超临界水氧化处理五氯硝基苯生产废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对五氯硝基苯(PCNB)废水在应用普通生化方法时存在的处理成本高、生化降解困难、处理效率低等问题,本文提出尝试用超临界水氧化技术(SCWO)进行解决。以五氯硝基苯生产废水为研究对象,以氧气作为氧化剂,在HXDK-01-A间歇式反应器内进行超临界水氧化和催化超临界水氧化(CSCWO)试验研究。实验结果标明,超临界水氧化法和催化超临界水氧化法对五氯硝基苯生产废水有很好的处理效果。
     超临界水氧化试验采用了正交试验和单因素试验相结合的试验方案,深入研究了SCWO技术在处理五氯硝基苯废水方面的应用,考察了反应温度、反应压力、停留时间等因素对五氯硝基苯生产废水中有机物降解效率的影响作用,判断出影响氧化处理效果的主次顺序为温度、压力、时间,并得到最佳工艺条件为反应温度500℃、反应压力28MPa、停留时间30s。
     选取纳米TiO2、ZnO,分析纯Cu(NO3)2、Zn(NO3)2、Fe(NO3)3和Na2CO3等作为催化剂进行催化超临界水氧化试验研究,实验结果表明,催化剂的引入可以提高反应速率、降低反应温度和压力,能够缓和SCWO苛刻的反应条件。同时,催化剂还可以显著提高COD的去除率,达到节能与高效的目的。非均相催化剂中,采用TiO2/ZnO双金属组合催化氧化的效率高于单一金属,均相催化剂Zn(NO3)2和Fe(NO3)3的催化效率相差无几,且都高于Cu(NO3)2催化效率,Na2CO3的催化效果最高,并探讨了催化反应的催化机理。
     通过对实验数据的回归分析,建立了五氯硝基苯模拟废水在超临界水中氧化反应的动力学方程,并在分析过程中,引入了诱导时间的概念,对传统的幂指数方程进行了修正。
In order to resolve problems of high cost, low destruction efficiency and difficulties in biochemical degradation faced to pentachloronitrobenzene(PCNB) wastewater, supercritical water oxidation (SCWO) was adopt to treat this kind of water in this paper. The supercritical water oxidation experiment and the catalytic supercritical water oxidation (CSCWO) experiment were performed in an HXDK-01-A intermittent reactor with PCNB industrial wastewater as research object and O2 as oxidant. The result showed that both SCWO and CSCWO had nice treating effects.
     The experiments studied the application of SCWO on PCNB deeply with orthogonal and single-factor experiments as scheme. They researched on the effects of temperature, pressure, and retention time on the PCNB oxidative degradation. A conclusion was drawn that the important orders of the factors which affect the conversion were temperature, pressure and retention time in turn. It was observed that the best reaction condition is 500℃of temperature, 28MPa of pressure, and 30s of retention time.
     Both homogeneous and heterogeneous catalytic supercritical water oxidation experiments were studied with nano-meter TiO2、ZnO,analytically pure Cu(NO3)2、Zn(NO3)2、Fe(NO3)3 and Na2CO3 as catalyst , results showed that the catalyst can improve the reaction rate, decrease the temperature and pressure, alleviate the harsh conditions for SCWO. It can significantly increase the removal of COD as well to achieve high efficiency and energy-saving. In heterogeneous, the TiO2/ZnO bimetallic particles had higher catalytic efficiency than each single component. Homogeneous catalyst Zn(NO3)2 and Fe(NO3)3 had almost the same catalytic efficiency, and both of them higher than Cu(NO3)2, but Na2CO3 had the highest efficiency. The mechanism of the CSCWO was discussed in the end of this part of the paper.
     The global kinetics for PCNB disappearance was described by regress the experimental data, and the traditional exponential equation was modified, taking into account the influence of induction time.
引文
[1]项硕,叶敏,徐向阳.氯代硝基苯类生产废水厌氧-好氧序列生物处理研究Ⅱ反应器起动过程的特性[J].浙江大学学报(农业与生命科学版) 2003,29(2):195.
    [2] R.W.Shan,T.B.Brill,A.Clifford,et al.Supercritical water—a medium for chemistry [J].Chem.Eng.News,2001,69(51):26.
    [3]李炳智,徐向阳,朱亮.氯代硝基苯类废水臭氧化动力学和机理[J].化工学报2008,59(8):2111-2119.
    [4]李宁,陈井影,李莉等五氯硝基苯降解菌株的分离筛选及应用效果[J].吉林农业大学学报,2005,27(2):205-208.
    [5]班福忱,李亚峰,胡俊生.电Fenton法处理五氯硝基苯废水[J] .沈阳建筑大学学报,2005,21(6):723-725.
    [6]王莹.有机氯农药-五氯硝基苯农药废水的辐射降解研究[硕士学位论文]吉林,东北师范大学,2005.
    [7] Zona,R.,Schmid,S.Detoxification of aqueous chlorophenol solutions by ionizing radiation[J] .Water Res.,1999,33(5):1314—1319.
    [8]龚为进,李方,奚旦立.超临界水氧化处理高浓度丙烯酸废水.化工环保,2007, 27(5):413一416.
    [9] PhillipE.Savge. Heterogeneous Catalysis in SupercriticalWate[J].CatalysisToday, 2000, 62:167-173.
    [10] M.D.Bermejo, M.J.Cocero.Supercritical WaterOxidation: A Technical Review.AIChE Journal November 2006, 52 (11): 3933~3951.
    [11] P. E,.Savage,S.Gopalan,T.I,Mizan, et al.Reactions at supercritical conditions:applications and fundamentals [J] .AIChE J,1995,41:17-23.
    [12] T.Mizuno.Properties and application of supercritical water [J] . Zairyo-to-Kankyo—Corms.Eng,2007,47:298.
    [13] P.E.Savage.Organic chemical reactions in supercritical water [J] . Chem.Rev,1999,99:603.
    [14]彭英利,李芬,闫波等.含氯介质超临界水氧化过程中几种镍基合金腐蚀的实验研究[J].过程工程学报,20066 (1 ):124-127.
    [15]郭小华,葛红光,李江等.超临界水氧化在有机废水处理中的应用[J].环保与安全,2005,6(3):5-14
    [16] LiL,Chem P,and Gloyna E F. Generalized Kinetic Model for Wet Oxidation of organic Compounds.AIChEJ,1991,37a(11):1687~16970.
    [17]龚为进.蒸发壁式超临界水氧化反应器处理高浓度有机废水实验研究[博士学位论文].上海,东华大学,2008.
    [18] Portela J.R.,Nebot E.,Martinez de la Ossa E. Generalized kinetic models for supercritical water oxidation of cutting oil wastes[J] .The Journal of Supercritical Fluids,2001,21(2):135-145.
    [19]袁细宁.超临界水氧化法处理高浓度萘系有机物的研究[硕士学位论文].浙江,浙江工业大学,2001.
    [20]杨馗.催化超临界水氧化法处理高浓度有机废水的研究[硕士学位论文] .浙江,浙江工业大学,2002.
    [21]丁军委,陈丰秋,吴素芳等.苯胺在超临界水中氧化反应动力学的研究[J] .高校化学工程学报,2001,15(1):66-70.
    [22]葛红光,甄宝勤,杨海涛等.对氨基苯酚超临界水氧动力学研究[J] .工业用水与废水,2005,36(4):1-3.
    [23]葛红光,甄宝勤,陈开勋等.偏二甲脐超临界水氧化动力学研究[J] .安全与环境学报,2005,5(4):17-19.
    [24] Jeffrey.Water density effects on supercritical water oxidation[doctoral dissertation].Michigan,University of Michigan,2004.
    [25] Kranjnc,M,Levee J.Oxidation of phenol over a transition-metal oxidecatalyst in supercritical water[J] .Ind.Eng.Chem .Res,1997,36:3439-3445.
    [26] Thomas D .and Phillip E .Phenol oxidation pathways in supercritical water[J], American Chemical Society,1992.31:2451-2456.
    [27] KriksunovL.B,Macdonald D.D. Corrosion in supercritical water oxidation systems:A phenomenological analysis[J] .Electrochem.Soc.,1995.142:4069-4080.
    [28] Konys J,FodiS., Hausselt J., et al Corrosion of high-temperature alloys in chrloride-containing supercritical-water oxidation systems[J]. Corrosion,1999, 55: 45~51
    [29] Boukis N., Claussen N., Ebert K., et al. Corrosion screening tests of high-performance ceramics in supercritical-water containing oxygen and hydrochloric acid[J]. Eur. Ceram. Soc., 1997, 17: 71-76
    [30]贺文智,李光明,孔令照等.基于腐蚀与盐堵塞问题的超临界水氧化研究进展[J].环境工程学报20071(5):1-6.
    [31]张丽,韩恩厚,关辉,等超临界水氧化环境中材料腐蚀的研究现状[J].材料导报, 2001, 15(5): 8-10.
    [32]陈娟娟,杨海真.超临界水氧化中设备腐蚀的研究现状[J]. 200726卷(2)101-105.
    [33]王保峰,卢建树,张九渊,等不锈钢及镍基合金在高温水中的腐蚀研究[J].腐蚀与防护, 2001, 22(5): 187-190.
    [34] HongG.T., KillileaW.R., Thomason T. B. Method for solids separation in a wet oxidation type process. US4822497, 1989.
    [40] BarnerH.E., Huang C.Y., Johnson T., etal. Supercritical-water oxidation: An emerging technology[J]. Haz-ard. Mater., 1992, 31: 1-17.
    [35] Oh C.H., Kochan R. J., Charlton T. R., et al. Thermal-hydraulic modeling of supercritical-water oxidation of ethanol [J].Energ. Fue, 1996, 10(2): 326~335.
    [35] MueggenburgH.H., RousarD.C., YoungM. F. Super-critical water oxidation reactor with wall conduits for boundary flow control US 5387398,1995.
    [36] FauvelE., Dubien C. J., Guichardon P., et al. A double-wall reactor for hydrothermal oxidation with supercritical-water flow across the inner porous tube [J]. Supercrit. Fluids, 2004, 28: 47~56.
    [37] BermejoM.D., Polanco F.F., CoceroM. J. Experimental study of the operational parameters of a transpiring wall reactor for supercritical water oxidation [J]. Supercrit. Fluids, 2006, 39: 70~79
    [38] Fauvel E., Joussot-Dubien C., Tanneur V., et al. A porous reactor for supercritical water oxidation: Experimental results on salty compounds and corrosive solvents oxidation [J]. Ind. Eng. Chem. Res., 2005, 44: 8968~8971.
    [39] CalzavaraY., Joussot-Dubien C., TurcH.A., et al. A new reactor concept for hydrothermal oxidation [ J]. Super-crit. Fluids, 2004, 31: 195~206.
    [40] ArmelliniF. J., Tester J.W. Solubility of sodium chloride sulfate in sub supercritical-water vapor from 450 to 550℃and 100~250 bar [J]. Fluid Phase Equilib., 1993, 84: 123-142.
    [41] Rogak S.N., Teshima P. Deposition of sodium sulfate in a heated flow of supercritical water [J]. AIChE. J., 1999, 45: 240-247.
    [42] CuiS.T., Harris J.G. The structure and phase equilibria of saltwater solution at supercritical-water conditions [J]. Int. J. Thermophys., 1995, 16: 493~502.
    [43] J.R. Portela, E. Nebot, E. Mart′?nez de la Ossa. Kinetic comparison between subcritical and supercritical water oxidation of phenol[J].Chemical Engineering Journal . 2001 , 81(4):287–299.
    [44]李锋,汪海峰,朱丹.超临界水氧化技术的研究与应用进展[J].上海电力学院学报,2002,18(1):17-22.
    [45]陈崇明,王树众,张钦明等.氨的超临界水氧化研究进展[J].环境污染与防治,2008,30(9):81-86.
    [46] Ding. ZY, LIL, WADE D. Supercriticalwater oxidation of NH3 over a MnO2/ CeO2 catalyst[J]. Ind .Eng. Chem .Res, 1998,37(5):1707-1716.
    [47] Ross, D. E.,Jayaweera, I.,Leif, R. N. Method for hot and supercritical water oxidation of material with addition of specific reactants. US.Patent 1998.5(6):149.
    [48] Poongunran Muthukumaran,Ram B. Gupta.Sodium-Carbonate-Assisted Super- critical Water Oxidation ofChlorinated Waste. Ind. Eng. Chem. Res. 2000, 39: 4555-4563.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700