled with two independently designed sequences for photoregulation and dna recognition. Chem.-Eur. J.,2012,18(32):9834-9840.
    [108]S. Xiao, T. Yi, F. Y. Li, C. H. Huang. A multi-photo responsive photochromic dithienylethene containing coumarin derivative. Tetrahedron Lett.,2005,46(52): 9009-9012.
    [109]S. Wang, W. Shen, Y. L. Feng, H. Tian. A multiple switching bisthienylethene and its photochromic fluorescent organogelator. Chem. Commun.,2006,14:1497-1499.
    [110]G. Jiang, S. Wang, W. Yuan, L. Jiang, Y. Song, H. Tian, D. Zhu. Highly fluorescent contrast for rewritable optical storage based on photochromic bisthienylethene-bridged naphthalimide dimmer. Chem. Mater.,2006,18(2):235-237.
    [111]S. Z. Pu, D. H. Jiang, W. J. Liu, G. Liu, S. Q. Cui. Multi-addressable molecular switches based on photochromic diarylethenes bearing a rhodamine unit. J. Mater. Chem., 2012,22(8):3517-3526.
    [112]H. Tian, B. Z. Chen, H. Y. Tu, K. Mullen. Novel bisthienylethene-based photochromic tetraazaporhyrin with photoregulating luminescence. Adv. Mater.,2002,14(12):918-923.
    [113]Y. Chen, D.X. Zeng, N. Xie, Y. Z. Dang, Study on photochromism of diarylethenes with a 2,5-dihydropyrrole bridging unit:a convenient preparation of 3,4-diarylpyrroles from 3,4-diaryl-2,5-dihydropyrroles. J. Org. Chem.,2005,70(13):5001-5005.
    [114]P. Belser, J. Kuhni. Gated photochromism of 1,2-diarylethenes. Org. Lett.,2007,9(10): 1915-1918.
    [115]V. W. W. Yam, J. K. W. Lee, C. C. Ko, N. Y. Zhu. Photochromic diarylethene-containing ionic liquids and n-heterocyclic. J. Am. Chem. Soc,2009,131(3): 912-913.
    [116]S. Kawai, T. Nakashima, K. Atsumi, T. Sakai, M. Harigai, Y. Imamoto, H. Kamikubo, M. Kataoka, T. Kawai. Novel photochromic molecules based on 4,5-dithienyl thiazole with fast thermal bleaching rate. Chem. Mater.,2007,19(14):3479-3483.
    [117]C. T. Poon, W. H. Lam, V. W. W. Yam. Gated photochromism in triarylborane-containing dithienylethenes:a new approach to a "Lock_unlock" system. J. Am. Chem. Soc.,2011,133(49):19622-19625.
    [118]K. Suzuki, T. Ubukata, Y. Yokoyama. Dual-mode fluorescence switching of photochromic bisthiazolylcoumarin. Chem. Commun.,2012,48(5):765-767.
    [119]X. Li, Y. Ma, B. Wang, G. Li. "Lock and key control" of photochromic reactivity by controlling the oxidation/reduction state. Org. Lett.,2008,10(16):3639-3642.
    [120]Y. Jeong, C. Gao, I. S. Lee, S. I. Yang, K. Ahn. The considerable photostability improvement of photochromic terarylene by sulfone group. Tetrahedron Lett.,2009,50(37): 5288-5290.
    [121]孟宪乐.博士毕业论文.华东理工大学(2008年).
    [122]T. P. Sura, D.W. H. Macdowell. Cope rearrangements in the benzothiophene series. J. Org. Chem.,1993,58(16):4360-4369.
    [123]G. Barbarella, L. Favaretto, A. Zanelli, G. Gigli, M. Mazzeo, M. Anni, A. Bongini. V-shaped thiophene-based oligomers with improved electroluminescence properties. Adv. Funct. Mater.,2005,15(4):664-670.
    [124]W. S. Wadsworth, W. D. Emmons. The utility of phosphonate carbanions in olefin synthesis. J. Am. Chem. Soc.,1961,83(7):1733-1738.
    [125]V. Balzani, A. Credi, M. Venturi. The bottom-up approach to molecular-level devices and machines. Chem.-Eur. J.,2002,8(24):5524-5532.
    [126]H. Tian. Data processing on a unimolecular platform. Angew. Chem. Int. Ed.,2010, 49(28):4710-4712.
    [127]M. M. Mano, C. R. Kime, C. Kime. Logic and computer design fundamentals,3rd ed. Prentice Hall:New Jersey,2003.
    [128]U. Pischel. Chemical approaches to molecular logic elements for addition and subtraction. Angew. Chem. Int. Ed.,2007,46(22):4026-4040.
    [129]E. Katz, V. Privman. Enzyme-based logic systems for information processing. Chem. Soc. Rev.,2010,39(5):1835-1857.
    [130]M. Zhou, S. Dong. Bioelectrochemical interface engineering:toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors. Accounts Chem. Res.,2011,44(11):1232-1243.
    [131]D. Margulies, C. E. Felder, G. Melman, A. Shanzer. A molecular keypad lock:a photochemical device capable of authorizing password entries. J. Am. Chem. Soc,2007, 129(2):347-354.
    [132]Z. Guo, H. W. Zhu, L. Shen, H. Tian. A fluorophore capable of crossword puzzles and logic memory. Angew. Chem. Int. Ed.,2007,119(29):5645-5649.
    [133]V. Bhalla, M. Roopa Kumar. Fluoride triggered fluorescence "turn on"'sensor for Zn"+ ions based on pentaquinone scaffold that works as a molecular keypad lock. Org. Lett.,2012, 14(11):2802-2805.
    [134]M. Suresh, A. Ghosh, A. Das. A simple chemosensor for Hg2+ and Cu2+ that works as a molecular keypad lock. Chem. Commun.,2008, (33):3906-3908.
    [135]M. Privman, T. K. Tam, M. Pita, E. Katz. Switchable electrode controlled by enzyme logic network system:approaching physiologically regulated bioelectronics. J. Am. Chem. Soc.,2008,131(3):1314-1321.
    [136]M. Zhou, X. Zheng, J. Wang, S. Dong. A self-powered and reusable biocomputing security keypad lock system based on bio fuel cells. Chem.-Eur., J.2010,16(26): 7719-7724.
    [137]Z. Huang, Y. Tao, F. Pu, J. Ren, X. Qu. Versatile logic devices based on programmable DNA-regulated silver-nanocluster signal transducers. Chem.-Eur. J.,2012, 18(21):6663-6669.
    [138]M. Zhou, S. Dong. Bioelectrochemical interface engineering:toward the fabrication of electrochemical biosensors, biofuel cells, and self-powered logic biosensors. Accounts Chem. Res.,2011,44(11):1232-1243.
    [139]A. J. Genot, J. Bath, A. J. Turberfield. Reversible logic circuits made of DNA. J. Am. Chem. Soc.,2011,133(50):20080-20083.
    [140]U. Pischel, J. Andreasson, D. Gust, V. F. Pais. Information processing with molecules-Quo vadis? Chemphyschem,2013,14(1):28-46.
    [141]L. Wang, B. Li, L. Zhang, Y. Luo. Three-input-three-output logic operations based on absorption and fluorescence dual-mode from a thiourea compound. Dalton Trans.,2013, 42(2):459-465.
    [142]D. Gust, J. Andreasson, U. Pischel, T. A. Moore, A. L. Moore. Data and signal processing using photochromic molecules. Chem. Commun.,2012,48(14):1947-1957.
    [143]J. J. Zhang, Q. Zou, H. Tian Photochromic materials:more than meets the eye. Adv. Mater.,2013,25(3):378-399.
    [144]P. Gao, J. Zou, H. Li, K. Zhang, Q. Zhang. Complementary logic gate arrays based on carbon nanotube network transistors. Small,2013,9(6):813-819.
    [145]S. Silvi, E. C. Constable, C. E. Housecroft, J. E. Beves, E. L. Dunphy, M. Tomasulo, F. M. Raymo, A. Credi. All-optical integrated logic operations based on chemical communication between molecular switches. Chem.-Eur. J.,2009,15(1):178-185.
    [146]W. Hong, Y. Du, T. Wang, J. Liu, Y. Liu, J. Wang, E. Wang A DNA-based and electrochemically transduced keypad lock system with reset function. Chem.-Eur. J.,2012, 18(47):14939-14942.
    [147]M. Mccann, R. Curran, M. Ben-Shoshan, V. Mckee, A. A. Tahir, M. Devereux, K. Kavanagh, B. S. Creaven, A. Kellett. Silver(Ⅰ) complexes of 9-anthracenecarboxylic acid and imidazoles:synthesis, structure and antimicrobial activity. Dalton Trans.,2012,41(21): 6516-6527.
    [148]T. Nakashima, M. Goto, S. Kawai, T. Kawai. Photomodulation of ionic interaction and reactivity:reversible photoconversion between imidazolium and imidazolinium. J. Am. Chem. Soc.,2008,130(44):14570-14575.
    [149]Y. Liu, J. Ma, J. Yang, Z. Su. Syntheses and characterization of six coordination polymers of Zinc(II) and Cobalt(II) with 1,3,5-benzenetricarboxylate anion and bis(imidazole) ligands. Inorg. Chem.,2007,46(8):3027-3037.
    [150]J. Y. Jung, M. Kang, J. Chun, J. Lee, J. Kim, J. Kim, Y. Kim, S. Kim, C. Lee, J. Yoon. A thiazolothiazole based Cu2+selective colorimetric and fluorescent sensor via unique radical formation. Chem. Commun.,2013,49(2):176-178.
    [151]C. Chang, H. Yueh, C. Chen. Generation and spectroscopic profiles of stable multiarylaminium radical cations bridged by fluorenes. Org. Lett.,2011,13(10): 2702-2705.
    [152]Y. Shiraishi, S. Sumiya, Y. Kohno, T. Hirai A rhodamine-cyclen conjugate as a highly sensitive and selective fluorescent chemosensor for Hg(II). J. Org. Chem.,2008, 73(21):8571-8574.
    [153]H. Wang, D. Wang, Q. Wang, X. Li, C. A. Schalley. Nickel(II) and Iron(Ⅲ) selective off-on-type fluorescence probes based on perylene tetracarboxylic diimide. Org. Biomol. Chem.,2010,8(5):1017-1026.
    [154]Y. Liu, J. Ma, J. Yang, Z. Su. Syntheses and characterization of six coordination polymers of Zinc(II) and Cobalt(Ⅱ) with 1,3,5-benzenetricarboxylate anion and bis(imidazole) ligands. Inorg. Chem.,2007,46(8):3027-3037.
    [155]H. Zhu, J. Fan, T. Okamura, W. Sun, N. Ueyama. Syntheses and structures of Zinc(II), Silver(I), Copper(II), and Cobalt(II) complexes with imidazole-containing ligand: 1-(1-imidazolyl)-4-(imidazol-1-ylmethyl)benzene. Cryst. Growth Des.,2004,5(1): 289-294.
    [156]H. Konaka, L. P. Wu, M. Munakata, T. Kuroda-Sowa, M. Maekawa, Y. Suenaga Syntheses and structures of photochromic Silver(I) coordination polymers with cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene. Inorg. Chem.,2003,42(6): 1928-1934.
    [157]E. Fischer. Calculation of photostationary states in systems A, B when only A is known. J. Phys. Chem.,1967,71(11):3704-3706.
    [158]Y. Wu, S. J. Chen, Y. H. Yang, Q. Zhang, Y. S. Xie, H. Tian, W. H. Zhu. A novel gated photochromic reactivity controlled by complexation/dissociation with BF3. Chem. Commun.,2012,48(4):528-530.
    [159]S. J. Chen, Y. H. Yang, Y. Wu, H. Tian, W. H. Zhu. Multi-addressable photochromic terarylene containing benzo[b]thiophene-1,1-dioxide unit as ethene bridge:multifunctional molecular logic gates on unimolecular platform. J. Mater. Chem.,2012,22(12):5486-5494.
    [160]Z. Li, L. Liao, W. Sun, C. Xu, C. Zhang, C. Fang, C. Yan. Reconfigurable cascade circuit in a photo-and chemical-switchable fluorescent diarylethene derivative. J. Phy. Chem. C,2008,112(13):5190-5196.
    [161]Y. Liu, J. Ren, Y. Qin, J. Li, J. Liu, E. Wang. An aptamer-based keypad lock system. Chem. Commun.,2012,48(6):802-804.
    [162]R. Guliyev, S. Ozturk, Z. Kostereli, E. U. Akkaya. From virtual to physical: integration of chemical logic gates. Angew. Chem. Int. Ed.,2011,50(42):9826-9831.
    [163]F. M. Raymo, S. Giordani. All-optical processing with molecular switches. Proc. Natl. Acad. Sci.,2002,99(8):4941-4944.
    [164]N. Wagner, G. Ashkenasy. Systems chemistry:logic gates, arithmetic units, and network motifs in small networks. Chem.-Eur. J.,2009,15(7):1765-1775.
    [165]J. Andreasson, U. Pischel. Smart molecules at work-mimicking advanced logic operations. Chem. Soc. Rev.,2010,39(1):174-188.
    [166]H. Tian, S.Yang. Recent progresses on diarylethene based photochromic switches. Chem. Soc. Rev.,2004,33(2):85-97.
    [167]F. M. Raymo, M. Tomasulo. Electron and energy transfer modulation with photochromic switches. Chem. Soc. Rev.,2005,34(4):327-336.
    [168]M. Natali, S. Giordani. Molecular switches as photocontrollable "smart" receptors. Chem. Soc. Rev.,2012,41(10):4010-4029.
    [169]X. Guo, D. Zhang, T. Wang, D. Zhu. Reversible regulation of pyrene excimer emission by light and metal ions in the presence of photochromic spiropyran:toward creation of a new molecular logic circuit. Chem. Commun.,2003,7:914-915.
    [170]D. H. Qu, F. Y. Ji, Q. C. Wang, H. Tian. A double INHIBIT logic gate employing configuration and fluorescence changes. Adv. Mater.,2006,18(15):2035-2038.
    [171]P. Remon, M. Hammarson, S. Li, A. Kahnt, U. Pischel, J. Andreasson. Molecular implementation of sequential and reversible logic through photochromic energy transfer switching. Chem.-Eur. J.,2011,17(23):6492-6500.
    [172]D. Liu, W. Chen, K. Sun, K. Deng, W. Zhang, Z. Wang, X. Jiang Resettable, multi-readout logic gates based on controllably reversible aggregation of gold nanoparticles. Angew. Chem. Int. Ed.,2011,50(18):4103-4107.
    [173]J. Andreasson, S. D. Straight, T. A. Moore, A. L. Moore, D. Gust. Molecular all-photonic encoder-decoder. J. Am. Chem. Soc.,2008,130(33):11122-11128.
    [174]P. Ceroni, G. Bergamini, V. Balzani, Old molecules, new concepts:[Ru(Bpy)3]2+as a molecular encoder-decoder. Angew. Chem. Int. Ed.,2009,121(45):8668-8670.
    [175]A. Li, Y. Ruan, Q. Jiang, W He, Y. Jiang. Molecular logic gates and switches based on 1,3,4-oxadiazoles triggered by metal ions. Chem.-Eur. J.,2010,16(19):5794-5802.
    [176]L. Ackermann. Carboxylate-assisted transition-metal-catalyzed C-H bond functionalizations:mechanism and scope. Chem. Rev.,2011,111(3):1315-1345.
    [177]K. M. Hindi, M. J. Panzner, C. A. Tessier, C. L. Cannon, W. J. Youngs. The medicinal applications of imidazolium carbene-metal complexes. Chem. Rev.,2009,109(8): 3859-3884.
    [178]H. D. Samachetty, V. Lemieux, N. R. Branda. Modulating chemical reactivity using a photoresponsive molecular switch. Tetrahedron,2008,64(36):8292-8300.
    [179]A. Petitjean, R. G. Khoury, N. Kyritsakas, J. Lehn. Dynamic devices. shape switching and substrate binding in ion-controlled nanomechanical molecular tweezers. J. Am. Chem. Soc,2004,126(21):6637-6647.
    [180]X. Piao, Y. Zou, J. Wu, C. Li, T. Yi Multiresponsive switchable diarylethene and its application in bioimaging. Org. Lett.,2009,11(17):3818-3821.
    [181]S. Leininger, B. Olenyuk, P. J. Stang. Self-Assembly of discrete cyclic nanostructures mediated by transition metals. Chem. Rev.,2000,100(3):853-908.
    [182]M. Fujita, M. Tominaga, A. Hori, B. Therrien. Coordination assemblies from a Pd(II)-cornered square complex. Accounts Chem. Res.,2005,38(4):369-378.
    [183]A. M. Spokoyny, D. Kim, A. Sumrein, C. A. Mirkin. Infinite coordination polymer nano-and microparticle structures. Chem. Soc. Rev.,2009,38(5):1218-1227.
    [184]K. Eom, H. Jung, G. Lee, J. Park, K. Nam, S. W. Lee, D. S. Yoon, J. Yang, T. Kwon Nanomechanical actuation driven by light-induced DNA fuel. Chem. Comm.,2012,48(7): 955-957.
    [185]P. Scheerer, N. Michael, J. H. Park, S. Nagano, H. Choe, K. Inomata, B. Borucki, N. KrauB, T. Lamparter. Light-induced conformational changes of the chromophore and the protein in phytochromes:bacterial phytochromes as model systems. Chemphyschem,2010, 11(6):1090-1105.
    [186]S. Sun, J. A. Anspach, A. J. Lees Self-assembly of transition-metal-based macrocycles linked by photoisomerizable ligands:examples of photoinduced conversion of tetranuclear-dinuclear squares. Inorg. Chem.,2002,41(7):1862-1869.
    [187]R. W. Saalfrank, C. Deutscher, H. Maid, A. M. Ako, S. Sperner, T. Nakajima, W. Bauer, F. Hampel, A. HeβB, N. J. R.van Eikema Hommes, R. Puchta, F. W. Heinemann. Synthesis, structure, and dynamics of six-membered metallacoronands and metallodendrimers of iron and indium. Chem.-Eur. J.,2004,10(8):1899-1905.
    [188]J. Wang, A. Kulago, W. R. Browne, B. L. Feringa. Photoswitchable intramolecular h-stacking of perylenebisimide. J. Am. Chem. Soc.,2010,132(12):4191-4196.
    [189]W. Tan, Q. Zhang, J. Zhang, H. Tian. Near-infrared photochromic diarylethene Iridium (Ⅲ) complex. Org. Lett.,2008,11(1):161-164.
    [190]J. Sun, L. Cai, Y. Chen, Z. Li, J. Zhang. Reversible luminescence switch in a photochromic metal-organic framework. Chem. Commun.,2011,47(24):6870-6872.
    [191]B. Yan, J. Boyer, D. Habault, N. R. Branda, Y. Zhao. Near infrared light triggered release of biomacromolecules from hydrogels loaded with upconversion nanoparticles. J. Am. Chem. Soc.,2012,134(40):16558-16561.
    [192]K. Suzuki, T. Ubukata, Y. Yokoyama. Dual-mode fluorescence switching of photochromic bisthiazolylcoumarin. Chem. Commun.,2012,48(5):765-767.
    [193]V. Guerchais, L. Ordronneau, H. LeBozec. Recent developments in the field of metal complexes containing photochromic ligands:modulation of linear and nonlinear optical properties. Coordin. Chem. Rev.,2010.254(21-22):2533-2545.
    [194]J. Otsuki, T. Akasaka, K. Araki. Molecular switches for electron and energy transfer processes based on metal complexes. Coordin. Chem. Rev.,2008,252(1-2):32-56.
    [195]S. Yagai, A. Kitamura. Recent advances in photoresponsive supramolecular self-assemblies. Chem. Soc. Rev.,2008,37(8):1520-1529.
    [196]R. Chakrabarty, P. S. Mukherjee, P. J. Stang. Supramolecular coordination: self-assembly of finite two-and three-dimensional ensembles. Chem. Rev.,2011,111(11): 6810-6918.
    [197]J. L. Chen, Q. Li, J. He, H. Tan, Z. Abliz, H.-B. Yang. Design and construction of endo-functionalized multiferrocenyl hexagons via coordination-driven self-assembly and their electrochemistry. J. Org. Chem.,2011,77(2):1148-1153.
    [198]B. H. Northrop, Y. Zheng, K. Chi, P. J. Stang. Self-organization in coordination-driven self-assembly. Accounts Chem. Res.,2009,42(10):1554-1563.
    [199]B. Valuer. Molecular fluorescence:principles and applications. Wiley, New York, 2002.
    [200]S. M. Borisov, O. S. Wolfbeis. Optical biosensors. Chem. Rev.,2008,108(2): 423-461.
    [201]C. Zhu, L. Liu, Q.Yang, F. Lv, S. Wang. Water-soluble conjugated polymers for imaging, diagnosis, and therapy. Chem. Rev.,2012,112(8):4687-4735.
    [202]V. J. Pansare, S. Hejazi, W. J. Faenza, R. K. Prud Homme. Review of long-wavelength optical and nir imaging materials:contrast agents, fluorophores, and multifunctional nano carriers. Chem. Mater.,2012,24(5):812-827.
    [203]J. S. Lee, J. Feijen. Polymersomes for drug delivery:design, formation and characterization. J. Control. Release.,2012,161(2):473-483.
    [204]J. R. Lackowicz. Principles of fluorescence spectroscopy.3rd ed. Springer, New York, 2006.
    [205]C. T. Chen. Evolution of red organic light-emitting diodes:materials and devices. Chem. Mater.,2004,16(23):4389-4400.
    [206]Z. Q. Guo, W. H. Zhu, H. Tian. Dicyanomethylene-4h-pyran chromophores for oled emitters, logic gates and optical chemosensors. Chem. Commun.,2012,48:6073-6084.
    [207]J. D. Luo, Z. L. Xie, W. Jacky, Y. Lam, L. Cheng, H. Y. Chen, C. F. Qiu, H. S. Kwok, X. W. Zhan, Y. Q. Liu, D. B. Zhu, B. Z.Tang. Aggregation-induced emission of 1-methyl-1, 2,3,4,5-pentaphenylsilole. Chem. Commun.,2001,18:1740-1741.
    [208]C. Shi, Z. Guo, Y. Yan, S. Zhu, Y. Xie, Y. S. Zhao, W. H. Zhu, H. Tian. Self-assembly solid-state enhanced red emission of quinolinemalononitrile:optical waveguides and stimuli response. ACS Appl. Mater. Interfaces,2012,5(1):192-198.
    [209]E. Deniz, N. Kandoth, A. Fraix, V. Cardile, A. C. E. Graziano, D. Lo Furno, R. Gref, F. M. Raymo, S. Sortino. Photoinduced fluorescence activation and nitric oxide release with biocompatible polymer nanoparticles. Chem.-Eur. J.,2012,18(49):15782-15787.
    [210]G. Liu, M. Liu, S. Pu, C. Fan, S. Cui. Synthesis and photochromic properties of novel pyridine-containing diarylethenes. Dyes. Pigments,2012,95(3):553-562.
    [211]J. Cusido, M. Battal, E. Deniz, I. Yildiz, S. Sortino, F. M. Raymo. Fast fluorescence switching within hydrophilic supramolecular assemblies. Chem.-Eur. J.,2012,18(33): 10399-10407.
    [212]S. Kim, S. Yoon, S. Y. Park Highly fluorescent chameleon nanoparticles and polymer films:multicomponent organic systems that combine fret and photochromic switching. J. Am. Chem. Soc.,2012,134(29):12091-12097.
    [213]D. Genovese, M. Montalti, L. Prodi, E. Rampazzo, N. Zaccheroni, O. Tosic, K. Altenhoner, F. May, J. Mattay. Reversible photo switching of dye-doped core-shell nanoparticles. Chem. Commun.,2011,47(39):10975-10977.
    [214]X. Wu, S. Chang, X. Sun, Z. Guo, Y. Li, J. Tang, Y. Shen, J. Shi, H. Tian, W. H. Zhu Constructing nir silica-cyanine hybrid nanocomposite for bio imaging in vivo:a breakthrough in photo-stability and bright fluorescence with large stokes shift. Chem. Sci., 2013,4(3):1221-1228.
    [215]Y. Hong, J. W. Y. Lam, B. Z. Tang Aggregation-induced emission:phenomenon, mechanism and applications. Chem. Commun.,2009,29:4332-4353.
    [216]J. Mei, J. Wang, J. Z. Sun, H. Zhao, W. Yuan, C. Deng, S. Chen, H. H. Y. Sung, P. Lu, A. Qin, H. S. Kwok, Y. Ma, I. D.Williams, B. Z.Tang. Siloles symmetrically substituted on their 2,5-positions with electron-accepting and donating moieties:facile synthesis, aggregation-enhanced emission, solvatochromism, and device application. Chem. Sci., 2012,3(2):549-558.
    [217]W. Z. Yuan, Z. Yu, P. Lu, C. Deng, J. W. Y. Lam, Z. Wang, E. Chen, Y. Ma, B. Z. Tang. High efficiency luminescent liquid crystal:aggregation-induced emission strategy and biaxially oriented mesomorphic structure. J. Mater. Chem.,2012,22(8):3323-3326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700