用于高温凝结水回用的超滤和纳滤膜的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高温凝结水是石油化工企业生产过程中,蒸汽经换热冷凝后形成,具有较高的热量和回收价值。通常经过简单软化处理后凝结水可回用于锅炉补给水,但是由于生产设备和管线的泄漏与腐蚀,凝结水中油和铁浓度超标。净化和回用高温凝结水,不仅可以实现水资源和能源的二次利用,而且可以减少污染物排放,减轻后续污水处理负荷,具有很好的社会效益和经济效益。本文研制了抗污染性较好的耐高温超滤膜和荷正电纳滤膜,建立了超滤-纳滤膜分离组合工艺用于高温凝结水的净化与回用。
     选择耐热性树脂聚醚砜酮(PPESK)为膜材料,采用相转化法制备了耐高温PPESK/TiO_2复合超滤膜。研究了铸膜液组成和成膜条件对超滤膜结构和性能的影响。采用SEM、XRD、AFM、TGA、万能材料试验机、水接触角和超滤实验研究了TiO_2含量对复合膜孔结构、耐热性、亲水性、机械性能和抗污染性能的影响。研究结果表明,最佳PPESK超滤膜制备条件为:PPESK浓度为16wt.%,最优添加剂为水溶性高分子PEG4000,浓度为8wt.%,溶剂挥发时间为20s,凝胶浴温度为25℃。加入纳米TiO_2后,膜断面亚层贯通的大孔结构发展受到抑制,海绵状孔结构得到发展,皮层厚度增加。复合膜的热稳定性、亲水性、渗透性和机械性能显著提高。将PPESK/TiO_2复合膜用于模拟高温凝结水处理,采用通量模型、阻力串联模型和MFI膜污染指数考察膜污染情况。研究发现,复合膜的抗污染能力提高,过滤阻力和MFI值明显减小,通量恢复率高。当TiO_2浓度为2wt.%时,制备的PPESK/TiO_2复合膜的结构和性能最佳,可以有效用于高温凝结水的净化处理。
     针对高温凝结水中的二价或多价阳离子,以P84聚酰亚胺超滤膜为基膜,支化聚乙烯亚胺(PEI)为交联剂,采用交联改性的方法制备了荷正电纳滤膜。采用SEM、ATR-FTIR、XPS、水接触角和纳滤实验等表征方法,研究了交联时间和PEI分子量对纳滤膜表面和断面孔结构、表面亲水性、表面带电性和分离性能的影响。研究结果表明,改性纳滤膜表面孔密度和孔径减小,断面致密层厚度增加,海绵状孔孔隙率减少,表面亲水性显著提高。最佳改性条件为:交联时间60min,PEI分子量25000g·mol-1。此条件下制备的纳滤膜水接触角最小为35±1.2°;MWCO为436g·mol-1,孔径分布最窄。在pH<10的条件下,纳滤膜表面荷正电,对不同盐的截留率顺序为MgCl2>MgSO4≈NaCl>Na2SO4。改性膜在不同pH溶液中表面荷正电强度不同,影响膜对离子的截留率。当pH<8时,膜表面带正电,对Na+的截留率几乎不变;当pH从8升高到10时,膜表面正电性减弱,截留率降低。当pH=10时,膜表面呈中性,此时只有筛分作用,对NaCl的截留率最低。
     针对炼油厂高温凝结水中疏水性油滴、铁腐蚀产物和Ca2+、Mg2+等阳离子,建立了超滤-纳滤膜分离组合工艺对其进行净化处理与回用。以模拟高温凝结水为处理目标,分别研究了超滤过程中过膜压差(TMP),原水温度和pH,初始油和铁浓度等五个参数,以及纳滤过程中运行时间、操作压力、进水温度和pH等四个参数对膜渗透通量和污染物去除效果的影响。研究结果表明,超滤过程中,TMP越高,膜污染越严重,通量下降率越大,最佳TMP为0.1MPa;原水温度和pH影响铁的水解形态,强酸溶液中,铁离子水解受到抑制,去除率为0。温度升高,促进铁离子水解形成更多具有三维空间立体网孔结构的聚合态铁,可以将油滴网捕卷扫下来形成絮凝物,减少其在膜表面的吸附,减轻膜污染;初始油浓度增加,加剧膜表面污染。复合膜耐油和铁的冲击负荷能力较强。纳滤过程中,运行30min后,通量稳定,最佳操作压力为0.6MPa;渗透通量随着进水温度和pH的升高而增加,纳滤膜耐高温性能良好,进水温度对Ca2+、Mg2+离子去除率影响不大。pH增大,膜表面正电性强度减弱,出水Ca2+、Mg2+浓度略有增加,硬度升高。
     针对油滴和铁水解产物在超滤膜表面形成的滤饼层污染,以氢氧化钠,乙醇,草酸和盐酸为清洗剂,优化了超滤膜的清洗方法。最佳清洗条件为0.01mol·L-1NaOH和30%的乙醇联合清洗,膜通量恢复率在95%以上。某炼油厂实际高温凝结水经UF和NF组合工艺处理后,浊度完全去除,NF渗透出水达到《火力发电机组及蒸汽动力设备水汽质量》(GB/T12145-2008)标准,可以回用于锅炉补给水。
     UF和NF膜分离组合工艺净化回用炼油厂高温凝结水,具有操作简单、占地面积小、分离效率高、运行费用低、节能环保等优点,易实现自动控制和工业化推广。本文的研究结果为炼化企业高温凝结水回用提供了一条有效解决途径。研制的耐高温PPESK/TiO_2复合超滤膜和荷正电纳滤膜具有综合优异性能,在其它饮用水处理和废水处理领域具有广阔的应用前景。
High temperature condensed water condensed from steam by heat exchange inthe petrochemical production process has a great value of recovery, for example, itcan be used as boiler makeup water. However, excess oil and iron contaminants incondensed water due to leakage and corrosion of production equipment andpipelines make it difficult to be reutilized directly. Therefore, purification of hightemperature condensed water is necessary for further usage. Moreover, such successwould increase both social and economic benefits in terms of reusage of water andenergy as well as reduction of pollutant discharge amount and the following sewagetreatment load. In this thesis, an ultrafiltration (UF) and nanofiltration (NF)combination separation process was established to remove oil, iron contaminantsand decrease hardness in high temperature condensed water. Meanwhile, athermostable UF membrane and a positively charged NF membrane were prepared.
     Thermostable resin poly(phthalazinone ether sulfone ketone)(PPESK) waschosen as the membrane material, and thermostable PPESK/TiO_2composite UFmembrane was prepared by using phase inversion method. The effects of castingsolution composition and membrane forming condition on the structure andproperties of UF membrane were investigated and optimized. The influences of TiO_2concentration on composite membrane pore structure, thermostability, hydrophilicity,mechanical properties and anti-fouling property were studied by SEM, XRD, AFM,TGA, electron-mechanical universal material testing machine, water contact angleand ultrafiltration experiments. The results show that the optimal membranepreparation condition was listed as follows: PPESK concentration was16wt.%, thebest additive was a water-soluble polyethylene glycol (PEG)4000with aconcentration of8wt.%, solvent evaporation time was20s and coagulation bathtemperature was25°C. With the addition of TiO_2, the penetrated finger-likestructure in sublayer is suppressed, while sponge-like structure begins to bedeveloped, and the skin layer thickness is increased. Thermostability, hydrophilicity,permeability and mechanical property of composite membranes are significantlyenhanced. The flux model, resistance in series model and membrane fouling index(MFI) were used to investigate membrane fouling in purifying simulated hightemperature condensed water by PPESK/TiO_2composite membranes. In comparisonwith parent membrane, the composite membrane showed enhanced anti-foulingproperty, decreased filtration resistance and MFI as well as higher flux recovery rate.When TiO_2concentration was2wt.%, PPESK/TiO_2composite membrane hasoptimal structures and properties, which can be effectively used for high temperature condensed water purification.
     To remove divalent and multivalent cation in high temperature condensed water,a positively charged NF membrane was prepared by cross-linking of hyperbranchedpolyethyleneimine (PEI) with P84polyimide UF membrane. The influences ofcross-linking time and PEI molecular weight on surface and cross-section porestructure, hydrophilicity, surface charge and separation performance of NFmembrane were studied by SEM, ATR-FTIR, XPS, water contact angle andnanofiltration experiments. The results show that the surface pore density and poresize of modified NF membrane decreases, the thickness of dense layer increases andporosity of sponge-like pore structure decreases. The hydrophilicity of modified NFmembrane is also improved. The optimal modification condition was confirmed: thecross-linking time is60min and PEI molecular weight is25000g·mol-1. Theprepared NF membrane under above condition behaves the smallest water contactangle of35±1.2°, a narrower pore size distribution and MWCO of436g·mol-1. TheNF membrane surface is positively charged when solution pH <10, and therejections of different salts show the sequence: MgCl2> MgSO4≈NaCl> Na2SO4.The surface charge intensity of modified NF membrane was affected by pH ofsolution, which could further influence the ions rejection of membranes. When pH <8, the membrane surface is positively charged, Na+rejetions keep constant; whilepH increases to10, Na+rejetion decreases due to the decrease of surface positivecharge intensity. Especially, the rejection of NaCl is the lowest at pH=10, ascribingto the sieving effect on neutral membrane surface.
     An UF and NF combination membrane separation process is established forremoval of hydrophobic oil droplets, iron corrosion products, Ca2+and Mg2+in hightemperature condensed water. The effects of five operation parameters in UF process(transmembrane pressure (TMP), temperature and pH of feed water, initial oil andiron concentration) and four operation parameters in NF process (operating time,pressure, temperature and pH of feed water) on the permeate flux and removalefficiencies of contaminants were investigated in detail. The result reveals thathigher TMP aggravates membrane fouling, resulting in the increase of flux declinerate.0.1MPa is chosen as the optimal TMP. The temperature and pH of feed wateraffect ferric hydrolysate species. In strong acidic solution, the hydrolysis of ironions is inhibited, and the iron removal efficiency is almost zero. Hydrolysis of ironions is accelerated by high temperature and more polymeric species are formed. Thehigh polymeric species with a three-dimensional stereoscopic porous like structurecan sweep down the oil drops to form floccules. These floccules can be easily sweptaway by the hydraulic flush rather than be adsorbed on the membrane surface. Inthis process, the membrane fouling is mitigated. The composite membrane showshigh resistance towards oil and iron concentration. It can be seen that the optimal operating pressure is0.6MPa in NF process. The permeate flux increases with theincrease of temperature and pH of feed water. The NF membrane behaves a goodthermostability, and the removal efficiencies of Ca2+and Mg2+are not affected muchby the feed water temperature. When pH increase, a slight increase of Ca2+, Mg2+concentrations was found and this may be because of the lower positive chargedensity on the membrane surface.
     To remove cake layer pollution formed by accumulation and deposition of oildroplets and iron hydrolysate, four kinds of chemcial cleaning agents includingsodium hydroxide, ethanol, oxalic acid and hydrochloric acid were used, and thecontaminated UF membrane cleaning method was optimized. The result shows that0.01mol·L-1NaOH solution cleaning combination with30%ethanol solutioncleaning is the best method with over95%flux recovery rate. Actual hightemperature condensed water from refinery can be efficiently treated using UF andNF combined separation process. The turbidity is completely removed and thecontaminants concentrations in NF permeate solution satisfy the Quality Criterion ofWater and Steam for Steam Power Equipment (GB/T12145-2008, China). The NFpermeate solution can be potentially used as boiler makeup water.
     Realization of UF and NF combination membrane separation process promisesa great many advantages for refinery high temperature condensed water purificationand recycling, like simple operation, small occupied area, high separation efficiency,low operational costs, energy saving and environmental protection and possibility toachieve automatic control and industrial extension. This study provides an effectivesolution for high temperature condensed water recycling for refinery enterprises.The presented thermostable PPESK/TiO_2composite UF membrane and positivelycharged NF membrane show comprehensive excellent performance, which isexpected to have wide application in other drinking water treatment and wastewatertreatment fields.
引文
[1]杨辉,陈贵军,马庆海,等.高温凝结水回收及热能的梯级利用[J].节能,2010,(001):69-72.
    [2]杜志尧.凝结水处理技术的研究与应用[D].天津:天津大学学位论文,2006:2-4.
    [3] Varley M E. British Freshwater Fishes: Factors Affecting TheirDistribution[M]. London: Fishing News,1967.
    [4] Caissie D. The Thermal Regime of Rivers: A Review[J]. Freshwater Biology,2006,51(8):1389-1406.
    [5] Verones F, Hanafiah M M, Pfister S, et al. Characterization Factors forThermal Pollution in Freshwater Aquatic Environments[J]. EnvironmentalScience&Technology,2010,44(24):9364-9369.
    [6] Arieli R N, Almogi-Labin A, Abramovich S, et al. The Effect of ThermalPollution on Benthic Foraminiferal Assemblages in the MediterraneanShoreface Adjacent to Hadera Power Plant (Israel)[J]. Marine PollutionBulletin,2011,62(5):1002-1012.
    [7]翟建文,罗敏,王东,等.耐高温膜用于凝结水深度净化处理[J].化工进展,2009,(28):69-71.
    [8]冷树成.凝结水的净化技术[J].工业水处理,2010,30(3):64-67.
    [9] Vovk I O, Melekhov R K. Role of Iron Oxide Deposits in Corrosion Damageto the Surfaces of Steam-Generating Tubes of Boilers of Thermal PowerPlants[J]. Materials Science,1995,31(1):127-130.
    [10] Yeon K H, Song J H, Moon S H. A Study on Stack Configuration ofContinuous Electrodeionization for Removal of Heavy Metal Ions from thePrimary Coolant of a Nuclear Power Plant[J]. Water Research,2004,38(7):1911-1921.
    [11] Lim T T, Huang X F. Evaluation of Hydrophobicity/Oleophilicity of Kapokand its Performance in Oily Water Filtration: Comparison of Raw andSolvent-Treated Fibers[J]. Industrial Crops and Products,2007,26(2):125-134.
    [12]徐又一,徐志康.高分子膜材料[M].北京:化学工业出版社,2005.
    [13] GE公司. GE水处理及工艺过程处理工艺分离膜产品技术手册,2007:1-137.
    [14] Jin Z, Yang D L, Zhang S H, et al. Preparation and Characterazition of Poly(Phthalazinone Ether Sulfone Ketone) Hollow Fiber Ultrafiltration Membranewith High-Molecular Weight Cut-Off[J]. Journal of Membrane Science,2007,306(1):253-260.
    [15] Jin Z, Yang D L, Zhang S H, et al. Hydrophobic Modification of Poly(Phthalazinone Ether Sulfone Ketone) Hollow Fiber Membrane for VacuumMembrane Distillation[J]. Journal of Membrane Science,2008,310(1):20-27.
    [16] Yang Y N, Zhang H X, Wang P, et al. The Influence of Nano-Sized TiO2Fillerson the Morphologies and Properties of PSF UF Membrane[J]. Journal ofMembrane Science,2007,288(1):231-238.
    [17]徐铜文.膜化学与技术教程[M].合肥:中国科学技术大学出版社,2003:149.
    [18] Bhattacharya A, Ghosh P. Nanofiltration and Reverse Osmosis Membranes:Theory and Application in Separation of Electrolytes[J]. Reviews in ChemicalEngineering,2004,20(1-2):111-173.
    [19] Drioli E, Giorno L. Comprehensive Membrane Science and Engineering[M].Kidlington:Elsevier Science Ltd,2010:116-137.
    [20] Snow MJ, de Winter D, Buckingham R, et al. New Techniques for ExtremeConditions: High Temperature Reverse Osmosis and Nanofiltration[J].Desalination,1996,105(1):57-61.
    [21] Seo D W, Lim Y D, Hossain M A, et al. Phosphoric Acid Doped SulfonatedPoly(Tetra Phenyl Isoquinoline Ether Sulfone) Copolymers for HighTemperature Proton Exchange Membrane Potential Application[J].International Journal of Hydrogen Energy,2013,38(1):667-674.
    [22] Jian X G, Dai Y, He G H, et al. Preparation of UF and NF Poly (PhthalazineEther Sulfone Ketone) Membranes for High Temperature Application[J].Journal of Membrane Science,1999,161(1):185-191.
    [23] Berchtold K A, Singh R P, Young J S, et al. Polybenzimidazole CompositeMembranes for High Temperature Synthesis Gas Separations[J]. Journal ofMembrane Science,2012,415-416:265-270.
    [24] Singh D, Sirkar K K. Desalination of Brine and Produced Water by DirectContact Membrane Distillation at High Temperatures and Pressures[J]. Journalof Membrane Science,2012,389:380-388.
    [25] Chun J H, Kim S G, Lee J Y, et al. Crosslinked Sulfonated Poly (Arylene EtherSulfone)/Silica Hybrid Membranes for High Temperature Proton ExchangeMembrane Fuel Cells[J]. Renewable Energy,2013,51:22-28.
    [26] Yang T X, Shi G M, Chung T S. Symmetric and Asymmetric ZeoliticImidazolate Frameworks (ZIFs)/Polybenzimidazole (PBI) NanocompositeMembranes for Hydrogen Purification at High Temperatures[J]. AdvancedEnergy Materials,2012,2(11):1358-1367.
    [27] Khayet M, Mengual J, Matsuura T. Porous Hydrophobic/HydrophilicComposite Membranes: Application in Desalination Using Direct ContactMembrane Distillation[J]. Journal of Membrane Science,2005,252(1):101-113.
    [28] Jian X D, Dai Y, Zeng L, et al. Application of Poly (Phthalazinone EtherSulfone Ketone)s to Gas Membrane Separation[J]. Journal of Applied PolymerScience,1999,71(14):2385-2390.
    [29]张守海,蹇锡高,杨大令,等.含二氮杂萘酮结构聚芳醚砜酮超滤膜的研制[J].膜科学与技术,2004,24(1):24-27.
    [30] Yun Y B, Tian Y H, Shi G L, et al. Preparation, Morphologies and Properties forFlat Sheet PPESK Ultrafiltration Membranes[J]. Journal of Membrane Science,2006,270(1):146-153.
    [31] Yang Y Q, Yang D L, Zhang S H, et al. Preparation and Characterization ofPoly (Phthalazinone Ether Sulfone Ketone) Hollow Fiber UltrafiltrationMembranes with Excellent Thermal Stability[J]. Journal of Membrane Science,2006,280(1):957-968.
    [32] Dai Y, Jian X G, Zhang S H, et al. Thermostable Ultrafiltration andNanofiltration Membranes from Sulfonated Poly (Phthalazinone Ether SulfoneKetone)[J]. Journal of Membrane Science,2001,188(2):195-203.
    [33] Gu S, He G H, Wu X M, et al. Synthesis and Characteristics of Sulfonated Poly(Phthalazinone Ether Sulfone Ketone)(SPPESK) for Direct Methanol Fuel Cell(DMFC)[J]. Journal of Membrane Science,2006,281(1):121-129.
    [34] Zhu L P, Xu Y Y, Wei X Z, et al. Hydrophilic Modification of Poly (PhthalazineEther Sulfone Ketone) Ultrafiltration Membranes by the SurfaceImmobilization of Poly (Ethylene Glycol) Acrylates[J]. Desalination,2009,242(1):96-109.
    [35]朱利平.聚醚砜、聚醚砜酮多孔膜的结构可控制备及其表面改性[D].杭州:浙江大学学位论文,2007.
    [36] Zhu L P, Dong H B, Wei X Z, et al. Tethering Hydrophilic Polymer Brushesonto PPESK Membranes Via Surface-Initiated Atom Transfer RadicalPolymerization[J]. Journal of Membrane Science,2008,320(1):407-415.
    [37] Zhu L P, Xu Y Y, Dong H B, et al. Amphiphilic PPESK-graft-P(PEGMA)Copolymer for Surface Modification of PPESK Membranes[J]. MaterialsChemistry and Physics,2009,115(1):223-228.
    [38] Yan C, Zhang S H, Yang D L, et al. Preparation and Characterization ofChloromethylated/Quaternized Poly (Phthalazinone Ether Sulfone Ketone) forPositively Charged Nanofiltration Membranes[J]. Journal of Applied PolymerScience,2008,107(3):1809-1816.
    [39] Han R L, Zhang S H, Zhao W Y, et al. Treating Sulfur Black Dye Wastewaterwith Quaternized Poly (Phthalazinone Ether Sulfone Ketone) NanofiltrationMembranes[J]. Separation and Purification Technology,2009,67(1):26-30.
    [40] Zhang S H, Jian X G, Dai Y. Preparation of Sulfonated Poly (PhthalazinoneEther Sulfone Ketone) Composite Nanofiltration Membrane[J]. Journal ofMembrane Science,2005,246(2):121-126.
    [41]靳钊,杨大令,张守海,等. PPESK中空纤维疏水膜膜蒸馏法脱除水中氯酚[J].水处理技术,2007,33(10):28-30.
    [42]魏菊,张守海,蹇锡高.聚醚砜酮合金超滤膜的制备及表征[J].膜科学与技术,2007,27(1):50-54.
    [43] Han R L, Zhang S H, Liu C, et al. Effect of NaA Zeolite Particle Addition onPoly (Phthalazinone Ether Sulfone Ketone) Composite Ultrafiltration (UF)Membrane Performance[J]. Journal of Membrane Science,2009,345(1):5-12.
    [44]冯学斌,廖功雄,张欣涛,等.多壁碳纳米管/杂萘联苯聚醚砜酮复合材料的制备及性能[J].功能材料,2008,4(39):687-689.
    [45]李圭白,田家宇,齐鲁.第三代城市饮用水净化工艺及超滤的零污染通量[J].给水排水,2010,36(8):11-15.
    [46]李圭白,杨艳玲.超滤——第三代城市饮用水净化工艺的核心技术[J].供水技术,2007,(01):1-3.
    [47] Arnal J M, García-Fayos B, Sancho M, et al. Design and Installation of aDecentralized Drinking Water System Based on Ultrafiltration inMozambique[J]. Desalination,2010,250(2):613-617.
    [48] Mierzwa J C, Silva M C C, Veras L R V, et al. Enhancing Spiral-WoundUltrafiltration Performance for Direct Drinking Water Treatment ThroughOperational Procedures Improvement: a Feasible Option for the Sao PauloMetropolitan Region[J]. Desalination,2012,307:68-75.
    [49]李圭白,梁恒.超滤膜的零污染通量及其在城市水处理工艺中的应用[J].中国给水排水,2012,28(10):1-3.
    [50] Diaz S D, Pe a L V, Cabrera E G, et al. Effect of Previous Coagulation in DirectUltrafiltration of Primary Settled Municipal Wastewater[J]. Desalination,2012,304:41-48.
    [51]吴光,邱广明,陈翠仙,等.超滤膜法城市污水深度处理中水回用中试试验研究[J].膜科学与技术,2004,24(1):38-41.
    [52] Chon K, Kim S J, Moon J, et al. Combined Coagulation-Disk Filtration Processas a Pretreatment of Ultrafiltration and Reverse Osmosis Membrane forWastewater Reclamation: an Autopsy Study of a Pilot Plant[J]. Water research,2012,46(6):1803-1816.
    [53] Yuliwati E, Ismail A F, Lau W J, et al. Effects of Process Conditions inSubmerged Ultrafiltration for Refinery Wastewater Treatment: Optimization ofOperating Process by Response Surface Methodology[J]. Desalination,2012,287:350-361.
    [54]刘金.超滤深度处理聚驱采油废水试验研究[D].哈尔滨:哈尔滨工业大学学位论文,2007:69.
    [55] Geckeler K E, Volchek K. Removal of Hazardous Substances from Water UsingUltrafiltration in Conjunction with Soluble Polymers[J]. EnvironmentalScience&Technology,1996,30(3):725-734.
    [56] Mungray A A, Kulkarni S V, Mungray A K. Removal of Heavy Metals fromWastewater Using Micellar Enhanced Ultrafiltration Technique: a Review[J].Central European Journal of Chemistry,2012,10(1):27-46.
    [57] Li X, Zeng G M, Huang J H, et al. Simultaneous Removal of Cadmium Ionsand Phenol with MEUF Using SDS and Mixed Surfactants[J]. Desalination,2011,276(1):136-141.
    [58]黄瑾辉.胶团强化超滤法处理含镉废水的机理与应用基础研究[D].长沙:湖南大学博士学位论文,2007.
    [59] Li X, Zeng G M, Huang J H, et al. Recovery and Reuse of Surfactant SDS froma MEUF Retentate Containing Cd2+or Zn2+by Ultrafiltration[J]. Journal ofMembrane Science,2009,337(1):92-97.
    [60] Samper E, Rodríguez M, Sentana I, et al. Removal of Nickel by Means ofMicellar-Enhanced Ultrafiltration (MEUF) Using Two Anionic Surfactants[J].Water, Air, and Soil Pollution,2010,208(1-4):5-15.
    [61] Yenphan P, Chanachai A, Jiraratananon R. Experimental Study onMicellar-Enhanced Ultrafiltration (MEUF) of Aqueous Solution andWastewater Containing Lead Ion with Mixed Surfactants[J]. Desalination,2010,253(1):30-37.
    [62]黄瑾辉,曾光明,张振,等.胶团强化超滤中SDS胶团对Cd2+,Zn2+和Pb2+的竞争吸附[J].膜科学与技术,2008,25(4):26-30.
    [63] Li C W, Liu C K, Yen W S. Micellar-Enhanced Ultrafiltration (MEUF) withMixed Surfactants for Removing Cu (Ii) Ions[J]. Chemosphere,2006,63(2):353-358.
    [64] Bade R, Lee S H, Jo S, et al. Micellar Enhanced Ultrafiltration (MEUF) andActivated Carbon Fibre (ACF) Hybrid Processes for Chromate Removal fromWastewater[J]. Desalination,2008,229(1):264-278.
    [65] Iqbal J, Kim H J, Yang J S, et al. Removal of Arsenic from Groundwater byMicellar-Enhanced Ultrafiltration (MEUF)[J]. Chemosphere,2007,66(5):970-976.
    [66] Huang J H, Xiong Y L, Zeng G M, et al. Separation of Phenol from VariousMicellar Solutions Using MEUF[J]. Separation and Purification Technology,2012,98:1-6.
    [67] Deriszadeh A, Harding T G, Husein M M. Improved MEUF Removal ofNaphthenic Acids from Produced Water[J]. Journal of Membrane Science,2009,326(1):161-167.
    [68]龚清杰,胶体强化超滤去除水中内分泌干扰物[D].上海:东华大学学位论文,2010.
    [69]史锦,胶团强化超滤处理阿特拉津的研究[D].上海:东华大学学位论文,2010.
    [70] Malamis S, Katsou E, Kosanovic T, et al. Combined Adsorption andUltrafiltration Processes Employed for the Removal of Pollutants from MetalPlating Wastewater[J]. Separation Science and Technology,2012,47(7):983-996.
    [71] Gong Y W, Zhang H X, Cheng X N. Treatment of Dairy Wastewater byTwo-Stage Membrane Operation with Ultrafiltration and Nanofiltration[J].Water Science and Technology,2012,65(5):915-919.
    [72] Srivastava H P, Arthanareeswaran G, Anantharaman N, et al. Performance ofModified Poly (Vinylidene Fluoride) Membrane for Textile WastewaterUltrafiltration[J]. Desalination,2011,282:87-94.
    [73] Cheng S Y, Oatley D L, Williams P M, et al. Positively Charged NanofiltrationMembranes: Review of Current Fabrication Methods and Introduction of aNovel Approach[J]. Advances in Colloid and Interface Science,2011,164(1):12-20.
    [74] Childress A E, Elimelech M. Relating Nanofiltration Membrane Performance toMembrane Charge (Electrokinetic) Characteristics[J]. Environmental Science&Technology,2000,34(17):3710-3716.
    [75] Bruggen B V. Chemical Modification of Polyethersulfone NanofiltrationMembranes: a Review[J]. Journal of Applied Polymer Science,2009,114(1):630-642.
    [76]马冯,张玉忠,丁晓莉,等.磺化聚砜/聚醚砜共混非对称纳滤膜的制备与性能表征[J].膜科学与技术,2012,32(1):46-50.
    [77] Sajitha C J, Mahendran R, Mohan D. Studies on CelluloseAcetate–Carboxylated Polysulfone Blend Ultrafiltration Membranes––Part I[J].European Polymer Journal,2002,38(12):2507-2511.
    [78] Kim I C, Lee K H, Tak T M. Synthesis and Asymmetric NanofiltrationMembrane Performance of Heterogeneously Sulfonated AromaticPolyimides[J]. Journal of Applied Polymer Science,2003,89(9):2483-2489.
    [79] Dalwani M, Bargeman G, Hosseiny S S, et al. Sulfonated Poly (Ether EtherKetone) Based Composite Membranes for Nanofiltration of Acidic andAlkaline Media[J]. Journal of Membrane Science,2011,381(1):81-89.
    [80] Ba C, Ladner D A, Economy J. Using Polyelectrolyte Coatings to ImproveFouling Resistance of a Positively Charged Nanofiltration Membrane[J].Journal of Membrane Science,2010,347(1):250-259.
    [81]邓慧宇.低压荷电纳滤膜的结构控制及性能研究[D].杭州:浙江大学学位论文,2008:20.
    [82]宣理静,钱锦文,陈幼芳,等.层层自组装聚电解质多层膜的制备及在膜分离中的应用[J].化学进展,2006,18(7):950-956.
    [83] Lajimi R H, Ferjani E, Roudesli M S, et al. Effect of LbL Surface Modificationon Characteristics and Performances of Cellulose Acetate NanofiltrationMembranes[J]. Desalination,2011,266(1):78-86.
    [84] Malaisamy R, Talla-Nwafo A, Jones K L. Polyelectrolyte Modification ofNanofiltration Membrane for Selective Removal of Monovalent Anions[J].Separation and Purification Technology,2011,77(3):367-374.
    [85]马跃华,界面聚合制备聚酰胺复合纳滤膜[D].北京:北京化工大学学位论文,2010:13-14.
    [86] An Q F, Sun W D, Zhao Q, et al. Study on a Novel Nanofiltration MembranePrepared by Interfacial Polymerization with Zwitterionic Amine Monomers[J].Journal of Membrane Science,2013,431:171-179.
    [87] Ahmad A L, Ooi B S, Choudhury J P. Preparation and Characterization ofCo-Polyamide Thin Film Composite Membrane from Piperazine and3,5-Diaminobenzoic Acid[J]. Desalination,2003,158(1):101-108.
    [88] La Y H, Sooriyakumaran R, Miller D C, et al. Novel Thin Film CompositeMembrane Containing Ionizable Hydrophobes: pH-Dependent ReverseOsmosis Behavior and Improved Chlorine Resistance[J]. Journal of MaterialsChemistry,2010,20(22):4615-4620.
    [89] Liu M H, Wu D H, Yu S C, et al. Influence of the Polyacyl Chloride Structureon the Reverse Osmosis Performance, Surface Properties and ChlorineStability of the Thin-film Composite Polyamide Membranes[J]. Journal ofMembrane Science,2009,326(1):205-214.
    [90] Yu S C, Liu M H, Lü Z H, et al. Aromatic-cycloaliphatic Polyamide Thin-filmComposite Membrane with Improved Chlorine Resistance Prepared fromm-Phenylenediamine-4-methyl and Cyclohexane-1,3,5-tricarbonyl Chloride[J].Journal of Membrane Science,2009,344(1):155-164.
    [91] Li L, Zhang S B, Zhang X S, et al. Polyamide Thin Film Composite MembranesPrepared from Isomeric Biphenyl Tetraacyl Chloride and m-Phenylenediamine[J]. Journal of Membrane Science,2008,315(1):20-27.
    [92] Shao L, Cheng X Q, Liu Y, et al. Newly Developed Nanofiltration (NF)Composite Membranes by Interfacial Polymerization for Safranin O andAniline Blue Removal[J]. Journal of Membrane Science,2013,430(1):96-105.
    [93]邱长泉.紫外接枝制备亲水性纳滤膜的研究[D].上海:复旦大学学位论文,2005:20-23.
    [94] Lin N H, Kim M, Lewis G T, et al. Polymer Surface Nano-Structuring ofReverse Osmosis Membranes for Fouling Resistance and Improved FluxPerformance[J]. Journal of Materials Chemistry,2010,20(22):4642-4652.
    [95] Bernstein R, Antón E, Ulbricht M. Tuning the Nanofiltration Performance ofThin Film Strong Polyelectrolyte Hydrogel Composite Membranes byPhoto-Grafting Conditions[J]. Journal of Membrane Science,2013,427(1):129-138.
    [96] Zhong P S, Widjojo N, Chung T S, et al. Positively Charged Nanofiltration (NF)Membranes via UV Grafting on Sulfonated Polyphenylenesulfone (SPPSU) forEffective Removal of Textile Dyes from Wastewater[J]. Journal of MembraneScience,2012,417-418:52-60.
    [97] Zhou C, Gao X L, Li S S, et al. Fabrication and Characterization of NovelComposite Nanofiltration Membranes Based on Zwitterionic O-carboxymethylChitosan[J]. Desalination,2013,317:67-76.
    [98] Li X L, Zhu L P, Xu Y Y, et al. A Novel Positively Charged NanofiltrationMembrane Prepared from N,N-dimethylaminoethyl Methacrylate byQuaternization Cross-Linking[J]. Journal of Membrane Science,2011,374:33-42.
    [99] Du R H, Zhao J S. Properties of Poly (N,N-dimethylaminoethylmethacrylate)/Polysulfone Positively Charged Composite NanofiltrationMembrane[J]. Journal of Membrane Science,2004,239(2):183-188.
    [100]Huang R H, Chen G H, Sun M K, et al. Preparation and Characterization ofComposite NF Membrane from a Graft Copolymer of TrimethylallylAmmonium Chloride onto Chitosan by Toluene Diisocyanate Cross-linking[J].Desalination,2009,239(1):38-45.
    [101]Bruggen B V, Everaert K, Wilms D, et al. Application of Nanofiltration forRemoval of Pesticides, Nitrate and Hardness from Ground Water: RejectionProperties and Economic Evaluation[J]. Journal of Membrane Science,2001,193(2):239-248.
    [102]李晓明,王铎,柴涛,等.纳滤海水软化的实验研究[J].高校化学工程学报,2009,23(4):582-586.
    [103]Murthy Z V P, Chaudhari L B. Separation of Binary Heavy Metals fromAqueous Solutions by Nanofiltration and Characterization of the MembraneUsing Spiegler–Kedem Model[J]. Chemical Engineering Journal,2009,150(1):181-187.
    [104]Wei X Y, Wang Z, Fan F H, et al. Advanced Treatment of a ComplexPharmaceutical Wastewater by Nanofiltration: Membrane FoulantIdentification and Cleaning[J]. Desalination,2010,251(1):167-175.
    [105]R hricht M, Krisam J, Weise U, et al. Elimination of Pharmaceuticals fromWastewater by Submerged Nanofiltration Plate Modules[J]. Desalination,2010,250(3):1025-1026.
    [106]Zazouli M A, Susanto H, Nasseri S, et al. Influences of Solution Chemistry andPolymeric Natural Organic Matter on the Removal of Aquatic PharmaceuticalResiduals by Nanofiltration[J]. Water Rresearch,2009,43(13):3270-3280.
    [107]Jin X, Hu J Y, Ong S L. Removal of Natural Hormone Estrone from SecondaryEffluents Using Nanofiltration and Reverse Osmosis[J]. Water Research,2010,44(2):638-648.
    [108]张洁欣,魏俊富,张环.聚砜纳滤中空纤维膜去除内分泌干扰物双酚A[J].膜科学与技术,2012,32(2):41-45.
    [109]张阳,胡锦英,李光哲.纳滤去除水中内分泌干扰物双酚A和四溴双酚A的研究[J].环境科学,2010,31(6):1513-1517.
    [110]Qin J J, Oo M H, Kekre K A. Nanofiltration for Recovering Wastewater from aSpecific Dyeing Facility[J]. Separation and Purification Technology,2007,56(2):199-203.
    [111]何毅,苏鹤祥,李光明,等.染料的纳滤分离性能和机理[J].膜科学与技术,2005,25(1):48-52.
    [112]Gorenflo A, Velazquez-Padron D, Frimmel F H. Nanofiltration of a GermanGroundwater of High Hardness and NOM Content: Performance and Costs[J].Desalination,2002,151:253-265.
    [113]Ahmed M T, Chaabane T, Taha S, et al. Treatment of Heavy Metals byNanofiltration Present in the Lake Regha a[J]. Desalination,2008,221(1):277-283.
    [114]Saitua H, Gil R, Padilla A P. Experimental Investigation on Arsenic Removalwith a Nanofiltration Pilot Plant from Naturally Contaminated Groundwater[J].Desalination,2011,274(1):1-6.
    [115]Yoon Y, Westerhoff P, Snyder S A, et al. Nanofiltration and Ultrafiltration ofEndocrine Disrupting Compounds, Pharmaceuticals and Personal CareProducts[J]. Journal of Membrane Science,2006,270(1):88-100.
    [116]Semi o A J C, Sch fer A I. Removal of Adsorbing Estrogenic Micropollutantsby Nanofiltration Membranes. Part A-experimental Evidence[J].Journal ofMembrane Science,2013,431:244-256.
    [117]Semi o A J C, Foucher M, Sch fer A I. Removal of Adsorbing EstrogenicMicropollutants by Nanofiltration Membranes: Part B-Model Development[J].Journal of Membrane Science,2013,431:257-266.
    [118]Lau W J, Ismail A F. Polymeric Nanofiltration Membranes for Textile DyeWastewater Treatment: Preparation, Performance Evaluation, TransportModelling, and Fouling Control—A Review[J]. Desalination,2009,245(1):321-348.
    [119]Lopes C N, Petrus J C C, Riella H G. Color and COD Retention byNanofiltration Membranes[J]. Desalination,2005,172(1):77-83.
    [120]张水英.动力锅炉蒸汽冷凝水的回收利用[D].北京:首都经济贸易大学学位论文,2002:2.
    [121]刘伟伟.空冷机组凝结水精处理系统树脂耐温性能实验研究[D].北京:华北电力大学学位论文,2011:64.
    [122]张澄信,张红梅.凝结水处理用阴离子交换树脂耐热性能对比试验[J].热力发电,1997,(4):38-41.
    [123]张玉宏,唐雪丽,王海洁.覆盖过滤器在凝结水处理系统中的应用[J].内蒙古电力技术,2009,27(B12):60-62.
    [124]张杰,刘仁楼,乔玉珠,等. HK阻截膜除油技术在高温凝结水回收系统中的应用[J].化工科技,2010,18(5):38-40.
    [125]南京碧盾环保装备有限责任公司.高温凝结水除油除铁[R/OL].(2012-11-04)[2013-03-05]. http://www.doc88.com/p-115663403028.html.
    [126]曾锋德.炼厂蒸汽凝结水的吸附除油研究[D].兰州:兰州理工大学学位论文,2006:52.
    [127]孙金昌.斜发沸石去除高温凝结水中铁离子的性能研究[D].大连:大连理工大学学位论文,2012:1.
    [128]苗金明.高温凝结水回收系统的设计及防腐蚀研究[D].北京:北京化工大学学位论文,2010:47.
    [129]Kalakodimi R P. Boiler Chemistry Management Using Coordinated Approachof Chemicals[R/OL].(2009-03-09)[2013-03-05]. http://www.zenonenv.com/pdf/Technical%20Papers_Cust/Americas/English/TP1174EN.pdf.
    [130]Yang Y N, Wang P. Preparation and Characterizations of a New PS/TiO2Hybrid Membranes by Sol–gel Process[J]. Polymer,2006,47(8):2683-2688.
    [131]Yu L Y, Xu Z L, Shen H M, et al. Preparation and Characterization ofPVDF–SiO2Composite Hollow Fiber UF Membrane by Sol-gel Method[J].Journal of Membrane Science,2009,337(1):257-265.
    [132]Hamid N A A, Ismail A F, Matsuura T, et al. Morphological and SeparationPerformance Study of Polysulfone/Titanium Dioxide (PSF/TiO2)Ultrafiltration Membranes for Humic Acid Removal[J]. Desalination,2011,273(1):85-92.
    [133]Arthanareeswaran G, Devi T K S, Raajenthiren M. Effect of Silica Particles onCellulose Acetate Blend Ultrafiltration Membranes: Part I[J]. Separation andPurification Technology,2008,64(1):38-47.
    [134]Benito J M, Ebel S, Gutierrez B, et al. Ultrafiltration of a Waste EmulsifiedCutting Oil Using Organic Membranes[J]. Water, Air, and Soil Pollution,2001,128(1-2):181-195.
    [135]Oh S J, Kim N, Lee Y T. Preparation and Characterization Of PVDF/TiO2Organic–Inorganic Composite Membranes for Fouling ResistanceImprovement[J]. Journal of Membrane Science,2009,345(1):13-20.
    [136]Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric Method forDetermination of Sugars and Related Substances[J]. Analytical Chemistry,1956,28(3):350-356.
    [137]Wang X L, Tsuru T, Nakao S, et al. The Electrostatic and Steric-HindranceModel for the Transport of Charged Solutes Through NanofiltrationMembranes[J]. Journal of Membrane Science,1997,135(1):19-32.
    [138]Sun S P, Wang K Y, Rajarathnam D, et al. Polyamide-imide NanofiltrationHollow Fiber Membranes with Elongation-Induced Nano-Pore Evolution[J].AIChE Journal,2010,56(6):1481-1494.
    [139]王枢.抗污染油水分离复合膜制备及分离性能研究[D].成都:四川大学学位论文,2004:55-56.
    [140]杨永强. PPESK中空纤维超滤膜、纳滤膜的研究[D].大连:大连理工大学学位论文,2006:41,74.
    [141]王娇.杂萘联苯聚醚砜超滤膜的研制[D].大连:大连理工大学学位论文,2007:42.
    [142]魏菊.杂萘联苯聚醚砜酮超滤膜及其复合膜的研究[D].大连:大连理工大学学位论文,2006:31.
    [143] Chakrabarty B, Ghoshal A K, Purkait M K. Effect of Molecular Weight ofPEG on Membrane Morphology and Transport Properties[J]. Journal ofMembrane Science,2008,309:209-221.
    [144] Ma Y X, Shi F M, Ma J, et al. Effect of PEG Additive on the Morphology andPerformance of Polysulfone Ultrafiltration Membranes[J]. Desalination,2011,272(1):51-58.
    [145]Kim J H, Lee K H. Effect of PEG Additive on Membrane Formation by PhaseInversion[J]. Journal of Membrane Science,1998,138(2):153-163.
    [146]范为.聚醚砜超滤膜结构的影响因素与性能研究[D].杭州:浙江大学学位论文,2007:46-47.
    [147]Smolders C A, Reuvers A J, Boom R M, et al. Microstructures inPhase-inversion Membranes. Part1. Formation of Macrovoids[J]. Journal ofMembrane Science,1992,73(2):259-275.
    [148]Yan L, Xiang C B, Shun X D, Effect of Nano-sized Al2O3-particle Addition onPVDF Ultrafiltration Membrane Performance[J]. Journal of Membrane Science,2006,276:162-167.
    [149]Maximous N, Nakhla G, Wan W, et al. Preparation, Characterization andPerformance of Al2O3/PES Membrane for Wastewater Filtration[J]. Journal ofMembrane Science,2009,341(1):67-75.
    [150]Soboyejo W O. Mechanical Properties of Engineered Materials[M]. New York:Marcel Dekker Inc.,2003.
    [151]Luo M L, Zhao J Q, Tang W, et al. Hydrophilic Modification of Poly (EtherSulfone) Ultrafiltration Membrane Surface by Self-Assembly of TiO2Nanoparticles[J]. Applied Surface Science,2005,249(1):76-84.
    [152]Pagliero C, Mattea M, Ochoa N, et al. Fouling of Polymeric MembranesDuring Degumming of Crude Sunflower and Soybean Oil[J]. Journal of FoodEngineering,2007,78(1):194-197.
    [153]Chen J C, Li Q L, Elimelech M. In Situ Monitoring Techniques forConcentration Polarization and Fouling Phenomena in Membrane Filtration[J].Advances in Colloid and Interface Science,2004,107(2):83-108.
    [154]Yi X S, Yu S L, Shi W X, et al. The Influence of Important Factors onUltrafiltration of Oil/Water Emulsion Using PVDF Membrane Modified byNano-sized TiO2/Al2O3[J]. Desalination,2011,281:179-184.
    [155]Albrecht W, Seifert B, Weigel T, et al. Amination of Poly (ether imide)Membranes Using Di-and Multivalent Amines[J]. Macromolecular Chemistryand Physics,2003,204(3):510-521.
    [156]Ba C, Langer J, Economy J. Chemical Modification of P84CopolyimideMembranes by Polyethylenimine for Nanofiltration[J]. Journal of MembraneScience,2009,327(1):49-58.
    [157]Ba C, Economy J. Preparation and Characterization of a Neutrally ChargedAntifouling Nanofiltration Membrane by Coating a Layer of Sulfonated Poly(Ether Ether Ketone) on a Positively Charged Nanofiltration Membrane[J].Journal of Membrane Science,2010,362(1):192-201.
    [158]Coronell O, Mari as B J, Cahill D G. Depth Heterogeneity of Fully AromaticPolyamide Active Layers in Reverse Osmosis and NanofiltrationMembranes[J]. Environmental Science&Technology,2011,45(10):4513-4520.
    [159]Sun S P, Hatton T A, Chung T S. Hyperbranched Polyethyleneimine InducedCross-Linking of Polyamide-imide Nanofiltration Hollow Fiber Membranesfor Effective Removal of Ciprofloxacin[J]. Environmental Science&Technology,2011,45(9):4003-4009.
    [160]Sharma K P, Choudhury C K, Srivastava S, et al. Assembly ofPolyethyleneimine in the Hexagonal Mesophase of Nonionic Surfactant: Effectof pH and Temperature[J]. The Journal of Physical Chemistry B,2011,115(29):9059-9069.
    [161]Song L, Elimelech M. Theory of Concentration Polarization in CrossflowFiltration[J]. J Chem Soc, Faraday Trans,1995,91(19):3389-3398.
    [162]Chakrabarty B, Ghoshal A K, Purkait M K. Cross-flow Ultrafiltration of StableOil-In-Water Emulsion Using Polysulfone Membranes[J]. ChemicalEngineering Journal,2010,165(2):447-456.
    [163]Ko tuniewicz A B, Field R W. Process Factors During Removal of Oil-in-waterEmulsions with Cross-Flow Microfiltration[J]. Desalination,1996,105(1):79-89.
    [164]Chakrabarty B, Ghoshal A K, Purkait M K. Ultrafiltration of StableOil-in-water Emulsion by Polysulfone Membrane[J]. Journal of MembraneScience,2008,325(1):427-437.
    [165]Flynn Jr CM. Hydrolysis of Inorganic Iron (III) Salts[J]. Chemical Reviews,1984,84(1):31-41.
    [166]杨禹.微波强化Fenton混凝处理青霉索生产废水工艺技术研究[D].哈尔滨:哈尔滨工业大学学位论文,2009:38-40.
    [167]Yang Y, Wang P, Liu Y. Species Distribution of Ferric Hydrolysates inMicrowave Enhanced Fenton-like Process and Possible Mechanism[J]. Journalof Hazardous Materials,2010,178(1):293-297.
    [168]Spiteri C, Regnier P, Slomp C P, et al. pH-Dependent Iron Oxide Precipitationin a Subterranean Estuary[J]. Journal of Geochemical Exploration,2006,88(1):399-403.
    [169]刘岩.磺化PPES复合纳滤膜制备及性能研究[D].大连:大连理工大学学位论文,2008:52.
    [170]李永红.粘土颗粒和有机物对浸没式超滤膜给水处理的膜污染特性[D].北京:清华大学学位论文,2011:119.
    [171]Yamamura H, Kimura K, Watanabe Y. Mechanism Involved in the Evolution ofPhysically Irreversible Fouling in Microfiltration and UltrafiltrationMembranes Used for Drinking Water Treatment[J]. Environmental Science&Technology,2007,41(19):6789-6794.
    [172]Tian J Y, Chen Z L, Yang Y L, et al. Consecutive Chemical Cleaning of FouledPVC Membrane Using NaOH and Ethanol During Ultrafiltration of RiverWater[J]. Water Research,2010,44(1):59-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700