设施蔬菜蒸腾调控机理与方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本篇论文在日光温室内通过调控光照、大气湿度、温度、气流运动速度、土壤水分等环境因子,来研究植株蒸腾耗水。期望能找到最佳的环境条件,减少植株无效蒸腾,提高水分利用效率,从而为设施农业水资源的节约利用方面提供理论和实践依据。该文的主要研究结果如下:
     1、在茎热平衡技术测定植株茎流的原理基础上,结合温室内气象数据采集仪器,通过对小温室做密闭、遮光处理,探讨番茄茎流的变化规律。结果表明,密闭温室处理后晴天番茄茎流变化趋势不变,但白天茎流明显减小,此时影响茎流的环境参数除光照外,温室内的大气温度、空气相对湿度等都不能忽略。白天人为改变光照,茎流随光照的降低而逐渐减小,变化规律与光照强度的变化规律相似,但茎流变化曲线稍稍滞后于光照的变化曲线;在时间上有一个延迟。当白天遮光变温室为“黑暗”状态时,茎流缓慢减小,但此时茎流远远大于夜晚茎流,而且白天温室内“黑暗”状态处理的不同时间段茎流减小的快慢是不一样的。
     2、在温室盆栽条件下,以京苋四号苋菜作为试验材料,研究了不同覆盖度处理下盆栽小环境温湿度的变化以及植株蒸腾耗水规律。综合分析结果表明:植株生长点的温湿度随覆盖度的增大而增加,蒸腾速率和昼夜蒸腾量随覆盖度的增大而减小。文中通过逐步回归分析给出了不同覆盖处理下盆栽苋菜的蒸腾速率、白天蒸腾量与气象因子的相关关系。不同覆盖处理对温室盆栽苋菜的根冠比、叶绿素相对含量、蒸腾耗水量、干物质积累量以及水分利用效率均有极显著的影响,除了水分利用效率随覆盖度的增加而增大,其它均随覆盖度的增加而减小。15/16圆覆盖处理水分利用效率是对照处理1.45倍;15/16圆覆盖、3/4圆覆盖、1/2圆覆盖、无圆覆盖处理的蒸腾耗水量分别为对照处理的32.65%、54.64%、63.36%和69.98%。可见密封一部分空间,抑制了植株蒸腾耗水,同时也提高了水分利用效率。
     3、风的大小是影响植株生长、蒸腾的一个重要因素。而温室内风速几乎为零,因此通过温室盆栽试验,采用基质栽培,设置了两种蔬菜(甜椒和苋菜)的不同风速试验,来研究风对植株生长及蒸腾耗水的影响。研究结果表明,盆栽甜椒的日蒸腾量,苗期差别不大,整体是随风速增加而增大;随着植株的生长,不同风速盆栽甜椒的日蒸腾耗水量的差距拉大,0.8m·s-1的日蒸腾量超过1.2m·s-1的,此时盆栽甜椒的日蒸腾量表现为: T2>T3>T1>CK;试验后期,对照盆栽的日蒸腾量超过0.4m·s-1的,盆栽甜椒日蒸腾量表现为:T2>T3>CK>T1。而根据盆栽苋菜的蒸腾速率和日蒸腾量曲线看出,不同风速处理对盆栽苋菜蒸腾的影响不大,蒸腾速率及日蒸腾量受不同风速影响的表现相同,整体看来,以1.0m·s-1风速处理盆栽的最大,0.4m·s-1风速处理和对照盆栽的次之,最大风速处理2.0m·s-1盆栽的蒸腾速率及日蒸腾量最小。由以上结果可知,两个试验所设置的风速处理对两种蔬菜蒸腾的影响存在差异。原因是多方面的,作物自身的遗传差异;两个试验的季节不同,温湿度环境因子的差异;风速处理不同,特别是最大风速设置不一样,还有送风时间不同;这些都是造成两次试验结果存在出入的可能原因。文中还通过多元线性逐步回归分析给出蒸腾与环境因子的相关关系。试验中最适宜盆栽甜椒、苋菜生长及蒸腾的风速分别为0.8m·s-1和1.0m·s-1。盆栽甜椒在最大风速(1.2m·s-1)处理下产量最低,作物水分生产率最低;而盆栽苋菜在最大风速(2.0m·s-1)处理下,干物质重最低,水分利用效率最低;可见,风速偏高增加了植株的“无效”蒸腾,同时也降低了作物产量。
     4、采用负水头供水控水盆栽装置,设置四个供水吸力,对盆栽番茄蒸腾和鲜物质积累动态进行了研究。结果表明:负水头盆栽装置实现了对基质含水量的精确控制,10hPa、30hPa、50hPa、70hPa吸力下盆栽基质含水量分别在88%、76%、63%和57%左右。番茄日蒸腾量因基质水分的不同而不同,试验初期是30hPa吸力的日蒸腾量最大,10hPa的次之,50hPa的最小;到了试验中后期,10hPa吸力的日蒸腾量超过30hPa的位居第一。通过逐步回归分析给出不同吸力下盆栽番茄的日蒸腾量与气象因子的相关关系。从番茄的鲜物质积累曲线看出,基质水分处理引起盆栽番茄物质积累的差异非常显著,30hPa吸力下的鲜物质积累量最大,10hPa和50hPa的次之,70hPa的最小。基质水分处理对温室盆栽番茄叶片的蒸腾速率和气孔导度有极显著影响,对光合速率有显著影响,而对叶绿素含量和胞间CO2的浓度影响不大;同时对盆栽番茄的产量、总蒸腾耗水量和作物水分生产率均有极显著影响。10hPa供水吸力下的总蒸腾耗水量最大,产量最低,可见基质含水量过高,增加了植株的“无效”蒸腾,降低了作物水分利用效率。
     5、对盆栽做双层全覆盖处理,调控密闭盆栽小环境内的温湿度,降温除湿的同时想办法把蒸腾水回收利用到盆栽中,这将在设施农业水资源节约利用方面迈出开创性的一步。本章利用温差进行热交换原理,初步探索了降温除湿回收利用蒸腾水的试验效果。首先,利用“水-气温差”对密闭盆栽进行降温回收蒸腾水同时除湿。试验初期,降温除湿效果显著,正午12:30左右,相比密闭对照盆栽,温度降低3℃左右,相对湿度下降7%;其它时间降温除湿效果虽不及正午时分,但白天平均降温2.4℃,相对湿度平均下降5%。但试验持续几天之后,回收的蒸腾水都聚集在U型管中,最终充满U型管底部,气流不能循环,试验最终起不到降温除湿的目的。之后,利用“地-气温差”进行热交换、利用气泵使水汽循环,来对密闭盆栽进行降温除湿回收利用蒸腾水。试验过程中,夜晚的降温除湿效果不明显。夜晚密闭对照盆栽、地-气热交换处理盆栽小环境内的气温与温室内的气温基本一致;相对于密闭对照盆栽,相对湿度平均下降6.2%;夜晚不开气泵时,地-气热交换处理盆栽内相对湿度比对照盆栽低5.6%左右。白天在气泵运行过程中,地-气热交换处理盆栽相对于密闭对照盆栽温度平均下降2.5℃左右;相对湿度平均下降10%左右。正午时分,降温除湿效果最为显著,相比密闭对照盆栽气温降5℃以上,与温室内的温差只有1.5℃左右;此时湿度下降15%左右。降温后凝结而成的水珠在高速气流的带动下又重新回收到盆栽中。
This paper studied plant transpiration through regulating and controlling environmental factors in greenhouse. We expected to find optimum environment condition for decreasing "inefficient" transpiration and improving water use efficiency. These would provide a basis for water economized using of facilities agriculture. The main results are as following:
     1. On the basis of the stem heat balance principle to measure the plant transpiration, with the instruments to collect meteorological data in greenhouse, we studied the variational rules of tomato sap flow under different environmental treatments through shading and obturating environment.The results showed the trend of tomato sunny sap flow was invariable in the obturated greenhouse,but sap flow was obviously diminished.Besides illuminance,temperature and humidity were necessary environmental parameters to affect tomato sap flow in greenhouse. Under the treatment of changing illuminance artificially in the daytime, sap flow was gradually diminished following the illuminance reduced, they had similar rules. But the sap flow curve was lagged to the illuminance curve, and had a time delay. When the greenhouse became dark in the daytime, sap flow was gradually diminished, but sap flow value was far bigger than sap flow value at night. When the greenhouse was in the dark in the different time section, the diminished speed of tomato sap flow was different.
     2. Through pot experiment, air temperature and humidity at growth point of amaranth, and transpiration consumption were studied under different surface coverage degrees in greenhouse. The results showed, the air temperature and humidity increased as the coverage degree rose. During day and night, transpiration decreased as coverage degree increased. Meanwhile, stepwise regression analyses revealed significant correlation between transpiration rate, daytime transpiration consumption and meteorological parameters under different surface coverage degrees. The effects of different surface coverages on root-top ratio, chlorophyll content, transpiration consumption, dry matter accumulation and water use efficiency of potted amaranth were extremely significant. Except water use efficiency increasing with the coverage degree enhanced, others diminished with the coverage degree increased. Water use efficiency of 15/16 circle coverage is 1.45 times of the comparison treatment; transpiration consumptions of 15/16 circle coverage, 3/4 circle coverage, 1/2 circle coverage and non-circle coverage treatment were 32.65%, 54.64%, 63.36% and 69.98% of the comparison treatment, respectively. Transpiration was bated and water use efficiency was enhanced at the same time passing sealing the part of space.
     3. Wind speed is a key factor to affect plant growth and transpiration. Setting different wind speed of two vegetable (sweet pepper and amaranth), we studied the effects of wind on vegetable transpiration and growth through pot experiment in greenhouse. The results showed, difference among day transpiration of sweet pepper seedlings under different wind speed was small, with day transpiration generally increasing as wind speed rose. As sweet pepper grew up, potted day transpiration disparities at different wind speed increased, day transpiration at 0.8m·s-1 exceeded its at 1.2m·s-1, now potted day transpiration showed by: T2> T3> T1> CK. In the late experiment period, CK's exceeded its at 0.4m·s-1, presented as: T2> T3> CK> T1. But according to the curves of potted amaranth transpiration rate and day transpiration, the effects of wind on potted amaranth transpiration is not much, their patients are identical affected by different wind speed. In general, transpiration rate and daily transpiration at 1.0m·s-1 are maximum, followed by those of 0.4m·s-1 and 0.0m·s-1, and the least at 2.0m·s-1. By all above results, there are differences in the effects of wind speed treaments of two experiments on two vegetables transpiration. There are many reasons passing analysis, crop itself exists genetic differences; two experimental seasons were different, there were notable differences of temperature and humidity environment factors; Wind speed treatments diversity, especially maximal wind speed was different; and supplying wind time was various. These are all possible reasons to cause two experimental result differences. Stepwise regression analyses revealed significant correlation between transpiration and meteorological parameters under different wind speeds. The best wind speed for sweet pepper growth and transpiration in greenhouse was 0.8m·s-1, it was 1.0m·s-1 for amaranth. Potted sweet pepper yield and crop water productivity under the most high wind speed (1.2m·s-1) were minimum; likewise, potted amaranth dry matter weight and water use efficiency were minimum. It was obvious that excessive wind speed increased "inefficient" transpiration, and reduced crop yield.
     4. Setting water supply tension at 10hPa, 30hPa, 50hPa and 70hPa, we studied the effects of water supply tension on transpiration and fresh matter accumulation of potted tomato by using negative pressure pot device in greenhouse. The results showed that the negative pressure pot device can realize the accuracy control to substrate moisture content, the substrate moisture content of pot equipment are 88%, 76%, 63% and 57% respectively under water supply tension at 10hPa, 30hPa, 50hPa and 70hPa. Daily transpiration of potted tomato is different because of the different substrate moisture treatments. At the beginning, daily transpiration of potted tomato at 30hPa is maximum, the second is 10hPa, and the least is 50hPa. During Medium-late Stage of experiment, daily transpiration of potted tomato at 10hPa is the first. At the same time, stepwise regression analyses revealed significant correlation between daily transpiration and meteorological parameters under water supply tension. Based on the fresh matter accumulation curve of potted tomato, the differences among the fresh matter accumulation of potted tomato caused by substrate moisture treatments are very significant, its of the 30hPa tension is maximal, followed by 10hPa and 50hPa, it is minimum at 70hPa. The effects of water supply tension in greenhouse on transpiration rate and stomatal conductance of potted tomato are extremely significant, it is notable effect to photosynthetic rate, but the effects to chlorophyll content and intercellular CO2 are not significant. Meanwhile, the effects of water supply tension on yield, transpiration water consumption and crop water productivity are extremely significant. The transpiration water consumption at 10hPa water supply tension is maximal, its yield is minimum. Therefore, excessive substrate moisture content increased "inefficient" transpiration, and reduced crop water productivity.
     5. Setting double-coverage treatment to the pot, we may regulate temperature and humidity in the closed pot. Dehumidifying and cooling, at the same time trying to recycle transpiration water to the pot. we will stride inaugurated one-step in the economical utilization of facility agriculture water resources. According to the principle of temperature disparity for heat exchange on this chapter, we explored preliminarily experimental effect of dehumidification, cooling down and recycling transpiration water. Firstly, we made use of temperature difference between water and air to dehumidify, cool down and recycle transpiration water in small closed environment. During the experiment initial stage, the effect of dehumidifying and cooling was remarkable. Compared with the closed check pot, its temperature reduces 3℃or so and its relative humidity comes down 7% at 12:30; dehumidifying and cooling effect in other time is inferior to that at noon, but its temperature cools down averagely 2.4℃in the daytime, and its relative humidity reduces averagely 5%. But several days later, recycled transpiration water all aggregates in U-tube, ultimately full of the bottom of U-tube, it makes air flow can not complete circulation, the test was fail. Afterwards, based on soil-to-air temperature difference for heat exchange, by using air pump to recycle vapor, we designed device to dehumidify, cool down and recycle transpiration water in the closed pot microenvironment. During the experiment, dehumidifying and cooling effect is not obvious in night. Temperature is basically consistent between the closed check pot and the pot treated by soil-air heat exchange in night; compared with the closed check pot, its relative humidity decreases averagely 6.2%; in night without opening pump, relative humidity of the pot treated by soil-air heat exchange field- gas heat exchange handles is 5.6% lower than that of the check. In the daytime with pump operation, compared with the closed check pot, temperature goes down averagely 2.5℃and relative humidity reduces 10% or so. At noon, there is the most notable effect of dehumidifying and cooling, its temperature decreases 5℃relative to the check, the temperature difference is 1.5℃or so between in the treated pot microenvironment and in greenhouse; humidity reduces 15%. Condensed water for cooling recycles to the pot under the drive of high speed flow.
引文
[1]康绍忠,许迪.我国现代农业节水离新技术发展战略的思考[J] .中国农村水利水电,2001,(10):25~29.
    [2]赵永.作物缺水诊断指标及灌溉控制指标的研究[D].北京:中国水利水电科学研究院硕士学位论文,2006.
    [3]李建明,邹志荣,王晓燕.蔬菜节水灌概指标的研究现状及存在的问题[J].干旱地区农业研究, 2000,2(18):118~123.
    [4]张兵,袁寿其,成立,等.作物需水量宜适应神经网络模糊系统的设计研究[J].中国农村水利水电,2004,(8):1~3.
    [5]李卫民,周凌云.水肥(氮)对小麦生理生态的影响(I)水肥(氮)条件对小麦光合蒸腾与水分利用的影响[J].土壤通报,2004,35(2):136~142.
    [6]黄红霞.温室作物灌溉量决策支持系统研究[D].江苏镇江:江苏大学硕士学位论文,2005.
    [7]贾志清,孙保平,刘涛,等.黄家二岔小流域不同树种蒸腾作用研究[J].水土保持通报,1999,19(5):12~15.
    [8]孟繁静.植物生理学基础[M].北京:农业出版社,1987,53~55.
    [9]黄子琛,沈渭寿.干旱区植物的水分关系与耐旱性[M].北京:中国环境科学出版社,2000,31.
    [10]李倩,谭雪莲.旱地植物蒸腾作用研究进展[J].甘肃农业科技,2006,(10):18~20.
    [11] Thornthwaite C W.An approach toward a rational classification of climate[J].Geogr Rev,1948,(38):55~94.
    [12] Blaney H F,Griddle W D.Determining water requirements in irrigated areas from climatological and irrigation data[R].USDA(SCS)TP,1950,(96):48.
    [13]陈玉民,郭国双,王广兴,等.中国主要作物需水量与灌溉[M].北京:水利水电出版社,1995.
    [14]黄妙芬.绿洲荒漠交界处波文比能量平衡法适用性的气候学分析[J].干旱区地理,2001,24(3):259~264.
    [15]张劲松,孟平,尹昌君.植物蒸散耗水量计算方法综述[J].世界林业研究,2001,14(2):23~28.
    [16]吴擎龙.田间腾发条件下水热运移数值模拟[D].北京:清华大学,1993.
    [17]柯晓新,杨兴国,张旭东.农田蒸发蒸腾测算的微气象学方法[J].干旱地区农业研究,1995,13(1):31~40.
    [18] Yunusaa I M A,Walkera R R,Lu P.Evapotranspiration components from energy balance,sapflow and microlysimetry techniques for an irrigated vineyard in inland Australia[J].Agriculture and Forest Meteorology,2004,127(1/2):93~107.
    [19] Herbst M.Stomatal behaviour in beech canopy:an analysis of Bowen ratio measurements compared with porometer data [J].Plant Cell Enviwn,1995,18:1010~1018.
    [20]谢贤群,左大康,唐登银.农田蒸发-测定与计算[M].北京:气象出版社,1991.
    [21]陈发祖.梯度扩散理论在能量和物质输送计算中的若干问题[J].1990,9(2):76~84.
    [22]左大康,覃文汉.国外蒸发研究的进展[J].地理研究,1988,7 (1):86~93.
    [23] Aboukhaled A.测渗仪(中译本)[M].1982.
    [24]康绍忠,刘晓明,熊运章.土壤-植物-大气连续体水分传输理论及其应用[M].北京:水利水电出版社,1994.
    [25]谢贤群.农田蒸发耗水量试验研究[J].作物与水分关系研究.1992,181~192.
    [26] Penman H L.Natural evaporation from open water,bare soi1 and grass[R].Proc R Soc Lond,1948,A193:120~145.
    [27] Penman H L.The physical base of irrigation control[R][M].Royal Horticultural Socity,1953,2:913~924.
    [28] Penman H L.Evaporation:An introductory survey[J][M].Neth J Agric Sci,1956,4(1):9~29.
    [29] Monteith J L.Evaporation and environment[R][M].Symposia of the Soc Exp Bio,1965,19: 205~224.
    [30]辛晓洲,田国良,柳钦火.地表蒸散定量遥感的研究进展[J].遥感学报,2003,7(3):233~240.
    [31]王会肖,刘昌明.农田蒸散、土壤蒸发与水分有效利用[J].地理学报,1997.52(5):447~454.
    [32] Zhang L,Dawes W R,Hatton T J.Modeling hydrologic processes using a biophysically based model--application of WAVES to FIFE and HAPEx—MOBILHY[J].Journal of Hydrology,1996,185:147~169.
    [33]王安志,裴铁瑶.森林蒸散测算方法研究进展与展望[J].应用生态学报,2001,12(6);933~937.
    [34]谢贤群.测定农田蒸发和显热通量的微气象技术、农田作物环境试验研究[M].气象出版社,1990.
    [35] Dyer A J,Maher F J. Automatic eddy-flux measurement with the evapotron[J].Journal of Applied Meteorology,1965,4(5):622~625.
    [36] Black T A,Thurtell G W,Tanner C B.Hydraulic load cell Iysimeter, construction, calibration and tests[J]. Soil Sci. Soc. Am. Proc,1968,32:623~629.
    [37] Kanemasu E T, Wesely M L,Hicks B B,Heilman J L.Techiques for calculating energy and mass flexes[M]. In Modification of the Aerial Environment of Crops,1979.
    [38]柯晓新,杨兴国,张旭东.农田蒸发蒸腾测算的微气象学方法[J].干旱地区农业研究,1995,13(1):31~40.
    [39]郭继勋,肖洪兴,李建东.羊草蒸腾作用的研究[J].农业与技术,1994,3:1~4.
    [40]巨关升,刘奉觉,郑世锴.选择树木蒸腾耗水测定方法的研究[J].林业科技通讯,1998,10:12~14.
    [41]刘奉觉,郑世锴,巨关升,等.树木蒸腾耗水测算技术的比较研究[J].林业科学,1997,33(2):117~126.
    [42]段华平,谢小立,王凯荣.红壤坡地茶园蒸腾及其影响因子研究[J].农村生态环境,2002,18(2):19~23.
    [43] Greenwood E A N,Beresford J D.Evaporation from vegetation in landscapes developing secondary salinity using the ventilated-chamber technique I Comparative transpiration from juvenile eucalyptus above saline groundwater seeps [J].J Hydrol,1979,42:369~382.
    [44] Wullschleger S,Meinzer F C,Vertessy R A.A review of whole-plant water use studies in trees[J].Tree Physiol,1998,l8:499~512.
    [45]巨关升,刘奉觉,郑世锴,等.稳态气孔计与其它3种方法蒸腾测值的比较研究[J].林业科学研究,2000,13(4):360~365.
    [46]苏培玺,赵爱芬,张立新,等.荒漠植物梭梭和沙拐枣光合作用、蒸腾作用及水分利用效率特征[J].西北植物学报,2003,23(1):11~17.
    [47]段爱旺.一种新型的动态扩散气孔计简介[J].灌溉排水.1995,(4):50~53.
    [48]申卫军,彭少麟.热脉冲(Heat Pulse)法原理及其应用[J].资源生态环境网络研究动态,2000,11(2):22~27.
    [49]李海涛,陈灵芝.用于测定树干木质部蒸腾液流的热脉冲技术研究概况[J].植物学通报,1997,14(4):24~29.
    [50] Edwards W R N,Becker P A.A unified nomenclature for sap flow measurements[J].Tree Physiology,1996,17(1):65~67.
    [51]刘奉觉,郑世锴,巨关升.用热脉冲速度记录仪(HPVR)测定树干液流[J].植物生理学通讯,1993,29(2):110~115.
    [52]李海涛,陈灵芝.应用热脉冲技术对棘皮桦和五角枫树干液流的研究[J].北京林业大学学报,1998,20(1):1~6.
    [53]高岩,张汝民,刘静.应用热脉冲技术对小美旱杨树干液流的研究[J].西北植物学报,2001,21(4):644~649.
    [54]罗中岭.热量法茎流测定技术的发展及应用[J].中国农业气象,1997,18(3):52~57.
    [55] Weibel F P , Boersma K . An improved stem heat balance method using analog heat control[J].Agricultural and Forest Meteorology,1995,75:191~208.
    [56] Allen S J,Grime V L.Measurements of transpiration from savannah shrubs using sap flow gauges[J].Agric Forest Meteorol,1995,75:23~41.
    [57] Baker J M,Van Bavel C H M.Measurement of mass flow of water in the stems of herbaceous plants[J].Plant,Cell and Environment,1987,10:777~782.
    [58] Granier A . Evaluation of transpiration in a Douglas fir stand by means of sap flow measurements[J].Tree Physiology,1987,3(4):309~320.
    [59]孙慧珍,周晓峰,康绍忠.应用热技术研究树干液流进展[J].应用生态学报,2004,15(6):1074~1078.
    [60] Hatton T J,Catchpole E A,Vertessy R A.Integration of sap flow velocity to estimate plant water use[J].Tree Physiology,1990,6(2):201~209.
    [61] Lu P,Urban L,Zhao P.Granier’s thermal dissipation probe (TDP) method for measuring sap flow in trees :theory and practice[J].Acta Botanica Sinica,2004,46(6):631~646.
    [62] Braun P,Schmid J.Sap flow measurements in grapevines (Vitis vinifera L.) 1.Stem morphology and use of the heat balance method[J].Plant and soil,1999,215:39~45.
    [63] Braun P,Schmid J.Sap flow measurements in grapevines (Vitis vinifera L.) 2.Granier measurements[J].Plant and soil,1999,215:47~55.
    [64] Willjam L,Bauerle W L,Whitlow T H,et al.A laser-diode based system for measuring sap flow by the heat-pulse method[J].Agric for Meteorol,2002,110(4):275~284.
    [65] Swanson R H,Whitfield W A.A numerical analysis of heat-pulse velocity theory and practice[J].Exp Bot,1981,32(126):221~239.
    [66] Wilson K B,Hanson P J,Mulholland P J,et al.A comparison of methods for determining forest evapotranspiration and its components:sap flow,soil water budget,eddy covariance and catchment water balance[J].Agric for Meteorol,2001,106(2):153~168.
    [67] Kline J R,Martin J R,Jordan C F,Koranda J J.Measurement of transpiration in tropical trees usingtritiated water [J].Ecology,1970,51(6):1068~1073.
    [68]满荣洲,董世仁,郭景唐.华北油松人工林蒸腾的研究[J].北京林业大学学报,1986,8(2):1~7.
    [69]陈杰,齐亚东.对应用氚水法测定林木蒸腾量的评价[J].东北林业大学学报,1990,18 (3):105~113.
    [70] Rana G,Katerji N.Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate:a review[J].European Journal of Agronomy,2000,13(2/3):125~153.
    [71] Jennen M E,Burman R D,Allen R G.Evaportranspiration and irrigation water requirements:ASCE Manuals and Reports on Engineering Practice[R].New York,ASCE,l990.
    [72] Holmes J W.Measuring evapotranspiration by hydrological methods[J].Agric Water Management,1984,8:29~40.
    [73]左大康.我国农田蒸发测定方法和蒸发规律研究的近期进展[A].农田蒸发研究[C].北京:气象出版社,1991:1~4.
    [74]李英能,段爱旺,吴景社.作物与水源利用[M].中国:重庆出版社,2001.
    [75]水利部,国际合作水利部,农村水利司,等编译.美国国家灌溉工程手册[M].北京:中国水利水电出版社,1998.
    [76] Steiner J L,Howell T A,Schneider A D.Lysimetric evalution of daily potential evapotranspiration model for grain sorghum[J].Agron J,1991,83:240~247.
    [77] Allen R G,Prueger J H,Hill R W. Evapotranspiration from isolanded stands of hydrophytes:Cattall and bulrush[J].Trans ASAE,1992,35(4):1191~1198.
    [78] Singh P,Kumar R.Evapotranspiration from wheat under a semi-arid climate and a shallow water table[J].Agricultural Water Management,1993,23(2):91~108.
    [79] Howell T A,Tolk J A,Schneider A D,et al.Evapotranspiration,Yield,and Water Use Efficiency of Corn Hybrids Differing in Maturity[J].Agron J,1998,90(1):3~9.
    [80] Tyagi N K,Sharma D K,Luthra S K.Determination of evapotranspiration and crop coefficients of rice and sunflower with lysimeter[J].Agricultural Water Management,2000,45(1):41~54.
    [81]黄子琛,蒲锦春,高征税.河西地区农作物的蒸发蒸腾试验研究[J].中国沙漠,1998,8 (2):54~64.
    [82]黄子琛,蒲锦春,高征税.临泽北部绿洲玉米生育期的蒸发蒸腾试验研究[J].植物学报,1991, 33 (8):633~641.
    [83]郑海雷,黄子琛.绿洲生态条件下春小麦蒸发蒸腾特征及其影响因子[J].植物生态学报,1994,18 (4):362~371.
    [84]郭志中,赵明等.民勤绿洲沙地西瓜、白兰瓜蒸腾蒸发试验研究[J].干旱地区农业研究,1996,14 (4):67~72.
    [85]刘昌明,张喜英,由懋正.大型蒸渗仪与小型棵间蒸发器结合测定冬小麦蒸散的研究[J].水利学报,1998,10:36~39.
    [86]刘德辉,梁珍海,李荣锦.蒸发研究的概况与进展[J].江苏林业科技,1998,25(4):54~57.
    [87]范墨林,别之龙.我国设施蔬菜专家系统开发的研究进展[J].长江蔬菜,2008,5b:1~5.
    [88]张志斌.我国设施蔬菜存在的问题晨发展重点[J].中国蔬菜,2008,(5):1~3.
    [89]李吉跃,周平,招礼军.干旱胁迫对苗木蒸腾耗水的影响[J].生态学报,2002,22(9): 1380~1386.
    [90]王巨媛,毛秀杰,翟胜.日光温室嫁接黄瓜需水规律的研究[J].干旱地区农业研究,2005,23(4):147~150.
    [91]宋丽华,孙文升.干旱胁迫对臭椿苗木蒸腾耗水日变化的影响[J].农业科学研究,2007,28(2):20~23.
    [92]李霞,王国栋,薛绪掌,等.温室内不同风速对盆栽甜椒生长及蒸腾的影响[J].农业工程学报,2008,24增刊(2):214~218.
    [93]单长卷,田雪亮,吴雪平.干旱胁迫下冬小麦幼苗蒸腾速率及其影响因子研究[J].安徽农业科学,2006,34(9):1801~1804.
    [94]陈金平,刘祖贵,段爱旺,等.土壤水分对温室盆栽番茄叶片生理特性的影响及光合下降因子动态[J].西北植物学报,2004,24 (9):1589~1593.
    [95]王磊,任树梅,毕勇刚,等.土壤水分及有机肥料对番茄叶片光合特性及叶绿素含量影响的试验研究[J].灌溉排水学报,2004,23(2):66~69.
    [96]景茂,曹福亮,汪贵斌,等.土壤水分含量对银杏光合特性的影响[J].南京林业大学学报(自然科学版),2005,29(4):83~86.
    [97] Herzog K M,Hasler R,Thum R.Diurnal changes in the radius of a subalpine Norway spruce stem:their relation to the sap flow and their use to estimate transpiration[J].Trees,1995,10(2):94~101.
    [98] Jackson G E,Irvine J,Grace J.Xylem cavitation in Scots pine and Sitka spruce saplings during water stress.Tree Physiology,1995,15(12):783~790.
    [99] Granier A,Huc R,Barigah S T.Transpiration of natural rain forest and its dependence on climatic factors[J].Agricultural and Forest Meteorology,1996,78(1):19~29.
    [100] Steinberg S L,Mcfarland M J,Worthington J W.Comparison of Trunk and Branch Sap Flow with Canopy Transpiration in Pecan[J].Journal of Experimental Botany,1990,41 (6):653~659.
    [101] Steinberg S L,Van Bavel C H M,Mcfarland M J.Improved Sap Flow Gauge for Woody and Herbaceous Plants[J].Agronomy journal,1990,82:851.
    [102] Chandra S,Lindsey P, Bassuk N.A gauge to measure the mass flow rate of water in trees[J]. Plant,Cell and Environment,1994,17:867~874.
    [103] Lascano R J,Baumhardt R L,Lipe W N.Measurement of Water Flow in Young Grapevine Using the Stem Heat Balance Method[J].the American Society for Enology Viticulture,1992,43(2):159~165.
    [104] Wilson K B,Hanson P J,Mulholland P J,et a1.A comparison of methods for determining forest evapotranspiration and its components:sap flow,soil water budget,eddy covariance and catchment water balance[J].Agricultural and Forest Meteorology,2001,106(2):153~168.
    [105]段爱旺.一种可以直接测定蒸腾速率的仪器-茎流计[J].灌溉排水,1995,14(3):44~47.
    [106]谢华,沈荣开.用茎流计研究冬小麦蒸腾规律[J].灌溉排水,2001,20(1):5~9.
    [107]彭致功,段爱旺,刘祖贵,等.日光温室条件下茄子植株蒸腾规律的研究[J].灌溉排水,2002,21(2):47~50.
    [108]彭致功,杨培岭,段爱旺,等.日光温室条件下番茄植株蒸腾规律的研究[J].干旱地区农业研究,2004,22(1):62~65.
    [109]张红梅,余纪柱,金海军.温室条件下黄瓜生长发育及茎流变化规律研究[J].农业工程学报,2005,21(增刊):106~108.
    [110]伍德林,毛罕平.温室滴灌黄瓜茎流变化规律的试验研究[J].安徽农业科学,2007,35(12):1455~1456,1477.
    [111]李邵,耿伟,薛绪掌,等.日光温室负压自动灌溉下番茄蒸腾规律研究[J].节水灌溉,2008,(1):25~29.
    [112] Steinberg S L,VanBavel C H M,Mcfarland M J,et al.A gauge to measure mass flow rate of sap in stems and trunks of woody plants[J].J Amer Soc Hort Sci,1989,114(3):466~472.
    [113] Groota A,King K M.Measurement of sap flow by the heat balance method:numerical analysis and application to coniferous seedlings[J].Agricultural and Forest Meteorology,1992,59:289~308.
    [114] Swanson R H.Significant historical developments in thermal methods for measuring sap flow in trees[J].Agricultural and Forest Meteorology,1994,72:113~132.
    [115]温达志,周国逸.四种禾本科牧草植物蒸腾速率与水分利用效率的比较[J].热带亚热带植物学报,2000,(1):8~12.
    [116]张信宝,安芷生.减少地面蒸发充分利用降水资源-黄土高原旱坡地生态农业的思考[J].水土保持通报,1997,(2):57~58.
    [117]束怀瑞.果树栽培生理学[M].北京:农业出版社,1999.
    [118]郑元润.毛乌素沙地中几种植物水分特性的研究[J].干旱区研究,1998,(6):19~20.
    [119]周海燕,黄子琛.不同时期毛乌素沙区主要植物种光合和蒸腾作用的变化[J].植物生态学报,1996,20(2):120~131.
    [120]李洪建,柴宝峰,王孟本.北京杨水分生理生态特性研究[J].生态学报,2000,20(3):417~422.
    [121]王进鑫,黄宝龙,王明春,等.不同供水条件下侧柏和刺槐幼树的蒸腾耗水与土壤水分应力订正[J].应用生态学报,2005,16(3):419~425.
    [122] Jackson M B,Hall K C.Early stomatal closure in waterlogged pea plants is mediated by abscisic acid in the absence of foliar water deficits[J].Plant Cell Environ,1987,10:121~130.
    [123] Else M A,Coupland D, Dutton L,et al.Decreased root hydraulic conductivity reduces leaf water potential,initiates stomatal closure and slows leaf expansion inflooded plants of castor oil (Ricinus communis) despite diminished delivery of ABA from the roots to shoots in xylem sap[J].Physiol Plant,2001,111(1):46~54.
    [124] Yordanova R Y,Uzunova A N,Popova L P.Effects of short-term soil flooding on stomata behaviour and leaf gas exchange in barley plants[J].Biologia Plantarum,2005,49(2):317~319.
    [125] Gavloski J E,Whitefield G H,Eillis C R.Effect of restricted watering on sap flow and growth in corn (Zea mays L)[J].Canada Journal Plant Society,1992,72:361~368.
    [126]杨建伟,梁宗锁,韩蕊莲,等.不同干早土壤条件下杨树的耗水规律及水分利用效率研究[J].植物生态学报,2004,28(5):630~636.
    [127]田晶会,贺康宁,王百田,等.不同土壤水分下黄土高原侧柏生理生态特点分析[J].水土保持学报,2005,19(2):175~183.
    [128]朱林,许式.植物水分利用效率的影响因子研究综述[J].干旱地区农业研究,2005,(1):204~207.
    [129]郭连生,田有亮.4种针叶幼树光合速率、燕腾速率与土壤含水量的关系及其抗旱性研究[J].应用生态学报,1994,5(1):32~36.
    [130]郭惠清,田有亮.杨幼树水分生理指标和光合强度与土壤含水量关系的研究[J].干旱区资源与环境,1998,12(2):101~106.
    [131]刘淑明,孙丙寅,孙长忠.油松蒸腾速率与环境因子关系的研究[J].西北林学院学报,1999,14(4):27~30.
    [132]高照全,邹养军,王小伟,等.植物水分运动影响因子的研究进展[J].干旱地区农业研究, 2004,22(2):200~204.
    [133]刘广全,孟水平,王鸿哲,等.影响沙棘苗木蒸散耗水的生理生态要素[J].国际沙棘研究与开发,2005,3(2):26~32.
    [134] Morris L G,Neale F E.The transpiration of glasshouse crops and it s relationship to the incoming solar radiation[J].Journal of Agricultural Engineering Research,1957,(2):111~112.
    [135] Yang X,Short T H,Robert D F.Transpiration,leaf temperature and stomatal resistance of a cucumber crop[J].Agricultural and Forest Meteorology,1990,51:197~209.
    [136]余清珠,王进鑫,高秀文,等.人工幼林蒸腾规律的研究[J].陕西林业科技,1992,(4):5~9.
    [137] Landsberg J J,Gower ST.Applications of physiological ecology to forest management[M].San Diego:Academic Press,1997.
    [138] Senock R S, Leuschner C.Axial water flux dynamics in small diameter roots of a fast growing tropical tree[J].Plant and Soil,1999,208(1):57~71.
    [139]李万莲,杨书运,宛志沪,等.不同环境因子对西洋参蒸腾特性的影响研究[J].中国生态农业学报,2004,12(1):120~123.
    [140]郭江红,王百田,田晶会.黄土半干旱区土壤水分对侧柏叶片水气交换影响[J].水土保持学报,2004,18(2):157~165.
    [141]刘德林,刘贤赵.GREENSPAN茎流法对玉米蒸腾规律的研究[J].水土保持研究,2006,13(2):134~137.
    [142]李春艳,李传荣,许景伟,等.沙质海岸植物蒸腾速率与环境因子的关系[J].水土保持研究,2007,14(6):69~72.
    [143] Agata W, Hakoyama S, Kawamitsu Y.Influence of light intensity,temperature and humidity on photosynthesis and transpiration of sasa-nipponica and arundinaria-pygmaea[J].Botanical Magazine,1985,98:125~136.
    [144]孙鹏森.北京水源保护林格局及不同尺度树种耗水性研究[D].北京:北京林业大学博士学位论文,2000.
    [145]肖文发,徐德应,刘世荣,等.杉木人工林叶光合与蒸腾作用的时空特征[J].林业科学,2002,38(5):38~46.
    [146]单长卷,梁宗锁,韩蕊莲,等.黄土高原陕北丘陵沟壑区不同立地条件下刺槐水分生理生态特性研究[J].应用生态学报,2005,16(7):1205~1212.
    [147]雷泽湘,林鹏.秋茄蒸腾作用日变化及其与生态因子的相关分析[J].湖北农学院学报,1998,18(3):204~208.
    [148]郑有飞,颜景义,张卫国.小麦气孔阻力对气象条件的响应[J].中国农业气象,1995,16(3):9~13.
    [149]王瑞辉,马履一,奚如春,等.元宝枫生长旺季树干液流动态及影响因素[J].生态学杂志,2006,25(3):231~237.
    [150]茹桃勤,李吉跃,孔令省,等.刺槐耗水研究进展[J].水土保持研究,2005,12(2):135~140.
    [151]张启昌,杜凤国,夏富才,等.美国椴光合蒸腾的生理生态[J].北华大学学报(自然科学版),2000,1(5):436~438.
    [152]李雪华,蒋德明,骆永明,等.不同施水量处理下樟子松幼苗叶片水分生理生态特性的研究[J].生态学杂志,2003,22(6):17~20.
    [153]涂璟,王克勤.干旱地区造林树种的水分生理生态的研究进展[J].西北林学院学报,2003,18(3):26~30.
    [154]张岁岐,山仑.根系吸水机理研究进展[J].应用与环境生物学报,2001,7(4):396~402.
    [155]李秧秧,黄占斌,黄少燕.不同土壤大气湿度组合下玉米生长及水分光合特性反应[J].水土保持通报,1999,19(2):23~26.
    [156] Tognetti R,d''Andria R,Morelli G,et al.Irrigation effects on daily and seasonal variations of trunk sap flow and leaf water relations in olive trees[J].Plant and Soil,2004,263(1):249~264.
    [157]潘瑞炽.植物生理学[M].北京:高等教育出版社,2001.
    [158] Griddings L A.Transpiration of silphium Laciniatam[J].Plant World,1914,35:937~942.
    [159]潘建平,韩士杰,苏润州,姜植群.风对山杨叶片蒸腾的影响[J].东北林业大学学报,1996,24(1):27~32.
    [160]刘静,王连喜,李凤霞,戴小笠,苏占胜.枸杞叶片蒸腾与生理及微气象因子的关系研究[J].中国生态农业学报,2003,11(4):40~42
    [161] Gollan T,Richard R A,Passioura J B.Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves[J].Australian Journal of Plant Physiolog,1986,13(4):459~464.
    [162] Zhang J H,Davies W J.Increased synthesis of ABA in partially dehydrated root tips and ABA transport from roots to leaves[J].Journal of Experimental Botany,1987,38(12):2015~ 2023.
    [163] Ferenc A.A comparative analysis of transpiration and bare soil evaporation [J].Boundary-Layer Meteorology,2003,109(2):139~162.
    [164] Alarcon J J, Ortuno M F, Nicolas E,et al.Compensation heat-pulse measurements of sap flow for estimating transpiration in young lemon trees [J].Biologia Plantarum,2005,49 (4):527~532.
    [165]哈申格日乐,李吉跃,周泽福.干旱胁迫对3个树种苗木蒸腾耗水日变化的影响[J].西北农林科技大学学报(自然科学版),2006,34(9):157~162.
    [166]刘硕,贺康宁.不同土壤水分条件下山杏的蒸腾特性与影响因子[J].中国水土保持科学,2006,4(6):66~70.
    [167]郑本暖,叶功富,卢昌义.干旱胁迫对4种植物蒸腾特性的影响[J].亚热带植物科学,2007,36(1):36~38.
    [168]耿伟.负水头灌溉技术在番茄栽培上的应用效果[D].北京:中国农业大学硕士学位论文,2007.
    [169] Weibel F P,De Vos J A.Transpiration measurements on apple trees with an improved stem heat balance method[J].Plant and Soil,1994,166(2):203~219.
    [170]胡弘劫,毛罕平.夏季温室内黄瓜蒸腾规律的研究[J].农业装备技术,2006,32(3):20~21.
    [171] Fredrik L,Anders L.Transpiration response to soil moisture in pine and spruce tress in Sweden[J].Agricultural and Forest Meteorology,2002,112(2):67~85
    [172] Ham J M,Heilman J L.Dynamics of a heat balance stem flow gauge during high flow [J].American Society of Agronomy,1990,82:147~152.
    [173]姚磊,杨阿明.不同水分胁迫对番茄生长的影响[J].华北农学报,1997,12(2):102~106.
    [174]武志海,杨美英.玉米群体冠层内蒸腾速率与气孔导度的变化特性[J].吉林农业大学学报,2001,23(4):18~20.
    [175]朱万泽,王金锡,薛建辉.引种台湾桤木的水分生理特性[J].武汉植物学研究,2004,22(6):539~545.
    [176] Kaora K,Stephen S,Mulkey S,et al.Seasonal leaf phototypes in the canopy of a tropical dry forest:photosynthetic characteristic and associated[J].Oeclogic,1997,109: 490~498.
    [177] Lu Z,Radin J,Turcotte E,et al.High yields in advanced lines of Pima cotton are associated with higher stomatal conductance,reduced leaf area and lower temperature[J].Physiol Plant,1994,92:266~272.
    [178] Reich P,Watter M,Ellsworth D,et al.Photosynthesis,nitrogen relations in Amazonian tree species I.Patterns among species and communities[J].Oeclogic,1994,97:62~72.
    [179]岳春雷,江洪.短柄五加蒸腾作用及其与生理生态因子相关性的初步研究[J].林业科学,2003,39(2):158~161.
    [180]山仑,徐萌.节水农业及其生理生态基础[J].应用生态学报,1991,2(1):70~76.
    [181]滕流慧,聂建平.我国节水灌溉技术的现状及发展前景[J].水利水电技术,1997,3(28):52~55.
    [182]郭志利,孙常青,梁楠.旱地春大豆地膜覆盖增产节水效果及密度效应研究[J].中国生态农业学报,2007,15(1):205~206.
    [183]屈志强,丁国栋,赵方莹,等.覆盖在立体绿化中对植物节水效益影响的研究[J].水土保持研究,2006,13(6):288~292.
    [184]张风云,张恩和,景锐,等.河西绿洲灌区留茬覆盖免耕保护性耕作的增产节水效应[J].草业学报,2007,16(2):94~98.
    [185]高芳.坝上地区小拱棚农艺节水措施[J].河北农业科技,2006,(12):16.
    [186]刘晓宏,肖洪浪,赵良菊.不同水肥条件下春小麦耗水量和水分利用率[J].干旱地区农业研究,2006,21(1):56~59.
    [187]苏建平,康博文.我国树木蒸腾耗水研究进展[J].水土保持研究,2004,11(2):177~180.
    [188]高健,侯成林,吴泽民.淹水胁迫对I-69P55杨蒸腾作用的影响[J].应用生态学报,2000,11(4):518~522.
    [189]阮成江,李代琼.黄土丘陵区人工沙棘蒸腾作用研究[J].生态学报,2001,21(12):2141~2146.
    [190]孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究[J].生态学报,2002,22(9):1387~1391.
    [191]田晶会,贺康宁,王百田,等.黄土半干旱区侧柏蒸腾作用及其与环境因子的关系[J].北京林业大学学报,2005,27(3):53~56.
    [192]吕爱霞,杨吉华,夏江宝,等.3种阔叶树气体交换特性及水分利用效率影响因子的研究[J].水土保持学报,2005,19(3):188~192.
    [193]张治安,杨福,陈展宇,等.菰叶片净光合速率日变化及其与环境因子的相互关系[J].中国农业科学,2006,39(3):502~509.
    [194]李永欣,王朝元,李保明,等.荷兰Venlo型连栋温室夏季自然通风降温系统的试验研究[J].中国农业大学学报,2002,(6):44~48.
    [195] Kittas C, Boulard T, Mermier M,et a1. Wind induced air exchange rates in a greenhouse tunnel with continuous side openings[J].Journal of Agricultural Engineering Research,1996,65(1):37~49.
    [196] Parral J Perez,Baeza E,Montero J I,et a1.Natural ventilation of parral greenhouses[J].Biosystems Engineering,2004,87(3):355~366.
    [197] Wang S,Boulard T,Haxaire R.Air speed profiles in a naturally ventilated greenhouse with a tomato crop[J].Agricultural an Forest Meteorology,1999,96(4):181~188.
    [198]杨振超,邹志荣,陈双臣,等.西北型日光温室内风速分布及其与室外风速和通风面积的关系[J].西北农林科技大学学报(自然科学版),2006,34(9):36~40.
    [199]傅宁,刘德义.温室大棚气流场的CFD数值模拟[J].天津农业科学,2006,12(3):17~19.
    [200]黄万欣.自然通风温室及通风量研究[J].农机化研究,2004,(4):53~54.
    [201]蔡龙俊,鲁雅萍,蔡志红.农业温室通风系统的设计与研究[J].节能技术,2000,18(6):19~21.
    [202] Boulard T,Haxaire R,Lamrani M A,et a1.Characterization and modeling of the air fluxes induced by natural ventilation in a greenhouse[J].Journal Agricultural Engineering Research,1999,74(2):135~144.
    [203]杨振超,邹志荣,王军,等.温室内气流运动速率对厚皮甜瓜生长发育的影响[J].农业工程学报,2007,23(3):198~201.
    [204]夏桂敏,康绍忠,杜太生,等.甘肃石羊河流域干旱荒漠区花棒蒸腾耗水量[J].应用生态学报,2007,18(6):1194~1202.
    [205]孙守家,古润泽,丛日晨,等.银杏树干茎流变化及其对抑制蒸腾措施的响应[J].林业科学,2006,42(5):22~28.
    [206]于云江,史培军,鲁春霞,等.不同风沙条件对几种植物生态生理特征的影响[J].植物生态学报,2003,27(1):53~58.
    [207]邹朝望,薛绪掌,张仁铎,等.负水头灌溉原理与装置[J].农业工程学报,2007,23(11):17~22.
    [208]万克江,薛绪掌,王志敏,等.供水吸力对黄瓜若干生理指标的影响[J].干旱地区农业研究,2005,23(6):98~102.
    [209]耿伟,薛绪掌,王志敏.不同供水吸力下豆角若干生理指标的变化[J].中国农学通报,2006,22(5):206~210.
    [210]耿伟,万克江,薛绪掌,等.负压供水下菠菜某些生理指标的变化[J].农业系统科学与综合研究,2006,22(4):248~251.
    [211]耿伟,王春艳,薛绪掌,等.不同水分处理对豇豆光合生理特性的影响[J].灌溉排水学报,2006,25(5):72~75.
    [212]李文华,刘广权,马松涛,王鸿哲.干旱胁迫对苗木蒸腾耗水和生长的影响[J].西北农林科技大学学报(自然科学版),2004,32(1):61~65.
    [213]周文杰,芦站根,魏淑珍.曼地亚红豆杉蒸腾速率日变化及因子分析[J].植物研究,2004,24(4):425~427.
    [214]章建新,薛丽华,王红波,等.菜用大豆品系干物质积累及产量比较试验[J].新疆农业大学学报,2007,30(3):28~30.
    [215]田孝枝,王长春,王可田,等.旱作饲用玉米生物产量的积累与分配[J].畜牧兽医杂志,2007,26 (5):98~99.
    [216]崔辉梅,樊新民,兰星.胡萝卜生长动态及干物质积累与分配[J].北方园艺,2007,(1):6~8.
    [217]任勇,陈柔屹,唐祈林,等.新型饲草玉米生长动态及收割期的研究[J].作物学报,2007,33(8):1360~1365.
    [218]李邵,薛绪掌,郭文善,等.负水头供水盆栽装置及灌溉系统的研究与应用[J].上海交通大学学报(农业科学版),2008,26(5):478~482.
    [219]邹朝望.负水头灌溉技术基础研究[D].湖北武汉:武汉大学博士学位论文,2007.
    [220]李世荣,张卫强,贺康宁.黄土半干旱区不同密度刺槐林地的土壤水分动态[J].中国水土保持科学,2003,1(2):28~32.
    [221]孙可群.温室建筑与温室植物生态[M].北京:中国林业出版社,1982.
    [222]徐立鸿,任曾玲.工控系统在设施农业中的应用[J].基础自动化,2001,8(3):39~42.
    [223]张彦虎.自控温室温湿度控制策略的研究[D].上海:上海大学硕士学位论文,2003.
    [224]顾卫,神近牧男,刘杨,等.设施农业中水蒸气的回收利用研究(I)——回收原理和系统结构设计[J].北京师范大学学报(自然科学版),2003,30(4):557~562.
    [225]羽生寿郎.农业气象学[M].东京:文永堂,1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700