脂松苗木水分胁迫和越冬伤害机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脂松(Pinus resinosa Ait.)是美国东北部地区最主要的造林树种之一,材质优良、用途广泛。2004年在我国东北东部山地地区引种,获得初步成功,但栽培过程中发现,部分微立地上脂松幼树越冬后出现针叶黄化甚至整株枯死,初步分析认为与土壤水分、变温和光氧化等因素有关。本文采用盆栽方法研究不同土壤水分(水淹处理、100%、80%、60%、40%、20%田间持水量,分别记为FL、FC、FC80、FC60、FC40和FC20)处理下苗木的生理响应,对不同土壤水分条件下脂松苗木的适应机制和耐受性进行评价;同时,对经过不同处理(秋季涝渍、秋季变温和冬季遮荫)的苗木进行自然越冬试验,通过生理指标的变化,结合越冬伤害和恢复情况,分析其发生越冬伤害的原因。主要研究结论如下:
     (1)不同土壤含水量处理对脂松苗木生长和生物量有显著影响(p<0.05),FC60处理下,苗高、地径、生物量均明显高于其它处理。低土壤含水量处理下苗木的生长和生物量均下降,根冠比显著增加(p<0.05),FC40和FC20处理下,苗木的生物量较FC60处理分别降低了17%和26%。高土壤含水量FC80、FC和FL处理,苗木生长和生物量也有所下降,根冠比显著降低(p<0.05),其中FL较FC60处理的生物量下降了41%。
     (2)不同土壤含水量处理对脂松苗木针叶的质膜稳定性有明显影响,对MDA的含量有显著影响(p<0.05)。FC60处理下,针叶中MDA含量和相对电导率均最低,FC40处理针叶MDA含量低于FC20处理,FC80、FC、FL处理MDA含量依次增大。FL处理针叶MDA含量升高明显,处理7 d,14 d和21 d时,MDA含量分别较FC60处理高出92.2%,46.1%和70.0%。
     (3)不同土壤含水量处理对脂松苗木针叶的抗氧化系统有明显的影响,其中对POD、CAT影响显著(p<0.05)。FC60处理CAT活性最高,POD活性较低。FC40处理针叶CAT活性>FC20处理,POD活性     (4)不同土壤含水量对脂松苗木针叶渗透调节物质含量有显著影响(p<0.05)。FC60处理下,苗木针叶脯氨酸和可溶性糖含量最低。FC20处理下针叶脯氨酸和可溶性糖含量高于FC40;FC80、FC和FL处理下的针叶脯氨酸和可溶性糖含量依次升高。其中FC20和FL两种处理下,两种物质的含量最高,处理21 d时,脯氨酸含量分别比FC60处理高出4.9倍和5.8倍,可溶性糖含量分别高出1.4倍和1.9倍。
     (5)不同土壤含水量对脂松苗木针叶的光合代谢有明显影响,对光合色素Chla、Chlb和叶绿素总量,光合参数Pn、Tr、Gs及荧光参数Fo、Fm、Fv、Fv/Fm、ΦPSⅡ均有显著影响(p<0.05)。FC60处理时,苗木针叶叶绿素总量、Pn、Fv/Fm和ΦPSII均最高;FC40处理苗木叶绿素总量、Pn、Chla、Chlb、Car均高于FC20处理,FC80、FC及FL处理上述指标依次下降。其中FC20和FL处理的叶绿素总量较FC60处理分别降低了44.7%和49.2%,干旱和水湿处理均对苗木针叶产生较强的光抑制。
     (6)解除胁迫后,FC40和FC20处理及FC80、FC及FL处理后苗木各项生理指标均有不同程度的恢复,其中FC80、FC和FC40处理恢复较快;而FC20和FL处理在胁迫解除2w时部分指标尚未完全恢复。
     (7)冬季遮荫处理可以提高脂松苗木抗寒性,减少越冬伤害和死亡率。在越冬前期的降温过程中,与对照相比遮荫处理的针叶质膜透性减少、MDA含量减少,抗氧化酶系统、脯氨酸及可溶性糖等渗透调节物质含量均发生了有利于增强抗寒能力的改变。发生越冬伤害苗木比对照降低4%,随着越冬后期气温的回升,遮荫处理苗木针叶的各项生理指标均有所恢复,越冬后死亡率较对照降低4%。
     (8)秋季涝渍处理或秋季变温处理均明显降低脂松苗木抗寒性,导致苗木越冬伤害和死亡。与对照相比,秋季涝渍处理或秋季变温处理的苗木在越冬前期针叶质膜透性增加、抗氧化酶系统、脯氨酸及可溶性糖等渗透调节物质含量均发生了不利于苗木抗寒性的变化。随着越冬后期气温的回升,两种处理苗木针叶的各项生理指标均有所恢复,但越冬伤害程度和死亡率均高于对照。3月份时,秋季涝渍处理和秋季变温处理苗木针叶变色率分别达到44%和100%,分别比对照高出30%和86%,5月份时苗木死亡率较对照高出4%和10%。
     综上所述,脂松遭受到干旱、涝渍和低温逆境时,表现出不同的适应性。脂松比较耐干旱而不耐涝渍,60%土壤含水量条件下苗木综合表现最佳,适宜在中等偏干旱土壤条件下栽培;脂松苗木具有较强的抗寒性,能够对各种低温逆境迅速做出反应;冬季遮荫有利于脂松苗木的安全越冬;秋季涝渍或秋季变温处理均导致脂松苗木的抗寒性下降,增加苗木的越冬伤害。
Red pine (Pinus resinosa Ait.) is one of the major tree species for afforestation in the northeast areas of the United States of America with good material quality and wide usage. In 2004, preliminary success was achieved in the introduction of red pines in the eastern mountainous regions of Northeast China. It was found in the process of cultivation that etiolation of needles and even withering to death of the whole plant occurred in red pine saplings at parts of microsites after overwintering, which was thought to be linked with factors such as soil moisture, temperature fluctuation, photooxidation and so on by the preliminary analysis. The pot cultivation method was adopted to study physiological response of seedlings under different treatments of soil moisture(flooding treatment,100%,80%,60%,40% and 20% of field capacity were respectively marked by FC, FC80, FC60, FC40 and FC20) and to evaluate the adaptability mechanism and tolerance of red pine seedlings under different conditions of soil moisture. Meanwhile the experiment of natural overwintering was conducted on seedlings under different treatments (including autumn waterlogging, autumn temperature fluctuation and winter shading); by means of variation of physiological indicators, the cause of winter injury was analysed in combination of the situation of winter injury and recovery. The main research conclusions were as follows:
     (1)The different soil moisture treatments had significant influence on growth and biomass of red pine seedlings(p<0.05).Under the treatment of FC60, seedling height, caliper and biomass were all significantly higher than those under the other treatments. Under the low soil moisture treatments, growth and biomass of seedlings both decreased, and root shoot ratio increased significantly(p<0.05).Under the treatments of FC40 and FC20, biomass of seedlings dropped respectively by 17% and 26% over that under the treatment of FC60. Under the high soil moisture treatments of FC80, FC and FL, growth and biomass of seedlings decreased to some extent, and root shoot ratio decreased significantly(p<0.05). Thereinto, biomass under the treatment of FL dropped by 41% over that under the treatment of FC60.
     (2)The different soil moisture treatments had obvious influence on the plasma membrane stability of red pine seedling needlings, and had significant influence on the content of MDA(p<0.05). Under the treatment of FC60, the content of MDA and relative electrical conductivity in needlings were both the lowest. The content of MDA under the treatment of FC40 was lower than that under the treatment of FC20. The contents of MDA under the treatments of FC80, FC and FL increased successively. The content of MDA under the treatment of FL rose obviously, which was respectively 92.2%,46.1% and 70.0% higher than that under the treatment of FC60 on the 7th,14th and 21th day.
     (3)The different soil moisture treatments had obvious influence on the antioxidation system of red pine seedling needlings, thereinto, they had significant influence on POD and CAT(p<0.05). Under the treatment of FC60, the activity of CAT was the highest, while the activity of POD was lower. Under the treatment of FC40, the activity of CAT in needlings was higher than that under the treatment of FC20, and the activity of POD was lower than that under the treatment of FC20. Under the treatments of FC80, FC and FL, the activities of CAT in seedling needlings decreased successively and the activities of POD increased successively. Soil water stress caused regular variation of the activities of CAT and POD in needlings.
     (4)The different soil moisture treatments had significant influence on the contents of osmoregulation substances in red pine seedling needlings (p<0.05). Under the treatment of FC60, the contents of proline and soluble sugar in seedling needlings were the lowest. The contents of proline and soluble sugar in seedling needlings under the treatment of FC20 were higher than those under the treatment of FC40. The contents of proline and soluble sugar in seedling needlings under the treatments of FC80, FC and FL increased successively. Thereinto, the contents of proline and soluble sugar under the two treatments of FC20 and FL were the highest. On the 21st day of treatment, the content of proline was respectively 4.9 times and 5.8 times higher than that under the treatment of FC60, and the content of soluble sugar was respectively 1.4 times and 1.9 times higher than that under the treatment of FC60.
     (5)The different soil moisture treatments had obvious influence on the photosynthetic metabolism of red pine seedling needlings, and had significant influence on photosynthetic pigments(Chla, Chlb and total content of chlorophyll), photosynthetic parameters(Pn, Tr and Gs) and fluorescence parameters(Fo,Fm,Fv,Fv/Fm,ΦPSII) (p<0.05). Under the treatment of FC60, the total content of chlorophyll, Pn, Fv/Fm andΦPSII in seedling needlings were all the highest. The total content of chlorophyll, Pn, Chla, Chlb and Car under the treatment of FC40 were all higher than those under the treatment of FC20. Above-mentioned indicators for the treatments of FC80, FC and FL decreased successively. The total contents of chlorophyll under the treatments of FC20 and FL decreased respectively by 44.7% and 49.2% over that under the treatment of FC60. Drought and waterlogging treatment both posed stronger light restrain to seedling needlings.
     (6)After stress relief, there was recovery of different extents in all physiological indicators for the treatments of FC40 and FC20, and the treatments of FC80, FC and FL, among which the indicators for the treatments of FC80, FC and FC40 got recovered faster. However, some index value under the treatments of FC20 and FL at the second week after stress relief didn't achieve full-recovery yet.
     (7)The winter shading treatment was able to improve cold resistance of red pine seedling and reduce winter injury and mortality rates. In the process of temperature drop of early overwintering, compared with the check, the permeability of plasma membrane of needlings under the shading treatment decreased; the content of MDA reduced; and variation which was favorable to improving cold resistance capacity occurred in both the antioxidant enzyme system and the contents of osmoregulation substances such as proline, soluble sugar and so on. Seedlings which suffered winter injury were 4% lower than those under check. With the rising again of air temperature of late overwintering, all physiological indicators for seedling needlings under the shading treatment got recovered to some extent, and the mortality rate decreased by 4% over that under check after overwintering.
     (8)The treatments of autumn waterlogging or temperature fluctuation both obviously reduced cold resistance of red pine seedlings, and caused winter injury and mortality of seedlings. Compared with the check, the permeability of plasma membrane of seedling needlings under the treatments of autumn waterlogging and temperature fluctuation increased; variation which was not favorable to cold resistance occurred in the permeability of plasma membrane, the antioxidant enzyme system and the contents of osmoregulation substances such as proline and soluble sugar of seedlings in the early overwintering. With the rising again of air temperature of late overwintering, all physiological indicators for seedling needlings under the two treatments got recovered to some extent, but the degrees of winter injury and mortality rates were both higher than those under check. In March, the discoloration rates of seedling needlings under the treatments of autumn waterlogging and temperature fluctuation reached 44% and 100% respectively,30% and 86% higher than those under check. In May, the mortality rates of seedlings were respectively 4% and 10% higher than those under check.
     In summary, red pines displayed different adaptability when they were subjected to adversity of drought, waterlogging and low temperature. Red pines resisted drought rather than waterlogging. The seedlings under the condition of 60% of field capacity presented the optimum comprehensive performance. Red pines were suitable to be cultivated under the condition of moderately inclined arid soil. Red pines had stronger cold resistance and were able to response quickly to low temperature adversity of various kinds. Winter shading was favorable to safe overwintering of red pine seedlings. Either autumn waterlogging or autumn temperature fluctuation would cause decrease of cold resistance of red pine seedlings so as to increase the degree of winter injury of seedlings.
引文
[1]Rudolf, Paulo. Red pine (Pinus resinosa Ait.). In Silvics of Forest Trees of the United States. H.A.Fowells, comp.U S. Department of Agriculture, Agriculture Handbook 271.Washington, DC.1965:432~446
    [2]武维华.植物生理学[M].北京:科学出版社,2003
    [3]张福锁.环境胁迫与植物营养[M].北京:农业出版社,1993
    [4]王玮,邹琦,等.水分胁迫下冬小麦芽鞘长度与抗旱性的关系及其遗传特性的研究.西北植物学报,1998,18:24-29
    [5]利容千,王建波.植物逆境细胞及生理学[M].武汉:武汉大学出版社,2002
    [6]徐祝龄,王汉,衣纯真.作物水分胁迫监测的国内外研究进展.中国农业气象,1995,16(4):41-47
    [7]程加省,于亚雄,杨全华,等.云南旱地小麦的抗旱性检测与比较[J].西南农业学报,2008,21(1):57-61
    [8]North GB, Nobel PS. Changes in Root Hydraulic Conductivity and anatomy caused by drying and rewetting roots of Agave deserii(Agavaceae) [J]. American Journal of Botany, 1991,78
    [9]李予霞,崔百明,刘升学,等.PEG处理葡萄试管苗生理反应及叶片组织形态研究[J].干旱地区农业研究,2004,40(3):305-308
    [10]王静,黄薇,刘桐.不同干旱胁迫下几种春小麦种子根形态结构的研究[J].中国沙漠,2000,20(1):79-81
    [11]颜振德.甘薯品种的耐旱性及其鉴定方法的研究[J].作物学报,1964,3(2):183-189
    [12]喻方圆,徐锡增,Rober D.Guy水分和热胁迫对5中苗木生长及生物量的影响[J].南京林业大学学报,2003,27(4):10-14
    [13]齐伟,张吉旺,王空军,等.干旱胁迫对不同耐旱性玉米杂交种产量和根系生理特性的影响[J].应用生态学报,2010,21(1):48-5
    [14]杨敏生,裴保华,朱之悌.白杨双交杂种无性系抗旱性鉴定指标分析[J].林业科学,2002,38(6):36-42
    [15]张彤,齐麟.植物抗旱机理研究进展[J].林业科学,2005,38(4):107-109
    [16]Sam O, Jerez E, Dell J, Ruiz-Sanchez MC. Water Stress Induced Changes in Anatomy of Tomato Leaf Epidermis. Biol Plant,2000,43:275~277
    [17]李连朝,王学臣.水分亏缺对植物细胞壁的影响及其细胞延伸生长的关系.植物生理学通讯,1996,32:321-327
    [18]Carpit N C, Gibeaut D M. Structural Model of Primary Cell Walls in Flowering Plants: Consistency of Molecular Structure with the Physical Properties of the Walls during Growth. Plant J,1993,3:1-30
    [19]Meir P, Kruijt B, Broadmeadow M, et al. Acclimation of Photosynthetic Capacity to Irradiance in Tree Canopies in Relation to Leaf Nitrogen Concentration and Leaf Mass per Unit Area [J]. Plant, Cell & Environment,2002,25 (3):343-357
    [20]Larcher W.植物生态生理学[M].翟志席,等译.北京:中国农业大学出版社,2000
    [21]柯世省,金则新.水分胁迫和温度对夏腊梅叶片气体交换和叶绿素荧光特性的影响[J].应用生态学报,2008,19(1):43-49
    [22]Rhoderbaugh E J, Pllary S G. Water Stress, Phyotosynthesis and Early Growth Patterns of Cuttings of Three Populus Clones. Tree Physiology,1993,13(3):213~226
    [23]邱尔发,洪伟,郑郁善,等.麻竹山地笋用林笋期叶片光合及呼吸形状研究[J].林业科学,2001,37(1):148-153
    [24]王克勤,王斌瑞,王震洪.金矮生苹果水分利用效率研究[J].生态学报,2002,22(5):723-728
    [25]陈建军,任永浩,陈培元,等.干旱条件下氮营养对小麦不同抗旱品种生长的影响.作物学报,1996,22(2):483-489
    [26]李吉跃.植物耐旱性及其机理.北京林业大学学报,1991,(13):92-99
    [27]段舜山,顾文祥.半干旱地区小麦群体的根系特征与抗旱性的关系.应用生态学报,1997,8:134-138
    [28]王静,谈惠云.水分胁迫对春小麦苗期叶肉细胞和气孔数的影响[J].西北植物学报,2000,20:842-846
    [29]张小全,徐德应.温度对杉木中龄林针叶光合生理生态的影响[J].林业科学,2002,38(3):27-33
    [30]张淑勇,周泽福,张光灿,等.半干旱黄土丘陵区4种天然次生灌木光合生理和水分利用特征[J].林业科学,2008,44(12):140-145
    [31]Liang N S, Murayama K. Interactive Effects of CO2 Enrichment and Drought Stress on Gas Exchange and Water-use Efficiency in Alnus firma. Environmental and Experimental Botany,1995,35:353~361
    [32]Molnar I, Gaspar L, Stehli L, et al. The Effects of Drought Stress on the Photosynthetic Processes of Wheat and of Aegilops Biuncialis Genotypes Originating from Various Habitats. Acta Biologic Szegediensis,2002,46:115~116
    [33]何维明,董鸣.升高气温对旱柳光合和生长的影响[J].林业科学研究,2003,39(1):160-164
    [34]Louche-Tessandier D, Samson G, Hernanaez- Sebastia C, et al. Importance of Light and CO2 on the Effects of Endomyorrhizal Colonization on Growth and Photosynthesis of Potato Plantlets (Solanum tuberosium) in an in Vitro Tripartite System [J].New Phytologist,1999,142:539~550
    [35]Maxwell K, Johnson G N. Chlorophyll Fluorescence a Practical Guide[J].Journal of Experimental Botany,2000,51:659~668
    [36]史胜青,袁玉欣,杨敏生,等.水分胁迫对4种苗木叶绿素荧光的光化学猝灭和非光化学猝灭的影响[J].林业科学,2004,40(1):168-173
    [37]杨敏生,李艳华,梁海永,等.白杨派杂种无性系及其亲本光合和生长对盐胁迫的反应[J].林业科学,2006,42(4):19-26
    [38]李延菊,李宪利,张序,等.3个扁桃品种品种的光合特性[J].林业科学,2006,42(11):23-28
    [39]Almoguera C, Prieto-Dapena P, Jordano J. Dual Regulation of a Heat Shock Promoter During Embryogenesis:Stage-dependent Role of Heat Shock Elements [J]. Plant J,1998, 13:437~446
    [40]Demmig-Adams B, Adams IIIWW, Barker DH, et al. Using Chlorophyll Fluorescence to Assess the Fraction of Absorbed Light Allocated to Thermal Dissipation of Excess Excitation [J]. Physiologia Plantarum,1996,98:253~264
    [41]张黎萍,荆奇,戴廷波,等.温度和光照强度对不同品种类型小麦旗叶光合特性和衰老的影响[J].应用生态学报,2008,19(2):311-316
    [42]马博英,徐礼根,蒋德安.模拟酸雨对假俭草叶绿素荧光特性的影响[J].林业科学,2006,42(11):8-11
    [43]Genty B, Briantais J M, Baker N R. The Relationship between the Quantum Yield of Photosynthesis Electron Transport and Quenching of Chlorophyll Fluorescence [J]. Biochimica et Biophysica Acta,1989,990:87~92
    [44]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006,18(1):51-55
    [45]蔡永萍,李玲,李合生,等.霍山石斛叶片光合速率和叶绿素荧光参数的日变化[J].园艺学报,2004,31(6):778-783
    [46]Marler T E, Michelbart M V. Drought, Leaf Gas Exchange and Chlorophyll Fluorescence of Field-grown Papaya[J]. Amer Soc Hort Sci,1998,123(4):714~718
    [47]Krause G. H. Photoinhibition of Photosynthesis, an Evaluation of Damaging and Protective Mechanisms [J]. Physiol Plant,1988,74:566-574
    [48]Gilmore AM, Yamamoto H Y. Zeaxanthin Formation and Energy Dependent Fluorescence Quenching in Pea Chloroplasts[J]. Plant Physiol,1996,96:636~643
    [49]Lacono F, et al. Response of Electron Transport Rate of Water Stress-affected Grapevines: Influence of Leaf Age. Vitis,2000,39(4):137~144
    [50]吴楚,王政权,孙海龙,等.氮磷供给对长白落叶松叶绿素合成、叶绿素荧光和光合速率的影响[J].林业科学,2005,41(4):32-36
    [51]Marwood CA, Solomon KR, Greenberg BW. Chlorophyll Fluorescence as a Bioindicator of Effects on Growth in Aquatic Macrophytes from Mixtures of PAHs [J]. Environmental Toxicology and Chemistry,2001,20:890~898
    [52]袁敏,铁柏清,唐美珍.改良剂对铅锌尾矿污染土壤龙须草生长和叶片叶绿素含量的影响[J].农村生态环境,2005,21(4):54-57
    [53]李莉,钟章成,缪世利,等.诸葛菜对水分胁迫的生理生化反应及调节适应能力[J].西南师范大学学报(自然科学版),2000,25(1):33-37
    [54]Miyashita,K, TanakamaurS, Maitani,T, Kimura K. Recovery Response of Photo-synthesis,Transpiration and Stomatal Conductance in Kidney Bean Following Drought Stress[J].Environmental and ExPerimental Botany,2005,53:205~214
    [55]周龙,廖康,王磊.低温胁迫对新疆野生樱桃李电解质渗出率和丙二醛含量的影响[J].新疆农业大学学报,2006,29(1):47-50
    [56]杨东,张红,陈丽萍,等.温度胁迫对10种菊科杂草丙二醛和可溶性糖的影响[J].四川师范大学学报(自然科学版),2007,(3):393
    [57]陈少瑜,郎南军,贾利强,等.干旱胁迫对坡柳等抗旱树种幼苗苗木膜脂过氧化及保护酶活性的影响[J].植物研究,2006,26(1):88-92
    [58]薛刚,刘凤霞,高俊风.干旱对棉花根和下胚轴质膜脂及酸组分及其相关酶活性的影响[J].植物生理学通报,1997,33:97-100
    [59]彭诚,易咏梅.冷冻胁迫对狭叶四照花苗丙二醛等生理特性的影响[J].湖北民族学院学报(自然科学版),2007,25(2):193
    [60]潘瑞炽,王小菁,李娘辉.植物生理学[M].北京:高等教育出版社,2001
    [61]陈段芬,李宪松,邸葆,等.甲醛对5种花卉质膜透性和保护酶活性的影响[J].华北农学报,2007,22(3):84-87
    [62]Walter L.植物生态生理学[M].瞿志席译.北京:中国农业大学出版社,1997
    [63]Morgan JM. Osmorgulation and Water Stress in Higher Plants [J].Annual Review of Plant Physiology,1984,35:299~319
    [64]涂三思,秦天才.高温胁迫对黄姜叶片脯氨酸、可溶性糖和丙二醛含量的影响[J].湖北农业科学,2004,4:100
    [65]陈立松,等.水分胁迫对荔枝叶片糖代谢的影响及其与抗旱性的关系[J].热带作物学报,1999,20(2):31-36
    [66]史玉炜,王燕凌,李文兵,等.水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J].新疆农业大学学报,2007,30(2):5-8
    [67]Hare P D, Van Staden J, Cress WA. Proline Synthesis and Degradation:A Model System for Elucidating Stress-related Signal Transduction[J]. J Exp Bat,1999,50(33):413~434
    [68]陈少裕.膜脂过氧化对植物细胞的伤害[J].植物生理学报,1991,27(2):84-90
    [69]侯福林.植物生理学实验教程[M].北京:科学出版社,2004,205-208
    [70]郭丽红,王德斌,王定康,等.热激对冷胁迫下玉米幼苗苗木质膜透性和抗氧化酶活性的影响[J].西南农业学报,2008,21(1):48-51
    [71]尹永强,胡建斌,邓明军.植物叶片抗氧化系统及其对逆境胁迫的响应研究进展[J].中国农学通报,2007,(1):105-106
    [72]杨秀玲,郁继华,颉建民.NaCl胁迫对黄瓜自根苗和嫁接苗质膜透性与抗氧化酶活性的影响[J].甘肃农业大学学报,2007,4:44-47
    [73]Zhang J X, Kirkham M B. Drought-stress-induced Changes in Activities of Superoxide Dismutase, Catalase, and Peroxidase in Wheat Species [J]. Plant Cell Physiol,1994,35(5): 785~791
    [74]周瑞莲,赵哈林,陈国栋.高寒山区植物根抗氧化酶系统的季节变化与抗冻性关系[J].生态学报,2001,26(6):865-870
    [75]陈杰中,徐春香.植物冷害及其抗冷生理[J].福建果树,1998,104(2):21-23
    [76]He Jilin, Liu Hong Xian.The Relationship between the Changes of Endogenous Hormone Content and the Drought Resistance in Leaves of Wheat during Drought[J].Journal of Tropical and Subtropical Botany,1998,6(4):341~346
    [77]Allan A C, Fricker M D, Ward J L, et al. Two Transduction Pathways Mediate Rapid Effects of Abscisic Acid in Comedian Guard Cells [J]. Plant Cell,1994,6:1319~1328
    [78]施积炎,袁小凤.作物水分亏缺补偿与超补偿效应的研究现状[J].山地农业生物学报,2000,19(3):226-233
    [79]刘晓英,罗远培,石元春.考虑水分胁迫滞后影响的作物生长模型[J].水利学报,2002,6:32-37
    [80]赵可夫.植物对水涝胁迫的适应[J].生物学通报,2003,38(12):11-14
    [81]唐建军,王永锐,傅家瑞.水稻对渍水稻田土壤缺氧胁迫的反应[J].中国稻米,1995(1):29-31
    [82]魏凤珍,李金才,董琦.孕穗期至抽穗期湿害对耐湿性不同品种冬小麦光合特性的影响[J].植物生理学通讯,2000,3(62):199
    [83]李金才,董琦,余叔文.不同生育期根际土壤淹水对小麦品种光合作用产量的影响[J].作物学报,2001,2(74):434-442
    [84]高健,侯成林,吴泽民.水淹胁迫对I—69/55杨蒸腾作用的影响[J].应用生态学报,2000,11(4):518-522
    [85]晏斌,戴秋杰,刘晓忠,等.玉米叶片涝渍伤害过程中超氧自由基的积累.植物学报,1995,37(9):738-744
    [86]吴林,黄玉龙,李亚东.越桔对淹水的耐受性及形态生理反应[J].吉林农业大学学报,2002,24(4):64-69
    [87]曾淑华,刘飞虎,覃鹏,等.淹水对烟草生理指标的影响[J].烟草科技,2004,198(1):36-38
    [88]曾淑华,赵正雄,覃鹏,等.淹水对转超氧化物歧化酶或过氧化物酶基因烟草某些生理生化指标的影响[J].植物生理学通讯,2005,51(4):54-57
    [89]Boamfa E I, Ram P C, Jackson M B, et al. Dynamic Aspects of Alcoholic Fermentation of Rice Seedlings in Response to Anaerobiosis and to Complete Submergence:Relationship to Submergence Tolerance[J]. Annals of Botany,2003,91:279~190
    [90]Armstrong W, Brandle R, Jackson M B. Mechanisms of Flood Tolerance in Plants [J].Acta Botanica Neerlandica,1994,43:307~358
    [91]Gaynard T J, Armstrong W. Some Aspects of Internal Plant Aeration in Amphibious Habitats.R.M.M Crawford. Plant Life in Aquatic and Amphibious Habitats.Oxford,UK: Blackwell Scientific Publications,1987,303~320
    [92]Crawford R M M. Oxygen Availability as an Ecological Limit to Plant Distribution. Advances in Ecology Research,1992,23:93~185
    [93]Ricard B, Couee I, Raymond P. Plant Metabolism under Hypoxia and Anoxia. Plant Physiol Biochem,1994,32:1~10
    [94]Plaxton WC. The Organization and Regulation of Plant Glycolysis, Annu Rev Plant Physiol and Plant. Molecular Biology,1996,47:185~214
    [95]董建国,余叔文.细胞分裂素对渍水小麦衰老的影响[J].植物生理学报,1984,10:55
    [96]Kozlowski T T, Pallardy S G. Effect of Flooding on Water, Carbohydrate, and Mineral Relation.In Flooding and Plant Growth Academic Press New York,1984,165-193
    [97]Justin S H, Armstrong W. The Anatomical Characteristics of Roots and Plant Response to Soil Flooding.New Phytol,1987,106:465~495
    [98]Sachs M M, Subbaiah C C, Saab I N. Anaerobic Gene Expression and Flooding Tolerance in Maize[J]. J Exp Bot,1996,47:1~15
    [99]陶大立,靳月华.树木越冬伤害[M].北京:科学出版社,2005,83-87
    [100]Mckersie BD. Active Oxygen/Oxidative Stress and Plant Metabolism.Amercian Society of Plant Physiologists.1991,107~118
    [101]Murata N, Ishizaki-Nishizawa O. Genetically Engineered Alteration in the Chilling Sensitivity of Slants.Nature,1992,356:710~713
    [102]Webb MS, Uemura M, Steponkus PL. A Comparison of Freezing Injury in Oat and Rye:Two Cereals at the Cxtremes of Freezing Tolerance. Plant Physiology,1994,104 (2):467~478
    [103]Shimper A.F.W. Plant-geogrphy upon Physiological basis. Oxford:Clarendon Press, 1903,2-9
    [104]段伟,李新国,孟庆伟,等.低温下的植物光抑制机理[J].西北植物学报,2003,23(6):1017-1023
    [105]Hodgson R A L, Orr G R, Raison J K. Inhibition of Photosynthesis by Chilling in Light. Plant Science,1987,49(2):75~79
    [106]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社,1994
    [107]Rosengarten F Jr. The Book of Edible Euts[M]. New York:Walker and Company, 1984,3:197~201
    [108]Sturrock D. Fruits for Southern Florida[J].Southeastern Printing Co Inc,1959,5(3): 24-30
    [109]Ferguson L. A Control Volume Finite Element Numerical Simulation of the High Temperature Drying of Spruce. Department of University of California,1995,4(2):30-38
    [110]王荣富.植物抗寒性指标的种类及其应用[J].植物生理学通报,1995(3):49-55
    [111]沈漫.常春藤质膜透性和内源激素与抗寒性关系初探.园艺学报,2005,32(1):141-144
    [112]Cannell M.G..R.et al. Sitke Spruce and Douglas fir Seedlings in the Nursery and in Cold Storage:Root Growth Potential, Carbohydrate Content, Dormancy, Frost Hardiness and Mitotic Index,Forestry 1990,63(1):10~27
    [113]Sakai,A. Low Temperature Exotherms of Winter Buds of Hardy Confiers[J]. Plant and Cell Physiology,1978,19:1439-1446
    [114]Askenasy E. Beitrage zur Kenntnis des Chloropgylls und einiger dasselbe begleitender Farbstoffe.Bot.Ztg.1867,225-230,233-238.
    [115]Bertamini M, Muthuchelian K, Rubinigg M, Zorer R, Velasco R, Nedunchezhian N. Low-night Temperature Increased the Photoinhibition of Photosynthesis in Grapevine(Vitis vinifera L.cv.Riesling) Leaves [J]. Environ Exp Bot,2006,57:25~31
    [116]Boese SR, Huner NPA. Developmental History Affects the Susceptibility of Spinach Leaves to in vivo Low Temperature Photoinhibition[J]. Physiol Plant,1992,99:1141~1145
    [117]Feierabend J, Schaan C, Hertwig B. Photoinactivation of Catalase Occurs under Both High-and Low-temperature Stress Conditions and Accompanies Photoinhibition of Photosystem II[J]. Physiol Plant,1992,100:1554-1561
    [118]Long SP, East TM, Baker NR. Chilling Damage to Photosynthesis in Young Zea mays I. Effects of Light and Temperature Variation on Photosynthetic CO2 Assimilation [J]. J Exp Bot,1983,34:177~188
    [119]Long SP, Humphries S, Falkowski PG. Photoinhibition of Photosynthesis in Nature. Annu Rev Plant Physiol Plant Mol Biol,1994,45:633~662
    [120]Aro EM, Virgin Ⅰ, Andersson B. Photoinhibition of Photosystem Ⅱ:Inactivation, Protein Damage and Turnover. Biochim Biophys Acta,1993,1143:113~134
    [121]胡永红,张启翔,王奎玲,等.低温对切花菊叶片细胞器超微结构的影响[J].莱阳农学院学报,2000,17(1):38-43
    [122]Yoshida S. Freezing Injury and Phospholipid Degradation in vivo in Woody Plant Cells III.Effects of Freezing on Activity of Membrane-bound Phospholipase D in Microsome-enriched Membrances[J]. Plant Physiol,1979,64:252~256
    [123]黄小云,向邓云.自然降温过程中草珊瑚抗寒适应性研究[J].重庆师范学院学报(自然科学版),2002,19(1):66-69
    [124]张国红,张爱芝,苗果园.不同小麦品种对低温的生理反应研究[J].山西农业大学学报,2002,2(2):108-112
    [125]孙中海,章文才.柑桔抗寒性与膜脂肪酸组分的关系研究[J].武汉植物学研究,1990,8(1):79-85
    [126]朱其杰,高守云,蔡诛湖.黄瓜耐冷性鉴定指标及遗传规律的研究.中国主要蔬菜抗病育种进展[M].北京:科学出版社,1995,457-462
    [127]房用,李秀芬,慕宗昭.茶树抗寒性研究进展[J].经济林研究,2004,22(2):69-72
    [128]CAO X Q. The Effect of Membrane-lipid Peroxidation on Cell and Body[J].Prog Biochem Biophys,1986(2):17~23
    [129]冯建灿,张玉洁,杨天柱.低温胁迫对喜树幼苗苗木SOD活性、MDA和脯氨酸含量的影响[J].林业科学研究,2002,15(2):197-200
    [130]冯昌军,罗新义,沙伟,等.低温胁迫对苜蓿品种幼苗苗木SOD, POD活性和脯氨酸含量的影响[J].草业科学,2005,22(6):29-31
    [131]朱红.低温对杜鹃离休茎组织细胞膜透性的研究[J].浙江林业科学,1994,14(2):4-7
    [132]朱湘渝.欧美杨新品种抗寒性研究[J].林业科学研究,1990,3(5):487-490
    [133]简令成.林木的寒害及抗寒性[M].哈尔滨:黑龙江出版社,1986,16-76
    [134]DaMatta FM, Ramalho J D C. Impacts of Drought and Temperature Stress on Coffee Physiology and Production:a Review[J]. Brazilian Journal of Plant Physiology,2006,18 (1):55~81
    [135]Hard, J. S. Vertical Distribution of Cones in Red Pine. USDA Forest Service, Research Note LS-51. Lake States Forest Experiment Station.St. Paul, MN.1964,2p
    [136]Alban DH, Perala DA, Schlaegel BE. Biomass and Nutrient Distribution in Aspen Pineand Spruce Stands on the Same Soil Type in Minnesota. Canadian Journal of Forest Research,1978,8:290~298
    [137]Alban DH. Soil Variation and Sampling Intensity under Red Pine and Aspen in Minnesota. USDA Forest Service, Research Paper NC,1974,106
    [138]Fowler, D P, Lester D T. The Genetics of Red Pine. USDA Forest Service, Research Paper WO-8,Washington, DC.1970,13
    [139]Brown W.G.E, Lacate D.S. Rooting Habit of White and Red Pine.Canadian Department of Forestry, Forest Research Branch, Technical Note 108. Ottawa,ON,1961,16
    [140]Benzie JW. Manager's Handbook for Red Pine in the North Central States.USDA Forest Service, General Technical Report NC,1977,33
    [141]Rowe, J.S. Forest Regions of Canada. Dept Environment, Can. Forest Serv, Publication No 1300,1972
    [142]William C, Parker, Gina H, Mohammed. Photosynthetic Acclimation of Shade-grown Red Pine(Pinus resinosa Ait.) Seedlings to a High Light Environment[J]. New Forests,2000,19:1~11
    [143]Strothmann, R.O. The Influence of Light and Moisture on the Growth of Red Pine Seedling in Minnesota. Forest Sci,1967,13:182~191
    [144]Elliott, K.J, White, A S. Effects of Competition from Young Northern Hardwoods on Red Pine Seedling Growth, Nutrient Use Efficiency, and Leaf Morphology. Forest Ecol Manage,1993,57:233~255
    [145]Puettmann,K.J, Reich, P B. The Differential Sensitivity of Red pine and Quaking Aspen to Competition. Can J Forest Res,1995,25:1731~1737
    [146]Johnson,J E, Lindow, S G, Rogers.R. Light Soil and Seedling Characteristics Associated with Varying Levels of Competition in a Red Pine Plantation. New Forests,1998,15:23~36
    [147]Shirley, H L. Reproduction of Upland Conifers in the Lake States as Affected by Root Competition and Light. Am Midl Nat,1945,33:537~612
    [148]Logan, K T. Growth of Tree Seedlings as Affected by Light Intensity II Red Pine, White Pine, Jack Pine, and Eastern Larch. Canadian Department of Forestry, Publication 1160,Ottawa, ON,1966.19
    [149]Horton,K W,G E Brown.Ecology of White and Red Pine in the Great Lakes St. Lawrence Forest Region Canadian Department of Northern Affairs and National Resources Forestry Branch.Forest Research Division Technical Note 88 Ottawa, ON,1960.22
    [150]Alban, D H, D H Prettyman, G J Brand. Growth Patterns of Red Pine on Fine-textured Soils USDA Forest Service, Research Paper NC-280. North Central Forest Experiment Station. St. Paul, MN,1987,8
    [151]DeMent, J A, E L Stone. Influence of Soil and Site on Red Pine Plantations in New York II Soil Type and Physical Properties. Cornell University Agricultural Experiment Station, Bulletin 1020 Ithaca, NY,1968,25
    [152]Love, D V, J R M Williams. The Economics of Plantation Forestry in Southern Ontario Department of Regional Economic Expansion. Canada Land Inventory Report 5,1968,46
    [153]Stiell W M. Characteristics of Eastern White Pine and Red Pine. In Proceedings, Symposium on White and Red Pine. D A Cameron, comp. Department of the Environment, Canadian Forestry Service O-P-5. Great Lakes Forest Research Centre, Sault Ste. Marie,ON.1978,7-52
    [154]Stiell,W. M. Some Competitive Relations in a Red Pine Plantation. Department of Fisheries and Forests, Canadian Forestry Service Publication 1275. Ottawa, ON,1970,10
    [155]Stone,D M. Growth of Red Pine Planted in a Northern Hardwood Site USDA Forest Service, Research Note NC210. North Central Forest Experiment Station,St. Paul, MN,1976,4
    [156]U.S.Department of Agriculture, Soil Conservation Service,Soil Taxonomy:a Basic System of Soil Classification for Making and Interpreting Soil Surveys, Soil Survey Staff, coords. U.S. Department of Agriculture, Agriculture Handbook 436. Washington, DC,1975,754
    [157]Fayle, D C F. Extension and Longitudinal Growth during the Development of Red Pine Root Systems.Canadian Journal of Forest Research.1975,5:109~121
    [158]Cheyney, E G. American Silvics and Silviculture. Minneapolis:University of Minnesota Press,1942,472
    [159]Methven, I. R. Fire, Succession and Community Structure in a Red and White Pine Stand. Department of Environment Canadian Forestry Service, Information Report PS-X-43. Chalk River, ON.1973,18
    [160]Stone, E L. The Communal Root System of Red pine; Growth of Girdled Trees. Forest Science,1974,20:294~305
    [161]Sucoff, E, R Feller, D Kanten. Deicing Salt (sodium chloride) Damage to Pinus resinosa Ait. Canadian Journal of Forest Research,1975,5:546~556
    [162]Van Wagner, C E. Fire and Red Pine. In Proceedings, Annual Tall Timbers Fire Ecology Conference,1970,211~219
    [163]Sutinen ML, Palta JP, Reich PB. Seasonal Differences in Freezing Stress Resistance of Needles of Pinus nigra and Pinus resinosa:Evaluation of the Electrolyte Leakage Method. Tree Physiology,1992,11:241~254
    [164]Hiratsuka,Y, Zalasky, H. Frost and Other Climate-related Damage of Forest Trees in the Prairie Provinces. Forestry Canada, Northwest Region, Northern Forestry Centre, Edmonton, Alta, Inf. Rep. NOR-X-331,1993
    [165]那冬晨,杨传平,姜静,等.兴安落叶松种源区划及优良种源选择.林业科技,2005,7(4):1-2
    [166]李淑娟,王明玉,李文友,等.东北林业大学帽儿山实验林场景观格局及破碎化分析.东 北林业大学学报,2002,5(3):49-52
    [167]Brown,W.G.E., D.S.Lacate. Rooting Habit of White and Red Pine. Canadian Department of Forestry,Forest Research Branch, Technical Note 108,Ottawa,1961,16
    [168]李景文.黑龙江森林[M].哈尔滨:东北林业大学出版社,1993
    [169]刘爽,王庆成,刘亚丽,等.土壤酸度对脂松苗木光合和叶绿素荧光的影响[J].应用生态学报,2009,20(12):2905-2910
    [170]刘爽,王庆成,刘亚丽.脂松苗木对土壤pH值的生理响应.第八届中国林业青年学术年会论文集,哈尔滨,2008,571-574
    [171]沈光,王庆成,张悦,等.松引种驯化初报[J].林业科技,2006,31(4):10-11
    [172]张悦,沈光,王庆成,等.脂松引种的初步研究.国土与自然资源研究,2006,3:88-89
    [173]杨俊,赵雨森,韩春华,等.微立地土壤物理性质差异及对脂松幼林生长的影响[J].东北林业大学学报,2008,6:24-25
    [174]王付刚,吴迪,赵实.脂松幼林生长和立地条件关系的研究[J].内蒙古林业调查设计,2010,5:85-87
    [175]毛如达.近代植物营养科学的方法论[J].植物营养与肥料学报,1994,(1):1-5
    [176]李合生,孙群,赵世杰,等.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000
    [177]汤章诚,魏家绵,陈因,等.现代植物生理学实验指南[M].北京:科学出版社,1999
    [178]王晶英,敖红,张杰,等.植物生理生化实验技术与原理[M].哈尔滨:东北林业大学出版社,2003
    [179]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工大学出版社,2005
    [180]Rohacek K. Chlorophyll Fluorescence Parameters:the Definitions, Photosynthetic Meaning and Mutual Relationships [J]. Photosynthetica,2002,40(1):13~29
    [181]姚庆群,谢贵水.干旱胁迫下光合作用的气孔与非气孔限制[J].热带农业科学,2005,25(4):80-85
    [182]Kramer PJ. Water Relations of Plants. New York:Academic Press,1983
    [183]Thomas R M J, Fukai S, Peoples M B. The Effect of Timing and Severity of Water Deficit on Growth,Development, Yield, Accumulation and Nitrogen Fixation of Mungbean[J]. Field Crops Research,2004,86:67~80
    [184]Xiao C W, Zhou G S, Ma F Y. Effect of Water Supply Change on Morphology and Growth of Dominant Plants in Mao wu su Sandland [J]. Acta Phytoecologica Sinica,2002,26(1):69~76
    [185]Zhu X W, Huang Z Y, Zhang S M, et al. The Responses of Seed Germination, Seedling Emergence and Seedling Growth in Agropyron cristatum to Sand Water Content in Otindag Sandland, China. Acta Ecologica Sinica,2005,25(2):364~370
    [186]Alexieva V, Sergiev I, Mapelli S, et al. The Effect of Drought and Ultraviolet Radiation on Growth and Stress Markers in Pea and Wheat[J]. Plant Cell Environ,2001,24: 1337~1344
    [187]Sutinen ML, Palta JP, Reich PB. Seasonal Differences in Freezing Stress Resistance of Needles of Pinus nigra and Pinus resinosa:Evaluation of the Electrolyte Leakage Method[J]. Tree Physiology.1992,11:241~254
    [188]Reddy A R, Chaitanya K V, Vivekanan dan M. Drought-induced Responses of Photosynthesis and Antioxidant Metabolism in Highter Plants [J]. Journal of Plant Physiology,2004,161(11):1189-1202
    [189]Alonso R, Elvira S, Castillo F J, et al. Interactive Effects of Ozone and Drought Stress on Pigments and Activities of Antioxidative Enzymes in Pinis Halpensis [J]. Plant Cell Environ,2001,24(90):5-16
    [190]Smirnoff N. The Role of Active Oxygen in the Response of Plants to Water Deficit and Desiccation[J]. New Phytologist,1993,125:27~58
    [191]史玉炜,王燕凌,李文兵,等.水分胁迫对刚毛柽柳可溶性蛋白、可溶性糖和脯氨酸含量变化的影响[J].新疆农业大学学报,2007,30(2):5-8
    [192]许祥明,叶和春,李国凤.脯氨酸代谢与植物抗渗透胁迫的研究进展[J].植物学通报,2000,17(6):536
    [193]刘瑞香,杨吉力,高丽.中国沙棘和俄罗斯沙棘叶片在不同土壤水分条件下脯氨酸、可溶性糖及内源激素含量的变化[J].水土保持学报,2005,19(3):148-151
    [194]张智,夏宜平,常乐,等.3种观赏草在自然失水胁迫下的生理变化与耐旱性关系[J].东北林业大学学报,2007,35(3):17-20
    [195]王邦锡,黄久常,王辉.不同植物在水分胁迫条件下脯氨酸的积累与抗旱性的关系[J].植物生理学报,1989,15(15):46-51
    [196]崔喜艳,陈展宇,王思远,等.土壤pH值对烤烟叶片内超氧物歧化酶活性及丙二醛含量的影响[J].吉林农业大学学报,2001,23(3):13
    [197]Knorzer OC, Dumer J, Boger P. Alterations in the Antioxidative System of Suspension-Cultured Soybean Cell (Glycinemax) Induced by Oxidative Stress [J]. Physiologia Plantanum,1996,97:388~396
    [198]贾虎森,蔡世英,李德全,等.土壤干旱胁迫下钙处理对芒果幼苗苗木光合作用的影响[J].果树科学,2000,17(1):52-56
    [199]ZhaoT, Gao Z K, XuG H, et al. Study on Getting Parameters of Chlorophyll Fluorescence Dynamics by Non-modulated Fluorometer Plant Efficiency Analyser. Acta Biophysica Sinica,2006,22(1):34~38
    [200]BinderW D, FielderP. Chlorophyll Fluorescence as in Indicator of Frost Hardiness in White Spruce Seedlings from Different Latitudes[J], New Forests,1996,11:233~253
    [201]EhlertB, HinvhaDK. Chlorophyll Fluorescence Imaging Accurately Quantifies Freezing Damage and Cold Acclimation Responses Arabidopsis Leaves[J]. Plant Methods,2008,4:1
    [202]Kate M, Giles N J. Chlorophyll Fluorescence a Practical Guide[J]. Journal of Experimental Botany,2000,51 (4):659~668
    [203]赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报,2000,34(3):248-251
    [204]Qgren E, Evans J R. Photoinhibition in Situ in Six Species of Eucalyptus[J]. Aust J Plant Physiol,1992,19:223~232
    [205]许大全.植物光胁迫研究中的几个问题[J].植物生理学通讯,2003,39(5):493-495
    [206]李晓萍,陈贻竹,李平,等.黄瓜幼苗苗木的冷锻炼与低温引起的光抑制[J].植物生理学报,1996,22(1):101-104
    [207]左宝峰,姚延涛,刘文.自然降温对雪松叶片中SOD活性及MDA含量的影响[J].辽宁林业科技,2005,1
    [208]石雪晖.低温胁迫对柑桔离体叶片质膜透性和MDA及V-C含量的影响[J].湖南农业大学学报,1997,23(1):36-40
    [209]詹福建,巫光宏,黄卓烈,等.马占相思树对低温冻害的抗性研究[J].林业科学,2003,39(1):56-61
    [210]郭爱华,左宝峰.自然降温对雪松叶片中叶绿素及电导率的影响[J].山西农业大学学报,2005,25(4):393-395
    [211]杨敏生,裴保华.白杨杂种无性系抗寒性生理指标动态分析[J].植物生态学报1997,21(4):367-375
    [212]芦站根,周文杰,赵昌琼.不同光强对曼地亚红豆杉抗寒性的影响[J].植物研究,2003,7
    [213]陈钰,郭爱华,姚延涛.杏枝芽内MDA含量和电解质外渗率值变化与抗寒性关系的研究[J].天津农业科学,2007,13(4):4-6
    [214]张自坤,刘世琦,王忠全,等.低温胁迫对不同砧木黄瓜嫁接苗生理生化指标的影响[J].山东农业科学,2009,5:36-40
    [215]邱乾栋,吕晓贞,臧德奎.植物抗寒生理研究进展[J].山东农业科学,2009,8:53-57
    [216]李凯,杨建平,马宁.低温处理对裸仁南瓜幼苗苗木抗寒性指标的影响[J].山东农业科学,2009,1:52-54
    [217]周瑞莲,张普金.春节高寒草地牧草根中营养物质含量和保护酶活性的变化及其生态适应性研究[J].生态学报,1996,16(4):402-407
    [218]黄月华,徐建民,余雪标.低温胁迫对桉树代谢的影响[J],热带农业科学,2005,25(5):24-28
    [219]施征.三个枣品种抗寒生理特性的研究[D].河北农业大学,2003
    [220]刘娥娥,宗会.干旱、盐和低温胁迫对水稻幼苗苗木脯氨酸含量的影响[J].热带亚热带植物学报,2000,8(3):235-238
    [221]池春玉,连永权,李文君,等.低温胁迫下三种冷季型草坪草的抗寒性变化[J].安徽农学通报,2007,13(7):41-43
    [222]王连敏,王立志,张国民,等.苗期低温对玉米体内脯氨酸、电导率及光合作用的影响[J].中国农业气象,1999,20(2):28-31
    [223]周瑞莲,程国栋.高寒牧区牧草根中丙二醛、渗透调节物、多胺季节动态与抗冻力关系研究[J].植物生态学报,2000,24(5):554-559
    [224]王荣富,魏克芳.茶树越冬期间光合作用的变化与调节[J].茶业通报,1995,17(2):4-5
    [225]伏兵哲,米福贵,宁红梅,等.自然降温过程中串叶松香草抗寒适应性研究[J].湖北农业科学,2010,49(5):1166-1172
    [226]靳月华,高均成.红松越冬针叶的电子自旋共振(ESR)波谱[J].应用生态学报,1990,1(2):172-176
    [227]郑家基,谢厚钗,肖燕惠,等.香蕉越冬期ATPase和保护酶的活性及膜脂过氧化[J].福建农业大学学报,1996,25(4):420-424
    [228]严寒静,谈锋.自然降温过程中栀子叶片膜保护系统的变化与低温半致死温度的关系[J].植物生态学报,2000,24(1):91-95
    [229]Griffthm, Mclntyre CH. The Interrelationship of Growth and Frost Tolerance Inwinter Rye [J]. Physiol Plant,1993,87(3):335~344
    [230]陈善娜,刘继梅,游慧灵,等.抗寒剂和高油菜素内酯对高原水稻抗冷性的影响[J].云南植物研究,1997,19(2):184-190
    [231]王国莉,郭振飞.低温对水稻不同耐冷品种幼苗苗木光合速率和叶绿素荧光参数的影响[J].中国水稻科学,2005,19(4):381-383
    [232]周德宝.不同披碱草抗寒性的研究[J].阴山学刊(自然科学版),1996,13(3):36-39
    [233]JIN Yue-Hua, TAO Da-Li, HAO Zhan-Qing, et al. Environnlental Stresses and Redox Status of Ascorbate[J]. Acta Botanica Sinica,2003,45(7):795~801
    [234]陶大立,靳月华,杜英君.红松苗越冬伤害原因三假说检验[J].林业科学,1988,24:148-155
    [235]卢振元,杨彩民.红松苗木枯梢原因的模拟实验[J].林业实用技术,1984,(6):3-5

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700