SBA-16分子筛负载的钴基催化剂费—托合成反应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
费-托合成(Fischer-Tropsch synthesis,FTS)是将煤、天然气或生物质间接转化为液体燃料的重要工艺过程。尽管对费-托合成反应的研究已经有九十多年历史,但费-托反应是一个较复杂的反应体系,同时随着世界对能源需求的增加,费-托合成反应的研究也越来越受到研究者的关注。目前研制开发具有高活性、高稳定性和合理选择性的费-托合成催化剂仍是费-托合成研究的焦点。
     本文工作以P123和F127为模板剂,采用水热法制备了有序介孔分子筛SBA-16,同时采用两步‘调pH法’,制备了铝掺杂的SBA-16,并以此为载体负载钴基费-托合成催化剂。采用粉末X-射线衍射(XRD)、氮气物理吸附-脱附、透射电子显微镜(TEM)、氢气程序升温还原(H2-TPR)、氢气程序升温脱附(H2-TPD)、氧滴定、氨气程序升温脱附(NH3-TPD)、固体核磁(ssNMR)等技术对催化剂进行了表征。在固定床反应器和浆态床反应器中系统地考察了催化剂的费-托合成反应的活性、稳定性以及产物的选择性,研究所得的结论如下:
     (1)以SBA-16为载体采用满孔浸渍法制备的钴基催化剂,Co3O4纳米颗粒被负载到了SBA-16的三维笼状孔道中,平均粒径大小约为12nm,未随着钴负载量的增加而发生明显变化。在固定床反应器中考察了其费-托合成反应活性,随着钴负载量的增加,CO的平均转化率先增加后变化不大。与SiO2载体相比,SBA-16负载的催化剂表现出了较高的活性。
     (2)在固定床反应器中分别考察了20%Co/SBA-16和20%Co/SiO2催化剂在高转化率情况下的费-托合成反应的稳定性,与SiO2相比SBA-16负载的钴基催化剂表现出了较高的催化活性和反应的稳定性。这是由于SBA-16负载的催化剂,钴物种的分散度更高,钴颗粒由于受到SBA-16载体笼状结构的限制,颗粒较难通过笼之间的小孔发生迁移、团聚以及进一步的烧结,因而显示了高的催化活性和稳定性。而SiO2负载的催化剂,Co3O4纳米颗粒大部分都负载在二氧化硅载体的表面,在反应的过程中活性金属发生团聚和烧结,催化反应以后钴颗粒变大。在浆态床反应器中分别考察了在加水的情况下SBA-16、SiO2和SBA-15负载的钴基催化剂的活性和稳定性。SBA-16和SBA-15负载的催化剂,水的加入降低了反应物和产物在孔道内的扩散限制,增加了CO的转化率。SiO2负载的钴基催化剂,由于钴物种负载到载体的表面,水的加入未增加CO的转化率。停止加水后SBA-16负载的钴基催化剂仍保持了较高的活性和稳定性。在整个反应过程中,SBA-15和SiO2负载的钴基催化剂,均呈现了失活的趋势。SBA-16的三维笼状孔道结构不仅有利于金属的分散,阻止催化剂金属的团聚,而且有利于反应物和产物在孔道内的传输。
     (3)采用两步调pH的方法制备了具有不同铝含量,相同的孔径大小的Al-SBA-16载体;在载体中铝主要以四配位的形式存在;载体的酸性随着铝含量的增加而增加;负载钴基催化剂后,钴物种具有相同的颗粒大小,并未随着铝含量的增加而发生较大变化;其还原度随着铝含量的增加而减小,而分散度变化不大。费-托合成反应结果表明,随着铝含量的增加催化剂的活性和C5+选择性逐渐减小,甲烷的选择性和烯烃/烷烃比逐渐增加。汽油(C5–C12)段产物的含量也随着铝含量的增加而增加,产物选择性随铝含量变化的主要原因是由于Al-SBA-16载体的酸性,阻止了α-烯烃在活性位上进一步的吸附以及链增长。
The Fischer–Tropsch synthesis (FTS) is an important technology for the production ofclean transportation fuels and chemicals from syngas (CO+H2). Although it was firstdeveloped90years ago, some challenges still remain. The development of FTS catalystswith high activity, high stability, and, in particular, high selectivity, remains one of the keygoals of current research in this area.
     In this paper, ordered mesoporous molecular sieves SBA-16have been synthesizedusing P123and F127as template agent. Aluminum-substituted mesoporous SBA-16(Al-SBA-16) materials were also synthesized using “pH-adjusting” method. The catalystswere prepared by using incipient wetness impregnation method and characterized by usingX-ray diffraction(XRD), nitrogen adsorption-desorption, transmission electronmicroscopy(TEM), hydrogen temperature programmed reduction(H2-TPR), hydrogentemperature programmed desorption(H2-TPD), oxygen titration, ammonia temperatureprogrammed desorption(NH3-TPD) and solid-state27Al NMR(ssNMR). The catalyticproperties scuh as activity, stability and selectivity for FTS were investigated in afixed-bed reactor and a continuously stirred tank reactor (CSTR). The main conclusionsare as follows:
     (1) For SBA-16supported cobalt catalysts, most of the Co3O4nanoparticles areuniformly distributed inside the interconnected cages of SBA-16. The average diameter ofthe nanoparticles is12nm, which does not increase largely with cobalt loading. Thecatalytic activity of the Co/SBA-16and Co/SiO2catalysts was studied in a fixed-bedreactor. The activity increases with increasing cobalt loading from10to20wt%. A furtherincrease in cobalt loading from30to40wt%increased the CO conversion only slightly.The CO conversion of20%Co/SBA-16is about three times higher than that of20%Co/SiO2catalyst. This higher activity is related to the higher dispersion of cobalt onthe SBA-16surface because cobalt nanoparticles on SBA-16have a smaller particle sizeand a higher surface area.
     (2) A comparison of the stability of20%Co/SBA-16catalyst with that of20%Co/SiO2catalysts at a high initial CO conversion was studied in a fixed-bed reactor. The20%Co/SBA-16catalyst is more active and stable than the20%Co/SiO2catalyst, which isattributed to the high dispersion of cobalt species and low mobility of cobalt particles inthe SBA-16cages, respectively. Owing to the spatial restriction of the isolated nanocagesand smaller pore entrances of SBA-16, the aggregation and the sintering of cobaltnanoparticles were efficiently prevented. However, for20%Co/SiO2catalyst, the spatialrestriction was unable to prevent the growth of cobalt nanoparticles.
     The stability of the20%Co/SBA-16,20%Co/SiO2and20%Co/SBA-15catalysts withthe addition of water was investigated in a CSTR. For the20%Co/SBA-16and20%Co/SBA-15catalyst, the CO conversion was found to be higher with the water thanthat without water. For the20%Co/SiO2catalyst, the water addition did not affect the COconversion. The enhanced CO conversion by water addition was due to a diffusion effect inthe pores. After switching back to the standard operating conditions, the CO conversion ofthe20%Co/SBA-16catalyst is still higher and stability than the other two’s. The highstability of the Co/SBA-16catalyst is attributed to the effective stabilization of cobaltnanoparticles in the three-dimensional mesoporous silica cages of SBA-16—known as thepore confinement effect.
     (3) Al-SBA-16supports with the unique pore size, different aluminum content wereprepared using “pH-adjusting” method. The acidity of the support increases withincreasing aluminum content. The majority of the aluminum is tetrahedrally coordinatedAlO4groups and only a small amount of aluminum is present outside the framework. TheCo3O4nanoparticles have similar particle size (12nm) and are highly dispersed within theAl-SBA-16cages. The reducibility of the catalyst decreased from65.4to59.6%withdecreasing Si/Al ratios from30to10, which is attributed to the increased interactionbetween cobalt and the support. The acidity of the Al-SBA-16supports played a criticalrole in controlling the selectivity of the FTS. The selectivity shifted towards lighterproducts with lower Si/Al ratios, which was mainly attributed to the increased acidity ofthe Al-SBA-16supports, thereby hindering the olefins from undergoing furthertransformations at lower temperatures on the cobalt catalysts.
引文
(1)、 Khodakov Andrei Y., Chu Wei, Fongarland Pascal, Advances in the Developmentof Novel Cobalt Fischer Tropsch Catalysts for Synthesis of Long-ChainHydrocarbons and Clean Fuels, Chemical Reviews,2007,107,5,1692-1744.
    (2)、 Jager B., Espinoza R., Advances in low temperature Fischer-Tropsch synthesis,Catalysis Today,1995,23,1,17-28.
    (3)、 de la Pena O'Shea Victor A., Consuelo Alvarez Galvan M., Platero Prats Ana E.,Campos-Martin Jose M., Fierro Jose L. G., Direct evidence of the SMSI decorationeffect: the case of Co/TiO2catalyst, Chemical Communications,2011,47,25,7131-7133.
    (4)、 Dry Mark E., The Fischer-Tropsch process:1950-2000, Catalysis Today,2002,71,3-4,227-241.
    (5)、 Geerlings J. J. C., Wilson J. H., Kramer G. J., Kuipers H. P. C. E., Hoek A.,Huisman H. M., Fischer–Tropsch technology—from active site to commercialprocess, Applied Catalysis A: General,1999,186,1–2,27-40.
    (6)、 Ihm Son-Ki, Park Young-Kwon, Jeon Jong-Ki, Jeong Kwang-Eun, Catalyst andprocess for the preparation of hydrocarbons, Google Patents,1999.
    (7)、 Espinoza R. L., Steynberg A. P., Jager B., Vosloo A. C., Low temperatureFischer–Tropsch synthesis from a Sasol perspective, Applied Catalysis A: General,1999,186,1–2,13-26.
    (8)、 Freide Joep J.H.M. Font, Gamlin Tim D., Graham Carole, Hensman J. Richard,Nay Barry, Sharp Christopher, An adventure in catalysis: the story of the BPFischer-Tropsch catalyst from laboratory to full-scale demonstration in Alaska,Topics in Catalysis2003,26,1-4,3-12.
    (9)、 Halstead,K, Oryx GTL-aCase Study, Chemical Technology (S. Afr.),2006.
    (10)、 Krylova Alla Jurievna, Lapidus Albert L'Vovich, Tsapkina Maria Vadimovna,Process for the preparation of high activity carbon monoxide hydrogenationcatalysts; the catalyst composition, use of the catalysts for conducting suchreactions, and the products of such reactions, Google Patents,2001.
    (11)、 Sie S. T., Senden M. M. G., Van Wechem H. M. H., Conversion of natural gas totransportation fuels via the shell middle distillate synthesis process (SMDS),Catalysis Today,1991,8,3,371-394.
    (12)、 Arcuri Kym B., Agee Kenneth L., Agee Mark A., Structured fischer-tropschcatalyst system and method, Google Patents,2001.
    (13)、 van Wechem V. M. H., Senden M. M. G., Conversion of Natural Gas toTransportation Fuels Via the Shell Middle Distillate Synthesis Process(SMDS),Studies in Surface Science and Catalysis,1994,81,43-71.
    (14)、 Jess A., Popp R., Hedden K., Fischer–Tropsch-synthesis with nitrogen-rich syngas:Fundamentals and reactor design aspects, Applied Catalysis A: General,1999,186,1–2,321-342.
    (15)、 Overett Matthew J., Hill R. Oliver, Moss John R., Organometallic chemistry andsurface science: mechanistic models for the Fischer–Tropsch synthesis,Coordination Chemistry Reviews,2000,206–207,0,581-605.
    (16)、 O'Rear Dennis J., Conversion of syngas to distillate fuels, Google Patents,2005.
    (17)、 Friedel R. A., Anderson R. B., Composition of Synthetic Liquid Fuels. I. ProductDistribution and Analysis of C5—C8Paraffin Isomers from Cobalt Catalyst1,Journal of the American Chemical Society,1950,72,3,1212-1215.
    (18)、 Henrici-Olivé G., Olivé S., The Fischer-Tropsch Synthesis: Molecular WeightDistribution of Primary Products and Reaction Mechanism, Angewandte ChemieInternational Edition in English,1976,15,3,136-141.
    (19)、 Anderson Robert B., Schulz-Flory equation, Journal of Catalysis,1978,55,1,114-115.
    (20)、 Snel Ruud, Deviations of Fischer-Tropsch products from an Anderson-Schulz-Florydistribution, Catalysis Letters,1988,1,10,327-330.
    (21)、 Cheng Kang, Kang Jincan, Huang Shuiwang, You Zhenya, Zhang Qinghong, DingJiansheng, Hua Weiqi, Lou Yinchuan, Deng Weiping, Wang Ye, Mesoporous BetaZeolite-Supported Ruthenium Nanoparticles for Selective Conversion of SynthesisGas to C5–C11Isoparaffins, ACS Catalysis,2012,2,3,441-449.
    (22)、 Kang Jincan, Cheng Kang, Zhang Lei, Zhang Qinghong, Ding Jiansheng, HuaWeiqi, Lou Yinchuan, Zhai Qingge, Wang Ye, Mesoporous Zeolite-SupportedRuthenium Nanoparticles as Highly Selective Fischer–Tropsch Catalysts for theProduction of C5–C11Isoparaffins, Angewandte Chemie,2011,123,22,5306-5309.
    (23)、 Torres Galvis Hirsa M., Bitter Johannes H., Khare Chaitanya B., RuitenbeekMatthijs, Dugulan A. Iulian, de Jong Krijn P., Supported Iron Nanoparticles asCatalysts for Sustainable Production of Lower Olefins, Science,2012,335,6070,835-838.
    (24)、 Sun Bo, Qiao Minghua, Fan Kangnian, Ulrich Jeffrey, Tao Franklin,Fischer–Tropsch Synthesis over Molecular Sieve Supported Catalysts,ChemCatChem,2011,3,3,542-550.
    (25)、 Zhang Qinghong, Kang Jincan, Wang Ye, Development of Novel Catalysts forFischer–Tropsch Synthesis: Tuning the Product Selectivity, ChemCatChem,2010,2,9,1030-1058.
    (26)、 Zhang Qinghong, Cheng Kang, Kang Jincan, Deng Weiping, Wang Ye,Fischer–Tropsch Catalysts for the Production of Hydrocarbon Fuels with HighSelectivity, ChemSusChem,2013, n/a-n/a.
    (27)、 Yokota Kohshiroh, Hanakata Yoshio, Fujimoto Kaoru, Supercritical phaseFischer—Tropsch synthesis reaction:3. Extraction capability of supercritical fluids,Fuel,1991,70,8,989-994.
    (28)、 Schulz Hans, Short history and present trends of Fischer–Tropsch synthesis,Applied Catalysis A: General,1999,186,1–2,3-12.
    (29)、 Madon Rostam J., Reyes Sebastian C., Iglesia Enrique, Primary and secondaryreaction pathways in ruthenium-catalyzed hydrocarbon synthesis, The Journal ofPhysical Chemistry,1991,95,20,7795-7804.
    (30)、 Madon R. J., Iglesia E., The Importance of Olefin Readsorption and H2/COReactant Ratio for Hydrocarbon Chain Growth on Ruthenium Catalysts, Journal ofCatalysis,1993,139,2,576-590.
    (31)、 Ngantsoue-Hoc Wilfried, Zhang Yongqing, O’Brien Robert J., Luo Mingsheng,Davis Burtron H., Fischer Tropsch synthesis: activity and selectivity for Group Ialkali promoted iron-based catalysts, Applied Catalysis A: General,2002,236,1–2,77-89.
    (32)、 Arakawa Hironori, Bell Alexis T., Effects of potassium promotion on the activityand selectivity of iron Fischer-Tropsch catalysts, Industrial&EngineeringChemistry Process Design and Development,1983,22,1,97-103.
    (33)、 Bukur Dragomir B., Mukesh Doble, Patel Snehal A., Promoter effects onprecipitated iron catalysts for Fischer-Tropsch synthesis, Industrial&EngineeringChemistry Research,1990,29,2,194-204.
    (34)、 Wang Chong, Wang Qingxia, Sun Xinde, Xu Longya, CO Hydrogenation to LightAlkenes Over Mn/Fe Catalysts Prepared by Coprecipitation and Sol-gel Methods,Catalysis Letters,2005,105,1-2,93-101.
    (35)、张敬畅,卫国宾,曹维良,合成气制低碳烯烃用Fe/AC催化剂的制备及性能表征,催化学报,2003,24,4,259-264.
    (36)、 Yang Yong, Xiang Hong-Wei, Xu Yuan-Yuan, Bai Liang, Li Yong-Wang, Effect ofpotassium promoter on precipitated iron-manganese catalyst for Fischer–Tropschsynthesis, Applied Catalysis A: General,2004,266,2,181-194.
    (37)、 Bukur Dragomir B., Lang Xiaosu, Mukesh Doble, Zimmerman William H.,Rosynek Michael P., Li Chiuping, Binder/support effects on the activity andselectivity of iron catalysts in the Fischer-Tropsch synthesis, Industrial&Engineering Chemistry Research,1990,29,8,1588-1599.
    (38)、 Agrawal Pradeep K., Katzer James R., Manogue William H., Methanation overtransition metal catalysts: III. CoAl2O3in sulfur-poisoning studies, Journal ofCatalysis,1981,69,2,327-344.
    (39)、 Curtis V., Nicolaides C. P., Coville N. J., Hildebrandt D., Glasser D., The effect ofsulfur on supported cobalt Fischer–Tropsch catalysts, Catalysis Today,1999,49,1–3,33-40.
    (40)、 Li Jinlin, Coville Neil J., Effect of boron on the sulfur poisoning of Co/TiO2Fischer–Tropsch catalysts, Applied Catalysis A: General,2001,208,1-2,177-184.
    (41)、 Madikizela-Mnqanqeni Nobuntu N., Coville Neil J., The effect of sulfur additionduring the preparation of Co/Zn/TiO2Fischer–Tropsch catalysts, Applied CatalysisA: General,2008,340,1,7-15.
    (42)、 van Berge P. J., Everson R. C., Cobalt as an alternative Fischer-Tropsch catalyst toiron for the production of middle distillates, Studies in Surface Science andCatalysis,1997,107,207-212.
    (43)、 Gaube J., Klein H. F., The promoter effect of alkali in Fischer-Tropsch iron andcobalt catalysts, Applied Catalysis A: General,2008,350,1,126-132.
    (44)、 Borg yvind, Eri Sigrid, Blekkan Edd A., Stors ter S lvi, Wigum Hanne, RytterErling, Holmen Anders, Fischer–Tropsch synthesis over γ-alumina-supportedcobalt catalysts: Effect of support variables, Journal of Catalysis,2007,248,1,89-100.
    (45)、 Bartholomew Calvin H., Mechanisms of catalyst deactivation, Applied Catalysis A:General,2001,212,1-2,17-60.
    (46)、 Bian Guo-Zhu, Fujishita Norimasa, Mochizuki Takehisa, Ning Wen-Sheng, YamadaMuneyoshi, Investigations on the structural changes of two Co/SiO2catalysts byperforming Fischer-Tropsch synthesis, Applied Catalysis A: General,2003,252,2,251-260.
    (47)、 Tavasoli Ahmad, Malek Abbaslou Reza M., Dalai Ajay K., Deactivation behaviorof ruthenium promoted Co/γ-Al2O3catalysts in Fischer-Tropsch synthesis, AppliedCatalysis A: General,2008,346,1-2,58-64.
    (48)、 Tavasoli Ahmad, Irani Mohammad, Abbaslou Reza M. Malek, Trépanier Mariane,Dalai Ajay K., Morphology and deactivation behaviour of Co–Ru/γ-Al2O3Fischer–Tropsch synthesis catalyst, The Canadian Journal of Chemical Engineering,2008,86,6,1070-1080.
    (49)、 Bezemer G. Leendert, Remans Tom J., van Bavel Alexander P., Dugulan A. Iulian,Direct Evidence of Water-Assisted Sintering of Cobalt on Carbon NanofiberCatalysts during Simulated Fischer Tropsch Conditions Revealed with in SituM ssbauer Spectroscopy, Journal of the American Chemical Society,2010,132,25,8540-8541.
    (50)、 Iglesia E., Soled S. L., Fiato R. A., Via G. H., Bimetallic Synergy in CobaltRuthenium Fischer-Tropsch Synthesis Catalysts, Journal of Catalysis,1993,143,2,345-368.
    (51)、 Jacobs Gary, Patterson Patricia M., Zhang Yongqing, Das Tapan, Li Jinlin, DavisBurtron H., Fischer-Tropsch synthesis: deactivation of noble metal-promotedCo/Al2O3catalysts, Applied Catalysis A: General,2002,233,1-2,215-226.
    (52)、 Menon P. G., Coke on catalysts-harmful, harmless, invisible and beneficial types,Journal of Molecular Catalysis,1990,59,2,207-220.
    (53)、 Weller Sol, Hofer L. J. E., Anderson R. B., The Role of Bulk Cobalt Carbide in theFischer—Tropsch Synthesis1, Journal of the American Chemical Society,1948,70,2,799-801.
    (54)、 Browning L. C., Emmett P. H., Equilibrium Measurements in theNi3C—Ni—CH4—H2and Co2C—Co—CH4—H2Systems, Journal of the AmericanChemical Society,1952,74,7,1680-1682.
    (55)、 Agrawal Pradeep K., Katzer James R., Manogue William H., Methanation overtransition metal catalysts: II. carbon deactivation of CoAl2O3in sulfur-free studies,Journal of Catalysis,1981,69,2,312-326.
    (56)、 Fei Tan Kong, Xu Jing, Chang Jie, Borgna Armando, Saeys Mark, Carbondeposition on Co catalysts during Fischer-Tropsch synthesis: A computational andexperimental study, Journal of Catalysis,2010,274,2,121-129.
    (57)、 Iglesia Enrique, Design, synthesis, and use of cobalt-based Fischer-Tropschsynthesis catalysts, Applied Catalysis A: General,1997,161,1-2,59-78.
    (58)、 van de Loosdrecht J., Balzhinimaev B., Dalmon J. A., Niemantsverdriet J. W.,Tsybulya S. V., Saib A. M., van Berge P. J., Visagie J. L., Cobalt Fischer-Tropschsynthesis: Deactivation by oxidation?, Catalysis Today,2007,123,1-4,293-302.
    (59)、 Dalai A. K., Davis B. H., Fischer-Tropsch synthesis: A review of water effects onthe performances of unsupported and supported Co catalysts, Applied Catalysis A:General,2008,348,1,1-15.
    (60)、 Hilmen A. M., Schanke D., Hanssen K. F., Holmen A., Study of the effect of wateron alumina supported cobalt Fischer-Tropsch catalysts, Applied Catalysis A:General,1999,186,1-2,169-188.
    (61)、 Hilmena A.M, Schankeb D., Holmena A., Reoxidation of supported cobaltFischer-Tropsch catalysts, Studies in Surface Science and Catalysis,1997,107,237-242.
    (62)、 van Berge P. J., van de Loosdrecht J., Barradas S., van der Kraan A. M., Oxidationof cobalt based Fischer–Tropsch catalysts as a deactivation mechanism, CatalysisToday,2000,58,4,321-334.
    (63)、石利红,李晓峰,李德宝,孙予罕,钴基催化剂在费-托反应过程中的失活行为,催化学报,2010,31,12,1483-1488.
    (64)、 Kogelbauer Andreas, Weber JasonC, Goodwin JamesG, Jr., The formation of cobaltsilicates on Co/SiO2under hydrothermal conditions, Catalysis Letters,1995,34,3-4,259-267.
    (65)、 Zhou Wei, Chen Jian-Gang, Fang Ke-Gong, Sun Yu-Han, The deactivation ofCo/SiO2catalyst for Fischer–Tropsch synthesis at different ratios of H2to CO, FuelProcessing Technology,2006,87,7,609-616.
    (66)、 Chu Wei, Chernavskii Petr A., Gengembre Léon, Pankina Galina A., FongarlandPascal, Khodakov Andrei Y., Cobalt species in promoted cobalt alumina-supportedFischer–Tropsch catalysts, Journal of Catalysis,2007,252,2,215-230.
    (67)、 Lapidus A., Krylova A., Kazanskii V., Borovkov V., Zaitsev A., Rathousky J., ZukalA., Jancˇálková M., Hydrocarbon synthesis from carbon monoxide and hydrogenon impregnated cobalt catalysts Part I. Physico-chemical properties of10%cobalt/alumina and10%cobalt/silica, Applied Catalysis,1991,73,1,65-81.
    (68)、 Lapidus A., Krylova A., Rathousky′J., Zukal A., Jancˇa′lkova′M., Hydrocarbonsynthesis from carbon monoxide and hydrogen on impregnated cobalt catalysts II:Activity of10%Co/Al2O3and10%Co/SiO2catalysts in Fischer-Tropsch synthesis,Applied Catalysis A: General,1992,80,1,1-11.
    (69)、 Niemel M. K., Krause A. O. I., Vaara T., Lahtinen J., Preparation andcharacterization of Co/SiO2, Co-Mg/SiO2and Mg-Co/SiO2catalysts and theiractivity in CO hydrogenation, Topics in Catalysis,1995,2,1-4,45-57.
    (70)、 Bao Jun, He Jingjiang, Zhang Yi, Yoneyama Yoshiharu, Tsubaki Noritatsu, ACore/Shell Catalyst Produces a Spatially Confined Effect and Shape Selectivity in aConsecutive Reaction, Angewandte Chemie International Edition,2008,47,2,353-356.
    (71)、 Bezemer G. Leendert, Bitter Johannes H., Kuipers Herman P. C. E., OosterbeekHeiko, Holewijn Johannes E., Xu Xiaoding, Kapteijn Freek, van Dillen A. Jos, deJong Krijn P., Cobalt Particle Size Effects in the Fischer Tropsch Reaction Studiedwith Carbon Nanofiber Supported Catalysts, Journal of the American ChemicalSociety,2006,128,12,3956-3964.
    (72)、 Bessell Sandra, ZSM-5as a support for cobalt Fischer-Tropsch catalysts, Studies inSurface Science and Catalysis,1994,81,461-466.
    (73)、 Park D., Kim S., Wang H., Pinnavaia T., Papapetrou M., Lappas A., TriantafyllidisK., Selective Petroleum Refining Over a Zeolite Catalyst with Small IntracrystalMesopores, Angewandte Chemie,2009,121,41,7781-7784.
    (74)、 Sartipi Sina, Alberts Margje, Santos Vera P., Nasalevich Maxim, Gascon Jorge,Kapteijn Freek, Insights into the Catalytic Performance of MesoporousH-ZSM-5-Supported Cobalt in Fischer–Tropsch Synthesis, ChemCatChem,2014,6,1,142-151.
    (75)、 Yang Yifei, Jia Litao, Hou Bo, Li Debao, Wang Jungang, Sun Yuhan, TheCorrelation of Interfacial Interaction and Catalytic Performance of N-DopedMesoporous Carbon Supported Cobalt Nanoparticles for Fischer–TropschSynthesis, The Journal of Physical Chemistry C,2013,118,1,268-277.
    (76)、 Karandikar Prashant R., Park Jo-Yong, Lee Yun-Jo, Jun Ki-Won, Ha Kyoung-Su,Kwak Geun Jae, Park Hae-Gu, Cheon Joo Yeong, Fischer–Tropsch Synthesis OverCobalt Supported On Silica-Incorporated Mesoporous Carbon, ChemCatChem,2013, n/a-n/a.
    (77)、 Ha Kyoung-Su, Kwak Geunjae, Jun Ki-Won, Hwang Jongkook, Lee Jinwoo,Ordered mesoporous carbon nanochannel reactors for high-performanceFischer-Tropsch synthesis, Chemical Communications,2013,49,45,5141-5143.
    (78)、 Kang Jincan, Zhang Shuli, Zhang Qinghong, Wang Ye, Ruthenium NanoparticlesSupported on Carbon Nanotubes as Efficient Catalysts for Selective Conversion ofSynthesis Gas to Diesel Fuel, Angewandte Chemie,2009,121,14,2603-2606.
    (79)、 Bae Jong Wook, Park Seon-Ju, Woo Min Hee, Cheon Joo Young, Ha Kyoung-Su,Jun Ki-Won, Lee Dong-Hyun, Jung Hyun Min, Enhanced Catalytic Performance byZirconium Phosphate-Modified SiO2-Supported Ru Co Catalyst forFischer–Tropsch Synthesis, ChemCatChem,2011,3,8,1342-1347.
    (80)、 Zhao Yanxi, Zhang Yuhua, Chen Jian, Li Jinlin, Liew Kongyong, Nordin MohdRidzuan Bin, SBA-16-Supported Cobalt Catalyst with High Activity and Stabilityfor Fischer–Tropsch Synthesis, ChemCatChem,2012,4,2,265-272.
    (81)、 Zhao Yanxi, Li Jinlin, Zhang Yuhua, Chen Shufang, Liew Kongyong,Al-SBA-16-Supported Cobalt Catalysts for the Fischer–Tropsch Production ofGasoline-Fraction Hydrocarbons, ChemCatChem,2012,4,12,1926-1929.
    (82)、 Ishihara Tatsumi, Horiuchi Nobuhiko, Eguchi Koichi, Arai*Hiromichi,Hydrogenation of carbon monoxide over cobalt-nickel alloy catalyst supported onMnO-ZrO2mixed oxide, Applied Catalysis,1990,66,1,267-282.
    (83)、 Rathousky′J., Zukal A., Lapidus A., Krylova A., Hydrocarbon synthesis fromcarbon monoxide+hydrogen on impregnated cobalt catalysts: Part III. Cobalt
    (10%)/silica-alumina catalysts, Applied Catalysis A: General,1991,79,2,167-180.
    (84)、 Schaper H., Doesburg E. B. M., Van Reijen L. L., The influence of lanthanumoxide on the thermal stability of gamma alumina catalyst supports, AppliedCatalysis,1983,7,2,211-220.
    (85)、Klimova Tatiana, Rojas Maria Luisa, Castillo Perla, Cuevas Rogelio, Ramírez Jorge,Characterization of Al2O3-ZrO2mixed oxide catalytic supports prepared by thesol-gel method, Microporous and Mesoporous Materials,1998,20,4–6,293-306.
    (86)、 Dominguez J. M., Hernandez J. L., Sandoval G., Surface and catalytic properties ofAl2O3–ZrO2solid solutions prepared by sol–gel methods, Applied Catalysis A:General,2000,197,1,119-130.
    (87)、 Vannice M. A., Hydrogenation of co and carbonyl functional groups, CatalysisToday,1992,12,2–3,255-267.
    (88)、 Yin Donghong, Li Wenhuai, Yang Wenshu, Xiang Hongwei, Sun Yuhan, ZhongBing, Peng Shaoyi, Mesoporous HMS molecular sieves supported cobalt catalystsfor Fischer-Tropsch synthesis, Microporous and Mesoporous Materials,2001,47,1,15-24.
    (89)、 Wang Ye, Noguchi Masato, Takahashi Yoshimoto, Ohtsuka Yasuo, Synthesis ofSBA-15with different pore sizes and the utilization as supports of high loading ofcobalt catalysts, Catalysis Today,2001,68,1-3,3-9.
    (90)、 Iwasaki T., Reinikainen M., Onodera Y., Hayashi H., Ebina T., Nagase T., Torii K.,Kataja K., Chatterjee A., Use of silicate crystallite mesoporous material as catalystsupport for Fischer–Tropsch reaction, Applied Surface Science,1998,130-132,0,845-850.
    (91)、 Concepción Patricia, López Carlos, Martínez Agustín, Puntes Víctor F.,Characterization and catalytic properties of cobalt supported on delaminated ITQ-6and ITQ-2zeolites for the Fischer-Tropsch synthesis reaction, Journal of Catalysis,2004,228,2,321-332.
    (92)、 Cai Zhe, Li Jinlin, Liew Kongyong, Hu Juncheng, Effect of La2O3-dopping on theAl2O3supported cobalt catalyst for Fischer-Tropsch synthesis, Journal of MolecularCatalysis A: Chemical,2010,330,1-2,10-17.
    (93)、 Bao Agudamu, Liew Kongyong, Li Jinlin, Fischer-Tropsch synthesis onCaO-promoted Co/Al2O3catalysts, Journal of Molecular Catalysis A: Chemical,2009,304,1-2,47-51.
    (94)、 Huang Xing, Hou Bo, Wang Jungang, Li Debao, Jia Litao, Chen Jiangang, SunYuhan, CoZr/H-ZSM-5hybrid catalysts for synthesis of gasoline-range isoparaffinsfrom syngas, Applied Catalysis A: General,2011,408,1–2,38-46.
    (95)、 Mu Shifang, Li Debao, Hou Bo, Jia Lihong, Chen Jiangang, Sun Yuhan, Influenceof ZrO2Loading on SBA-15-Supported Cobalt Catalysts for Fischer TropschSynthesis, Energy&Fuels,2010,24,7,3715-3718.
    (96)、 Bae Jong Wook, Kim Seung-Moon, Park Seon-Ju, Lee Yun-Jo, Ha Kyoung-Su, JunKi-Won, Highly active and stable catalytic performance on phosphorous-promotedRu/Co/Zr/SiO2Fischer-Tropsch catalyst, Catalysis Communications,2010,11,9,834-838.
    (97)、 Cai Qin, Li Jinlin, Catalytic properties of the Ru promoted Co/SBA-15catalysts forFischer-Tropsch synthesis, Catalysis Communications,2008,9,10,2003-2006.
    (98)、 Panpranot Joongjai, Goodwin James G., Sayari Abdelhamid, CO Hydrogenation onRu-Promoted Co/MCM-41Catalysts, Journal of Catalysis,2002,211,2,530-539.
    (99)、 Li Jinlin, Zhan Xiaodong, Zhang Yongqing, Jacobs Gary, Das Tapan, Davis BurtronH., Fischer-Tropsch synthesis: effect of water on the deactivation of Pt promotedCo/Al2O3catalysts, Applied Catalysis A: General,2002,228,1-2,203-212.
    (100)、 Reuel Robert C., Bartholomew Calvin H., Effects of support and dispersion on theCO hydrogenation activity/selectivity properties of cobalt, Journal of Catalysis,1984,85,1,78-88.
    (101)、 Roe G. M., Ridd M. J., Cavell K. J., Larkins F. P., Role of Supports forCobalt-Based Catalysts Used in Fischer-Tropsch Synthesis of Hydrocarbons,Studies in Surface Science and Catalysis,1988,36,590-515.
    (102)、 Iglesia Enrique, Soled Stuart L., Fiato Rocco A., Fischer-Tropsch synthesis oncobalt and ruthenium. Metal dispersion and support effects on reaction rate andselectivity, Journal of Catalysis,1992,137,1,212-224.
    (103)、 Kraum Martin, Baerns Manfred, Fischer–Tropsch synthesis: the influence ofvarious cobalt compounds applied in the preparation of supported cobalt catalystson their performance, Applied Catalysis A: General,1999,186,1-2,189-200.
    (104)、 Vanhove Dominique, Zhuyong Zhang, Makambo Lisika, Blanchard Michel,Hydrocarbon selectivity in fischer-tropsch synthesis in relation to texturalproperties of supported cobalt catalysts, Applied Catalysis,1984,9,3,327-342.
    (105)、 Lapszewicz Jacek A., Loeh Hans J., Chipperfield Jan R., The effect of catalystporosity on methane selectivity in the Fischer-Tropsch reaction, Journal of theChemical Society, Chemical Communications,1993,0,11,913-914.
    (106)、 Xiong Haifeng, Zhang Yuhua, Liew Kongyong, Li Jinlin, Fischer-Tropschsynthesis: The role of pore size for Co/SBA-15catalysts, Journal of MolecularCatalysis A: Chemical,2008,295,1-2,68-76.
    (107)、 Zhang Junling, Chen Jiangang, Ren Jie, Sun Yuhan, Chemical treatment ofγ-Al2O3and its influence on the properties of Co-based catalysts forFischer–Tropsch synthesis, Applied Catalysis A: General,2003,243,1,121-133.
    (108)、 Tavasoli Ahmad, Trépanier Mariane, Dalai Ajay K., Abatzoglou Nicolas, Effectsof Confinement in Carbon Nanotubes on the Activity, Selectivity, and Lifetime ofFischer Tropsch Co/Carbon Nanotube Catalysts, Journal of Chemical&Engineering Data,2010,55,8,2757-2763.
    (109)、 Xiong Haifeng, Moyo Mahluli, Rayner Matthew K, Jewell Linda L, Billing DavidG, Coville Neil J, Autoreduction and Catalytic Performance of a CobaltFischer–Tropsch Synthesis Catalyst Supported on Nitrogen-Doped Carbon Spheres,ChemCatChem,2010,2,5,514-518.
    (110)、 Xiong Haifeng, Motchelaho Myriam A. M., Moyo Mahluli, Jewell Linda L.,Coville Neil J., Correlating the preparation and performance of cobalt catalystssupported on carbon nanotubes and carbon spheres in the Fischer-Tropsch synthesis,Journal of Catalysis,2011,278,1,26-40.
    (111)、 Niemel M. K., Krause A. O. I., Vaara T., Kiviaho J. J., Reinikainen M. K. O., Theeffect of the precursor on the characteristics of Co/SiO2catalysts, Applied CatalysisA: General,1996,147,2,325-345.
    (112)、 Colley Saul E., Copperthwaite Richard G., Hutchings Graham J., Foulds Gary A.,Coville Neil J., Cobalt/manganese oxide catalysts: Use of chromium promoters forlong chain hydrocarbon production, Applied Catalysis A: General,1992,84,1,1-15.
    (113)、 Rohr F., Lindv g O. A., Holmen A., Blekkan E. A., Fischer–Tropsch synthesisover cobalt catalysts supported on zirconia-modified alumina, Catalysis Today,2000,58,4,247-254.
    (114)、张俊岭,任杰,陈建刚,孙予罕,锰助剂对F-T合成Co/Al2O3催化剂反应性能的影响.物理化学学报,物理化学学报,2002,18,3,260-263.
    (115)、 Haddad George J., Chen Bin, Goodwin Jr James G., Effect of La3+Promotion ofCo/SiO2on CO Hydrogenation, Journal of Catalysis,1996,161,1,274-281.
    (116)、 Ernst B., Hilaire L., Kiennemann A., Effects of highly dispersed ceria addition onreducibility, activity and hydrocarbon chain growth of a Co/SiO2Fischer–Tropschcatalyst, Catalysis Today,1999,50,2,413-427.
    (117)、 Niemel M. K., Krause A. O. I., Characterization of magnesium promotedCo/SiO2catalysts, Catalysis Letters,1995,34,1-2,75-84.
    (118)、 Sexton B. A., Hughes A. E., Turney T. W., An XPS and TPR study of thereduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts, Journal ofCatalysis,1986,97,2,390-406.
    (119)、 Viswanathan B., Gopalakrishnan R., Effect of support and promoter inFischer-Tropsch cobalt catalysts, Journal of Catalysis,1986,99,2,342-348.
    (120)、 Tsubaki Noritatsu, Sun Shouli, Fujimoto Kaoru, Different Functions of the NobleMetals Added to Cobalt Catalysts for Fischer–Tropsch Synthesis, Journal ofCatalysis,2001,199,2,236-246.
    (121)、 Vada S., Hoff A., dnaneS E., Schanke D., Holmen A., Fischer-Tropsch synthesison supported cobalt catalysts promoted by platinum and rhenium, Topics inCatalysis,1995,2,1-4,155-162.
    (122)、 Schanke D., Vada S., Blekkan E. A., Hilmen A. M., Hoff A., Holmen A., Study ofPt-Promoted Cobalt CO Hydrogenation Catalysts, Journal of Catalysis,1995,156,1,85-95.
    (123)、 Li Jinlin, Jacobs Gary, Zhang Yongqing, Das Tapan, Davis Burtron H.,Fischer–Tropsch synthesis: effect of small amounts of boron, ruthenium andrhenium on Co/TiO2catalysts, Applied Catalysis A: General,2002,223,1-2,195-203.
    (124)、 Puskás I., Fleisch T. H., Hall J. B., Meyers B. L., Roginski R. T., CobaltReducibility and Magnesium Promotion in Silica-Supported Fischer-TropschCatalysts, Studies in Surface Science and Catalysis,1993,75,2813-2816.
    (125)、Puskas Imre, Fleisch Theo H., Hall Jan B., Meyers Bernard L., Roginski Robert T.,Metal-support interactions in precipitated, magnesium-promoted cobaltsilicacatalysts, Journal of Catalysis,1992,134,2,615-628.
    (126)、 Barrault J., Guilleminot A., Achard J. C., Paul-Boncour V., Percheron-Guegan A.,Hydrogenation of carbon monoxide on carbon-supported cobalt rare earth catalysts,Applied Catalysis,1986,21,2,307-312.
    (127)、 Hoang Manh, Hughes Anthony E., Turney Terence W., An XPS study ofRu-promotion for Co/CeO2Fischer-Tropsch catalyst, Applied Surface Science,1993,72,1,55-65.
    (128)、 Iglesia Enrique, Soled Stuart L., Fiato Rocco A., Via Grayson H., Dispersion,support and bimetallic effects in Fischer-Tropsch synthesis on cobalt catalysts,Studies in Surface Science and Catalysis,1994,88,433-442.
    (129)、 Li Jinlin, Coville Neil J., The effect of boron on the catalyst reducibility andactivity of Co/TiO2Fischer–Tropsch catalysts, Applied Catalysis A: General,1999,181,1,201-208.
    (130)、 Madikizela-Mnqanqeni Nobuntu N., Coville Neil J., Surface and reactor study ofthe effect of zinc on titania-supported Fischer–Tropsch cobalt catalysts, AppliedCatalysis A: General,2004,272,1–2,339-346.
    (131)、 Xiong Haifeng, Zhang Yuhua, Wang Shuguo, Liew Kongyong, Li Jinlin,Preparation and Catalytic Activity for Fischer Tropsch Synthesis of RuNanoparticles Confined in the Channels of Mesoporous SBA-15, The Journal ofPhysical Chemistry C,2008,112,26,9706-9709.
    (132)、 Xiong Haifeng, Zhang Yuhua, Liew Kongyong, Li Jinlin, Ruthenium promotionof Co/SBA-15catalysts with high cobalt loading for Fischer-Tropsch synthesis,Fuel Processing Technology,2009,90,2,237-246.
    (133)、 Xiao Chao-xian, Cai Zhi-peng, Wang Tao, Kou Yuan, Yan Ning, Aqueous-PhaseFischer-Tropsch Synthesis with a Ruthenium Nanocluster Catalyst, AngewandteChemie,2008,120,4,758-761.
    (134)、 Quek Xian-Yang, Guan Yejun, van Santen Rutger A., Hensen Emiel J. M.,Unprecedented Oxygenate Selectivity in Aqueous-Phase Fischer–TropschSynthesis by Ruthenium Nanoparticles, ChemCatChem,2011,3,11,1735-1738.
    (135)、 Simonetti Dante A., Rass-Hansen Jeppe, Kunkes Edward L., Soares Ricardo R.,Dumesic James A., Coupling of glycerol processing with Fischer-Tropsch synthesisfor production of liquid fuels, Green Chemistry,2007,9,10,1073-1083.
    (136)、 Okabe Kiyomi, Murata Kazuhisa, Nakanishi Masakazu, Ogi Tomoko, NurunnabiMohammad, Liu Yangyong, Fischer–Tropsch Synthesis over Ru Catalysts by UsingSyngas Derived from Woody Biomass, Catalysis Letters,2009,128,1-2,171-176.
    (137)、 Murata Kazuhisa, Okabe Kiyomi, Inaba Megumu, Takahara Isao, Liu Yanyong,Zr-and Li-Modified Ru/SiO2Catalysts for Fischer–Tropsch Synthesis, CatalysisLetters,2009,128,3-4,343-348.
    (138)、 Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli J. C., Beck J. S., Orderedmesoporous molecular sieves synthesized by a liquid-crystal template mechanism,Nature,1992,359,6397,710-712.
    (139)、Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D.,Chu C. T. W., Olson D. H., Sheppard E. W., A new family of mesoporous molecularsieves prepared with liquid crystal templates, Journal of the American ChemicalSociety,1992,114,27,10834-10843.
    (140)、 Zhao Dongyuan, Huo Qisheng, Feng Jianglin, Chmelka Bradley F., Stucky GalenD., Nonionic Triblock and Star Diblock Copolymer and Oligomeric SurfactantSyntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures,Journal of the American Chemical Society,1998,120,24,6024-6036.
    (141)、 Kleitz Freddy, Czuryszkiewicz Teresa, Solovyov Leonid A., Lindén Mika, X-rayStructural Modeling and Gas Adsorption Analysis of Cagelike SBA-16SilicaMesophases Prepared in a F127/Butanol/H2O System, Chemistry of Materials,2006,18,21,5070-5079.
    (142)、 Zhang Pengling, Wu Zhuofu, Xiao Ni, Ren Limin, Meng Xiangju, Wang Chunyu,Li Fei, Li Zhengqiang, Xiao Feng-Shou, Ordered Cubic Mesoporous Silicas withLarge Pore Sizes Synthesized via High-Temperature Route, Langmuir,2009,25,22,13169-13175.
    (143)、 Wei Jianwen, Shi Jingjin, Pan Hua, Su Qingfa, Zhu Jibao, Shi Yao, Thermal andhydrothermal stability of amino-functionalized SBA-16and promotion ofhydrophobicity by silylation, Microporous and Mesoporous Materials,2009,117,3,596-602.
    (144)、 Kim Ji Man, Sakamoto Yasuhiro, Hwang Young Kyu, Kwon Young-Uk, TerasakiOsamu, Park Sang-Eon, Stucky Galen D., Structural Design of Mesoporous Silicaby Micelle-Packing Control Using Blends of Amphiphilic Block Copolymers, TheJournal of Physical Chemistry B,2002,106,10,2552-2558.
    (145)、 Li Liyu, King David L., Liu Jun, Huo Qisheng, Zhu Kake, Wang Chongmin,Gerber Mark, Stevens Don, Wang Yong, Stabilization of Metal Nanoparticles inCubic Mesostructured Silica and Its Application in Regenerable DeepDesulfurization of Warm Syngas, Chemistry of Materials,2009,21,22,5358-5364.
    (146)、 Amezcua Juan Carlos, Lizama Lilia, Salcedo Cecilia, Puente Ivan, DomínguezJose Manuel, Klimova Tatiana, NiMo catalysts supported on titania-modifiedSBA-16for4,6-dimethyldibenzothiophene hydrodesulfurization, Catalysis Today,2005,107-108,578-588.
    (147)、 Klimova T., Lizama L., Amezcua J. C., Roquero P., Terrés E., Navarrete J.,Domínguez J. M., New NiMo catalysts supported on Al-containing SBA-16for4,6-DMDBT hydrodesulfurization: Effect of the alumination method, CatalysisToday,2004,98,1-2,141-150.
    (148)、 Zhu Yujun, Dong Yongli, Zhao Lina, Yuan Fulong, Fu Honggang, Highly EfficientVOx/SBA-16Mesoporous Catalyst for Hydroxylation of Benzene, Chinese Journalof Catalysis,2008,29,11,1067-1069.
    (149)、 Aburto Jorge, Ayala Marcela, Bustos-Jaimes Ismael, Montiel Carmina, TerrésEduardo, Domínguez José Manuel, Torres Eduardo, Stability and catalyticproperties of chloroperoxidase immobilized on SBA-16mesoporous materials,Microporous and Mesoporous Materials,2005,83,1-3,193-200.
    (150)、 Yang H., Zhang L., Zhong L., Yang Q., Li C., Enhanced Cooperative ActivationEffect in the Hydrolytic Kinetic Resolution of Epoxides on [Co(salen)] CatalystsConfined in Nanocages, Angewandte Chemie,2007,119,36,6985-6989.
    (151)、 Yang Hengquan, Li Jun, Yang Jie, Liu Zhimin, Yang Qihua, Li Can, Asymmetricreactions on chiral catalysts entrapped within a mesoporous cage, Chemicalcommunications (Cambridge, England),2007,10,1086-1088.
    (152)、 Yang Hengquan, Zhang Lei, Su Weiguang, Yang Qihua, Li Can, Asymmetricring-opening of epoxides on chiral Co(Salen) catalyst synthesized in SBA-16through the "ship in a bottle" strategy, Journal of Catalysis,2007,248,2,204-212.
    (153)、 Tsoncheva Tanya, Rosenholm Jessica, Teixeira Cilaine V., Dimitrov Momtchil,Linden Mika, Minchev Christo, Preparation, characterization and catalytic behaviorin methanol decomposition of nanosized iron oxide particles within large poreordered mesoporous silicas, Microporous and Mesoporous Materials,2006,89,1-3,209-218.
    (1)、 Kim Tae-Wan, Ryoo Ryong, Kruk Michal, Gierszal Kamil P., Jaroniec Mietek,Kamiya Satoshi, Terasaki Osamu, Tailoring the Pore Structure of SBA-16SilicaMolecular Sieve through the Use of Copolymer Blends and Control of SynthesisTemperature and Time, Journal of Physical Chemistry B,2004,108,31,11480-11489.
    (2)、 Gobin Oliver C., Wan Ying, Zhao Dongyuan, Kleitz Freddy, Kaliaguine Serge,Mesostructured Silica SBA-16with Tailored Intrawall Porosity Part1: Synthesisand Characterization, The Journal of Physical Chemistry C,2007,111,7,3053-3058.
    (3)、 Zhao Dongyuan, Huo Qisheng, Feng Jianglin, Chmelka Bradley F., Stucky GalenD., Nonionic Triblock and Star Diblock Copolymer and Oligomeric SurfactantSyntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures,Journal of the American Chemical Society,1998,120,24,6024-6036.
    (4)、 Sakamoto Yasuhiro, Kaneda Mizue, Terasaki Osamu, Zhao Dong Yuan, Kim JiMan, Stucky Galen, Shin Hyun June, Ryoo Ryong, Direct imaging of the pores andcages of three-dimensional mesoporous materials, Nature,2000,408,6811,449-453.
    (5)、 Kruk Michal, Hui Chin Ming, Thermally Induced Transition between Open andClosed Spherical Pores in Ordered Mesoporous Silicas, Journal of the AmericanChemical Society,2008,130,5,1528-1529.
    (6)、 Ravikovitch Peter I., Neimark Alexander V., Density Functional Theory ofAdsorption in Spherical Cavities and Pore Size Characterization of TemplatedNanoporous Silicas with Cubic and Three-Dimensional Hexagonal Structures,Langmuir,2002,18,5,1550-1560.
    (7)、 Jaroniec Mietek, Solovyov Leonid A., Improvement of the Kruk Jaroniec SayariMethod for Pore Size Analysis of Ordered Silicas with Cylindrical Mesopores,Langmuir,2006,22,16,6757-6760.
    (8)、 Cullity Bernard Dennis, Stock Stuart R., Elements of X-ray Diffraction, Vol.3.2001: Prentice hall Upper Saddle River, NJ.
    (9)、 Zhang Yuhua, Xiong Haifeng, Liew Kongyong, Li Jinlin, Effect of magnesia onalumina-supported cobalt Fischer–Tropsch synthesis catalysts, Journal ofMolecular Catalysis A: Chemical,2005,237,1–2,172-181.
    (10)、 Schanke D., Vada S., Blekkan E. A., Hilmen A. M., Hoff A., Holmen A., Study ofPt-Promoted Cobalt CO Hydrogenation Catalysts, Journal of Catalysis,1995,156,1,85-95.
    (11)、 Reuel Robert C., Bartholomew Calvin H., The stoichiometries of H2and COadsorptions on cobalt: Effects of support and preparation, Journal of Catalysis,1984,85,1,63-77.
    (12)、 Li Jinlin, Jacobs Gary, Das Tapan, Zhang Yongqing, Davis Burtron,Fischer-Tropsch synthesis: effect of water on the catalytic properties of a Co/SiO2catalyst, Applied Catalysis A: General,2002,236,1-2,67-76.
    (13)、 Zhao Yanxi, Zhang Yuhua, Chen Jian, Li Jinlin, Liew Kongyong, Nordin MohdRidzuan Bin, SBA-16-Supported Cobalt Catalyst with High Activity and Stabilityfor Fischer–Tropsch Synthesis, ChemCatChem,2012,4,2,265-272.
    (14)、 Li Jinlin, Jacobs Gary, Das Tapan, Davis Burtron H., Fischer-Tropsch synthesis:effect of water on the catalytic properties of a ruthenium promoted Co/TiO2catalyst, Applied Catalysis A: General,2002,233,1-2,255-262.
    (1)、 Tsakoumis Nikolaos E., R nning Magnus, Borg yvind, Rytter Erling, HolmenAnders, Deactivation of cobalt based Fischer-Tropsch catalysts: A review, CatalysisToday,2010,154,3-4,162-182.
    (2)、 Iglesia Enrique, Design, synthesis, and use of cobalt-based Fischer-Tropschsynthesis catalysts, Applied Catalysis A: General,1997,161,1-2,59-78.
    (3)、 Niemel M. K., Krause A. O. I., Vaara T., Lahtinen J., Preparation andcharacterization of Co/SiO2, Co-Mg/SiO2and Mg-Co/SiO2catalysts and theiractivity in CO hydrogenation, Topics in Catalysis,1995,2,1-4,45-57.
    (4)、 Niemel M. K., Krause A. O. I., Vaara T., Kiviaho J. J., Reinikainen M. K. O., Theeffect of the precursor on the characteristics of Co/SiO2catalysts, Applied CatalysisA: General,1996,147,2,325-345.
    (5)、 Li P., Liu J., Nag N., Crozier P. A., In situ synthesis and characterization of Rupromoted Co/Al2O3Fischer-Tropsch catalysts, Applied Catalysis A: General,2006,307,2,212-221.
    (6)、 Tavasoli Ahmad, Irani Mohammad, Abbaslou Reza M. Malek, Trépanier Mariane,Dalai Ajay K., Morphology and deactivation behaviour of Co–Ru/γ-Al2O3Fischer–Tropsch synthesis catalyst, The Canadian Journal of Chemical Engineering,2008,86,6,1070-1080.
    (7)、 Riva Roberto, Miessner Hans, Vitali Roberto, Del Piero Gastone, Metal-supportinteraction in Co/SiO2and Co/TiO2, Applied Catalysis A: General,2000,196,1,111-123.
    (8)、 Li Jinlin, Jacobs Gary, Das Tapan, Davis Burtron H., Fischer-Tropsch synthesis:effect of water on the catalytic properties of a ruthenium promoted Co/TiO2catalyst,Applied Catalysis A: General,2002,233,1-2,255-262.
    (9)、 Zhu Yuan, Ye Yingchun, Zhang Shiran, Leong Mark E., Tao Franklin, Synthesisand Catalysis of Location-Specific Cobalt Nanoparticles Supported by MultiwallCarbon Nanotubes for Fischer–Tropsch Synthesis, Langmuir,2012.
    (10)、 Zarubova Sarka, Rane Shreyas, Yang Jia, Yu Yingda, Zhu Ye, Chen De, HolmenAnders, Fischer–Tropsch Synthesis on Hierarchically Structured CobaltNanoparticle/Carbon Nanofiber/Carbon Felt Composites, ChemSusChem,2011,4,7,935-942.
    (11)、 Ma Wen-Ping, Ding Yun-Jie, Lin Li-Wu, Fischer Tropsch Synthesis overActivated-Carbon-Supported Cobalt Catalysts: Effect of Co Loading andPromoters on Catalyst Performance, Industrial&Engineering Chemistry Research,2004,43,10,2391-2398.
    (12)、 Tao CongLiang, Li JinLin, Liew Kong, Effect of the pore size of Co/SBA-15isomorphically substituted with zirconium on its catalytic performance inFischer-Tropsch synthesis, Science China Chemistry,2010,53,12,2551-2559.
    (13)、 Li Hualan, Wang Shuguo, Ling Fengxiang, Li Jinlin, Studies on MCM-48supported cobalt catalyst for Fischer-Tropsch synthesis, Journal of MolecularCatalysis A: Chemical,2006,244,1-2,33-40.
    (14)、 Ravishankar Raman, Li Mianhui M., Borgna Armando, Novel utilization ofMCM-22molecular sieves as supports of cobalt catalysts in the Fischer-Tropschsynthesis, Catalysis Today,2005,106,1-4,149-153.
    (15)、 Kang Jincan, Cheng Kang, Zhang Lei, Zhang Qinghong, Ding Jiansheng, HuaWeiqi, Lou Yinchuan, Zhai Qingge, Wang Ye, Mesoporous Zeolite-SupportedRuthenium Nanoparticles as Highly Selective Fischer–Tropsch Catalysts for theProduction of C5–C11Isoparaffins, Angewandte Chemie,2011,123,22,5306-5309.
    (16)、 Chen Sufang, Li Jinlin, Zhang Yuhua, Zhao Yanxi, Hong Jinping, Effect oftetrahedral aluminum on the catalytic performance of Al-SBA-15supported Rucatalysts in Fischer-Tropsch synthesis, Catalysis Science&Technology,2013,3,4,1063-1068.
    (17)、 Sartipi Sina, Alberts Margje, Santos Vera P., Nasalevich Maxim, Gascon Jorge,Kapteijn Freek, Insights into the Catalytic Performance of MesoporousH-ZSM-5-Supported Cobalt in Fischer–Tropsch Synthesis, ChemCatChem,2014,6,1,142-151.
    (18)、 Maciá-Agulló Juan A., Sevilla Marta, Diez Maria A., Fuertes Antonio B., Synthesisof Carbon-based Solid Acid Microspheres and Their Application to the Productionof Biodiesel, ChemSusChem,2010,3,12,1352-1354.
    (19)、 Bao Jun, He Jingjiang, Zhang Yi, Yoneyama Yoshiharu, Tsubaki Noritatsu, ACore/Shell Catalyst Produces a Spatially Confined Effect and Shape Selectivity in aConsecutive Reaction, Angewandte Chemie International Edition,2008,47,2,353-356.
    (20)、 Xiong Haifeng, Zhang Yuhua, Wang Shuguo, Liew Kongyong, Li Jinlin,Preparation and Catalytic Activity for Fischer Tropsch Synthesis of RuNanoparticles Confined in the Channels of Mesoporous SBA-15, The Journal ofPhysical Chemistry C,2008,112,26,9706-9709.
    (21)、 Ma Zhancheng, Yang Hengquan, Qin Yong, Hao Yajuan, Li Guang, Palladiumnanoparticles confined in the nanocages of SBA-16: Enhanced recyclability for theaerobic oxidation of alcohols in water, Journal of Molecular Catalysis A: Chemical,2010,331,1-2,78-85.
    (22)、 Li Liyu, King David L., Liu Jun, Huo Qisheng, Zhu Kake, Wang Chongmin,Gerber Mark, Stevens Don, Wang Yong, Stabilization of Metal Nanoparticles inCubic Mesostructured Silica and Its Application in Regenerable DeepDesulfurization of Warm Syngas, Chemistry of Materials,2009,21,22,5358-5364.
    (23)、 Sun Hui, Tang Qinghu, Du Yu, Liu Xianbin, Chen Yuan, Yang Yanhui,Mesostructured SBA-16with excellent hydrothermal, thermal and mechanicalstabilities: Modified synthesis and its catalytic application, Journal of Colloid andInterface Science,2009,333,1,317-323.
    (24)、 Kim Tae-Wan, Ryoo Ryong, Kruk Michal, Gierszal Kamil P., Jaroniec Mietek,Kamiya Satoshi, Terasaki Osamu, Tailoring the Pore Structure of SBA-16SilicaMolecular Sieve through the Use of Copolymer Blends and Control of SynthesisTemperature and Time, Journal of Physical Chemistry B,2004,108,31,11480-11489.
    (25)、 Gobin Oliver C., Wan Ying, Zhao Dongyuan, Kleitz Freddy, Kaliaguine Serge,Mesostructured Silica SBA-16with Tailored Intrawall Porosity Part1: Synthesisand Characterization, The Journal of Physical Chemistry C,2007,111,7,3053-3058.
    (26)、 Zhao Dongyuan, Huo Qisheng, Feng Jianglin, Chmelka Bradley F., Stucky GalenD., Nonionic Triblock and Star Diblock Copolymer and Oligomeric SurfactantSyntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures,Journal of the American Chemical Society,1998,120,24,6024-6036.
    (27)、 Sakamoto Yasuhiro, Kaneda Mizue, Terasaki Osamu, Zhao Dong Yuan, Kim JiMan, Stucky Galen, Shin Hyun June, Ryoo Ryong, Direct imaging of the pores andcages of three-dimensional mesoporous materials, Nature,2000,408,6811,449-453.
    (28)、 Zhang Pengling, Wu Zhuofu, Xiao Ni, Ren Limin, Meng Xiangju, Wang Chunyu,Li Fei, Li Zhengqiang, Xiao Feng-Shou, Ordered Cubic Mesoporous Silicas withLarge Pore Sizes Synthesized via High-Temperature Route, Langmuir,2009,25,22,13169-13175.
    (29)、 Yang Hengquan, Li Jun, Yang Jie, Liu Zhimin, Yang Qihua, Li Can, Asymmetricreactions on chiral catalysts entrapped within a mesoporous cage, Chemicalcommunications (Cambridge, England),2007,10,1086-1088.
    (30)、 Yang Hengquan, Zhang Lei, Su Weiguang, Yang Qihua, Li Can, Asymmetricring-opening of epoxides on chiral Co(Salen) catalyst synthesized in SBA-16through the "ship in a bottle" strategy, Journal of Catalysis,2007,248,2,204-212.
    (31)、 Yang H., Zhang L., Zhong L., Yang Q., Li C., Enhanced Cooperative ActivationEffect in the Hydrolytic Kinetic Resolution of Epoxides on [Co(salen)] CatalystsConfined in Nanocages, Angewandte Chemie,2007,119,36,6985-6989.
    (32)、 Kruk Michal, Hui Chin Ming, Thermally Induced Transition between Open andClosed Spherical Pores in Ordered Mesoporous Silicas, Journal of the AmericanChemical Society,2008,130,5,1528-1529.
    (33)、 Kim YongSuk, Guo XiaoFeng, Kim GeonJoong, Highly active new chiral Co(iii)salen catalysts immobilized by electrostatic interaction with sulfonic acid linkageson ordered mesoporous SBA-16silica, Chemical Communications,2009,28,4296-4298.
    (34)、 Wang Ye, Noguchi Masato, Takahashi Yoshimoto, Ohtsuka Yasuo, Synthesis ofSBA-15with different pore sizes and the utilization as supports of high loading ofcobalt catalysts, Catalysis Today,2001,68,1-3,3-9.
    (35)、 Yang Hengquan, Zhang Gaoyong, Hong Xinlin, Zhu Yinyan, Silylation ofmesoporous silica MCM-41with the mixture of Cl(CH2)3SiCl3and CH3SiCl3:combination of adjustable grafting density and improved hydrothermal stability,Microporous and Mesoporous Materials,2004,68,1-3,119-125.
    (36)、 Ravikovitch Peter I., Neimark Alexander V., Density Functional Theory ofAdsorption in Spherical Cavities and Pore Size Characterization of TemplatedNanoporous Silicas with Cubic and Three-Dimensional Hexagonal Structures,Langmuir,2002,18,5,1550-1560.
    (37)、 Stors ter S lvi, T tdal B rd, Walmsley John C., Tanem Bj rn Steinar, HolmenAnders, Characterization of alumina-, silica-, and titania-supported cobaltFischer-Tropsch catalysts, Journal of Catalysis,2005,236,1,139-152.
    (38)、 Shannon Mervyn D., Lok C. Martin, Casci John L., Imaging promoter atoms inFischer-Tropsch cobalt catalysts by aberration-corrected scanning transmissionelectron microscopy, Journal of Catalysis,2007,249,1,41-51.
    (39)、 Froba Michael, Kohn Ralf, Bouffaud Gaelle, Richard Olivier, van TendelooGustaaf, Fe2O3Nanoparticles within Mesoporous MCM-48Silica: In SituFormation and Characterization, Chemistry of Materials,1999,11,10,2858-2865.
    (40)、 Khodakov Andrei Y., Bechara Rafeh, GribovalConstant Anne, Fischer-Tropschsynthesis over silica supported cobalt catalysts: mesoporous structure versus cobaltsurface density, Applied Catalysis A: General,2003,254,2,273-288.
    (41)、 Lira Estephanía, López Carmen M., Oropeza Freddy, Bartolini Mónica, AlvarezJuan, Goldwasser Mireya, Linares Francisco López, Lamonier Jean-Fran ois, PérezZurita M. Josefina, HMS mesoporous silica as cobalt support for theFischer-Tropsch Synthesis: Pretreatment, cobalt loading and particle size effects,Journal of Molecular Catalysis A: Chemical,2008,281,1-2,146-153.
    (42)、 Li Junhua, Xu Yao, Wu Dong, Sun Yuhan, Hollow mesoporous silica spheresupported cobalt catalysts for F-T synthesis, Catalysis Today,2009,148,1-2,148-152.
    (43)、 Arnoldy P., Moulijn J. A., Temperature-programmed reduction of CoO/Al2O3catalysts, Journal of Catalysis,1985,93,1,38-54.
    (44)、 Viswanathan B., Gopalakrishnan R., Effect of support and promoter inFischer-Tropsch cobalt catalysts, Journal of Catalysis,1986,99,2,342-348.
    (45)、 Jacobs Gary, Das Tapan K., Zhang Yongqing, Li Jinlin, Racoillet Guillaume, DavisBurtron H., Fischer-Tropsch synthesis: support, loading, and promoter effects onthe reducibility of cobalt catalysts, Applied Catalysis A: General,2002,233,1-2,263-281.
    (46)、 Bezemer G. Leendert, Bitter Johannes H., Kuipers Herman P. C. E., OosterbeekHeiko, Holewijn Johannes E., Xu Xiaoding, Kapteijn Freek, van Dillen A. Jos, deJong Krijn P., Cobalt Particle Size Effects in the Fischer Tropsch Reaction Studiedwith Carbon Nanofiber Supported Catalysts, Journal of the American ChemicalSociety,2006,128,12,3956-3964.
    (47)、 Madon R. J., Iglesia E., The Importance of Olefin Readsorption and H2/COReactant Ratio for Hydrocarbon Chain Growth on Ruthenium Catalysts, Journal ofCatalysis,1993,139,2,576-590.
    (1)、石利红,李晓峰,李德宝,孙予罕,钴基催化剂在费-托反应过程中的失活行为,催化学报,2010,31,12,1483-1488.
    (2)、 Agrawal Pradeep K., Katzer James R., Manogue William H., Methanation overtransition metal catalysts: III. CoAl2O3in sulfur-poisoning studies, Journal ofCatalysis,1981,69,2,327-344.
    (3)、 Curtis V., Nicolaides C. P., Coville N. J., Hildebrandt D., Glasser D., The effect ofsulfur on supported cobalt Fischer–Tropsch catalysts, Catalysis Today,1999,49,1–3,33-40.
    (4)、 Li Jinlin, Coville Neil J., Effect of boron on the sulfur poisoning of Co/TiO2Fischer–Tropsch catalysts, Applied Catalysis A: General,2001,208,1-2,177-184.
    (5)、 Madikizela-Mnqanqeni Nobuntu N., Coville Neil J., The effect of sulfur additionduring the preparation of Co/Zn/TiO2Fischer–Tropsch catalysts, Applied CatalysisA: General,2008,340,1,7-15.
    (6)、 van Berge P. J., Everson R. C., Cobalt as an alternative Fischer-Tropsch catalyst toiron for the production of middle distillates, Studies in Surface Science andCatalysis,1997,107,207-212.
    (7)、 Gaube J., Klein H. F., The promoter effect of alkali in Fischer-Tropsch iron andcobalt catalysts, Applied Catalysis A: General,2008,350,1,126-132.
    (8)、 Borg yvind, Eri Sigrid, Blekkan Edd A., Stors ter S lvi, Wigum Hanne, RytterErling, Holmen Anders, Fischer–Tropsch synthesis over γ-alumina-supportedcobalt catalysts: Effect of support variables, Journal of Catalysis,2007,248,1,89-100.
    (9)、 Bartholomew Calvin H., Mechanisms of catalyst deactivation, Applied Catalysis A:General,2001,212,1-2,17-60.
    (10)、 Bian Guo-Zhu, Fujishita Norimasa, Mochizuki Takehisa, Ning Wen-Sheng, YamadaMuneyoshi, Investigations on the structural changes of two Co/SiO2catalysts byperforming Fischer-Tropsch synthesis, Applied Catalysis A: General,2003,252,2,251-260.
    (11)、 Tavasoli Ahmad, Malek Abbaslou Reza M., Dalai Ajay K., Deactivation behaviorof ruthenium promoted Co/γ-Al2O3catalysts in Fischer-Tropsch synthesis, AppliedCatalysis A: General,2008,346,1-2,58-64.
    (12)、 Tavasoli Ahmad, Irani Mohammad, Abbaslou Reza M. Malek, Trépanier Mariane,Dalai Ajay K., Morphology and deactivation behaviour of Co–Ru/γ-Al2O3Fischer–Tropsch synthesis catalyst, The Canadian Journal of Chemical Engineering,2008,86,6,1070-1080.
    (13)、 Bezemer G. Leendert, Remans Tom J., van Bavel Alexander P., Dugulan A. Iulian,Direct Evidence of Water-Assisted Sintering of Cobalt on Carbon NanofiberCatalysts during Simulated Fischer Tropsch Conditions Revealed with in SituM ssbauer Spectroscopy, Journal of the American Chemical Society,2010,132,25,8540-8541.
    (14)、 Iglesia E., Soled S. L., Fiato R. A., Via G. H., Bimetallic Synergy in CobaltRuthenium Fischer-Tropsch Synthesis Catalysts, Journal of Catalysis,1993,143,2,345-368.
    (15)、 Jacobs Gary, Patterson Patricia M., Zhang Yongqing, Das Tapan, Li Jinlin, DavisBurtron H., Fischer-Tropsch synthesis: deactivation of noble metal-promotedCo/Al2O3catalysts, Applied Catalysis A: General,2002,233,1-2,215-226.
    (16)、 Menon P. G., Coke on catalysts-harmful, harmless, invisible and beneficial types,Journal of Molecular Catalysis,1990,59,2,207-220.
    (17)、 Weller Sol, Hofer L. J. E., Anderson R. B., The Role of Bulk Cobalt Carbide in theFischer—Tropsch Synthesis1, Journal of the American Chemical Society,1948,70,2,799-801.
    (18)、 Browning L. C., Emmett P. H., Equilibrium Measurements in theNi3C—Ni—CH4—H2and Co2C—Co—CH4—H2Systems, Journal of the AmericanChemical Society,1952,74,7,1680-1682.
    (19)、 Agrawal Pradeep K., Katzer James R., Manogue William H., Methanation overtransition metal catalysts: II. carbon deactivation of CoAl2O3in sulfur-free studies,Journal of Catalysis,1981,69,2,312-326.
    (20)、 Fei Tan Kong, Xu Jing, Chang Jie, Borgna Armando, Saeys Mark, Carbondeposition on Co catalysts during Fischer-Tropsch synthesis: A computational andexperimental study, Journal of Catalysis,2010,274,2,121-129.
    (21)、 Iglesia Enrique, Design, synthesis, and use of cobalt-based Fischer-Tropschsynthesis catalysts, Applied Catalysis A: General,1997,161,1-2,59-78.
    (22)、 van de Loosdrecht J., Balzhinimaev B., Dalmon J. A., Niemantsverdriet J. W.,Tsybulya S. V., Saib A. M., van Berge P. J., Visagie J. L., Cobalt Fischer-Tropschsynthesis: Deactivation by oxidation?, Catalysis Today,2007,123,1-4,293-302.
    (23)、 Dalai A. K., Davis B. H., Fischer-Tropsch synthesis: A review of water effects onthe performances of unsupported and supported Co catalysts, Applied Catalysis A:General,2008,348,1,1-15.
    (24)、 Hilmen A. M., Schanke D., Hanssen K. F., Holmen A., Study of the effect of wateron alumina supported cobalt Fischer-Tropsch catalysts, Applied Catalysis A:General,1999,186,1-2,169-188.
    (25)、 Hilmena A.M, Schankeb D., Holmena A., Reoxidation of supported cobaltFischer-Tropsch catalysts, Studies in Surface Science and Catalysis,1997,107,237-242.
    (26)、 van Berge P. J., van de Loosdrecht J., Barradas S., van der Kraan A. M., Oxidationof cobalt based Fischer–Tropsch catalysts as a deactivation mechanism, CatalysisToday,2000,58,4,321-334.
    (27)、 Lapidus A., Krylova A., Kazanskii V., Borovkov V., Zaitsev A., Rathousky J., ZukalA., Jancˇálková M., Hydrocarbon synthesis from carbon monoxide and hydrogenon impregnated cobalt catalysts Part I. Physico-chemical properties of10%cobalt/alumina and10%cobalt/silica, Applied Catalysis,1991,73,1,65-81.
    (28)、 Lapidus A., Krylova A., Rathousky′J., Zukal A., Jancˇa′lkova′M., Hydrocarbonsynthesis from carbon monoxide and hydrogen on impregnated cobalt catalysts II:Activity of10%Co/Al2O3and10%Co/SiO2catalysts in Fischer-Tropsch synthesis,Applied Catalysis A: General,1992,80,1,1-11.
    (29)、 Li Jinlin, Jacobs Gary, Das Tapan, Zhang Yongqing, Davis Burtron,Fischer-Tropsch synthesis: effect of water on the catalytic properties of a Co/SiO2catalyst, Applied Catalysis A: General,2002,236,1-2,67-76.
    (30)、 Li Jinlin, Xu Liguang, Keogh Robert, Davis Burtron, Fischer–Tropsch synthesis.Effect of CO pretreatment on a ruthenium promoted Co/TiO2, Catalysis Letters,2000,70,3,127-130.
    (31)、 Zhao Yanxi, Zhang Yuhua, Chen Jian, Li Jinlin, Liew Kongyong, Nordin MohdRidzuan Bin, SBA-16-Supported Cobalt Catalyst with High Activity and Stabilityfor Fischer–Tropsch Synthesis, ChemCatChem,2012,4,2,265-272.
    (32)、 Bertole Christopher J., Mims Charles A., Kiss Gabor, The Effect of Water on theCobalt-Catalyzed Fischer-Tropsch Synthesis, Journal of Catalysis,2002,210,1,84-96.
    (33)、 Tsakoumis Nikolaos E., R nning Magnus, Borg yvind, Rytter Erling, HolmenAnders, Deactivation of cobalt based Fischer-Tropsch catalysts: A review, CatalysisToday,2010,154,3-4,162-182.
    (34)、 Lee YunJo, Park JoYong, Jun KiWon, Bae Jong, Sai Prasad P., ControlledNanocrystal Deposition for Higher Degree of Reduction in Co/Al2O3Catalyst,Catalysis Letters,2009,130,1,198-203.
    (35)、 Tavasoli Ahmad, Trépanier Mariane, Dalai Ajay K., Abatzoglou Nicolas, Effects ofConfinement in Carbon Nanotubes on the Activity, Selectivity, and Lifetime ofFischer Tropsch Co/Carbon Nanotube Catalysts, Journal of Chemical&Engineering Data,2010,55,8,2757-2763.
    (36)、 Li Liyu, King David L., Liu Jun, Huo Qisheng, Zhu Kake, Wang Chongmin,Gerber Mark, Stevens Don, Wang Yong, Stabilization of Metal Nanoparticles inCubic Mesostructured Silica and Its Application in Regenerable DeepDesulfurization of Warm Syngas, Chemistry of Materials,2009,21,22,5358-5364.
    (37)、 Sietsma Jelle R. A., Friedrich Heiner, Broersma Alfred, Versluijs-Helder Marjan,Jos van Dillen A., de Jongh Petra E., de Jong Krijn P., How nitric oxide affects thedecomposition of supported nickel nitrate to arrive at highly dispersed catalysts,Journal of Catalysis,2008,260,2,227-235.
    (38)、 Borg yvind, Stors ter S lvi, Eri Sigrid, Wigum Hanne, Rytter Erling, HolmenAnders, The Effect of Water on the Activity and Selectivity for γ-AluminaSupported Cobalt Fischer–Tropsch Catalysts with Different Pore Sizes, CatalysisLetters,2006,107,1,95-102.
    (39)、 Dalai Ajay K., Das Tapan K., Chaudhari Karuna V., Jacobs Gary, Davis Burtron H.,Fischer-Tropsch synthesis: Water effects on Co supported on narrow and wide-poresilica, Applied Catalysis A: General,2005,289,2,135-142.
    (1)、 Kang Jincan, Zhang Shuli, Zhang Qinghong, Wang Ye, Ruthenium NanoparticlesSupported on Carbon Nanotubes as Efficient Catalysts for Selective Conversion ofSynthesis Gas to Diesel Fuel, Angewandte Chemie,2009,121,14,2603-2606.
    (2)、 Bao Jun, He Jingjiang, Zhang Yi, Yoneyama Yoshiharu, Tsubaki Noritatsu, ACore/Shell Catalyst Produces a Spatially Confined Effect and Shape Selectivity in aConsecutive Reaction, Angewandte Chemie International Edition,2008,47,2,353-356.
    (3)、 Li Xingang, He Jingjiang, Meng Ming, Yoneyama Yoshiharu, Tsubaki Noritatsu,One-step synthesis of H-[beta] zeolite-enwrapped Co/Al2O3Fischer-Tropschcatalyst with high spatial selectivity, Journal of Catalysis,2009,265,1,26-34.
    (4)、 Zhang Qinghong, Kang Jincan, Wang Ye, Development of Novel Catalysts forFischer–Tropsch Synthesis: Tuning the Product Selectivity, ChemCatChem,2010,2,9,1030-1058.
    (5)、 Kang Jincan, Cheng Kang, Zhang Lei, Zhang Qinghong, Ding Jiansheng, HuaWeiqi, Lou Yinchuan, Zhai Qingge, Wang Ye, Mesoporous Zeolite-SupportedRuthenium Nanoparticles as Highly Selective Fischer–Tropsch Catalysts for theProduction of C5–C11Isoparaffins, Angewandte Chemie,2011,123,22,5306-5309.
    (6)、 Cheng Kang, Kang Jincan, Huang Shuiwang, You Zhenya, Zhang Qinghong, DingJiansheng, Hua Weiqi, Lou Yinchuan, Deng Weiping, Wang Ye, Mesoporous BetaZeolite-Supported Ruthenium Nanoparticles for Selective Conversion of SynthesisGas to C5–C11Isoparaffins, ACS Catalysis,2012,2,3,441-449.
    (7)、 Zhang Qinghong, Cheng Kang, Kang Jincan, Deng Weiping, Wang Ye,Fischer–Tropsch Catalysts for the Production of Hydrocarbon Fuels with HighSelectivity, ChemSusChem,2013, n/a-n/a.
    (8)、 Sun Bo, Qiao Minghua, Fan Kangnian, Ulrich Jeffrey, Tao Franklin,Fischer–Tropsch Synthesis over Molecular Sieve Supported Catalysts,ChemCatChem,2011,3,3,542-550.
    (9)、 Gallo Jean Marcel R., Bisio Chiara, Gatti Giorgio, Marchese Leonardo, PastoreHeloise O., Physicochemical Characterization and Surface Acid Properties ofMesoporous [Al]-SBA-15Obtained by Direct Synthesis, Langmuir,2010,26,8,5791-5800.
    (10)、 Li Ying, Zhang Wenhua, Zhang Lei, Yang Qihua, Wei Zhaobin, Feng Zhaochi, LiCan, Direct Synthesis of Al SBA-15Mesoporous Materials viaHydrolysis-Controlled Approach, The Journal of Physical Chemistry B,2004,108,28,9739-9744.
    (11)、 Wu Shuo, Han Yu, Zou Yongcun, Song Jiangwei, Zhao Lan, Di Yan, Liu Shuzhen,Xiao Fengshou, Synthesis of Heteroatom Substituted SBA-15by the“pH-Adjusting” Method, Chemistry of Materials,2004,16,3,486-492.
    (12)、 Koekkoek Arjan J. J., van Veen J. A. Rob, Gerrtisen Paul B., Giltay Patricia,Magusin Pieter C. M. M., Hensen Emiel J. M., Br nsted acidity of Al/SBA-15,Microporous and Mesoporous Materials,2012,151,0,34-43.
    (13)、 Gallo Jean Marcel R., Bisio Chiara, Marchese Leonardo, Pastore Heloise O.,One-pot synthesis of mesoporous [Al]-SBA-16and acidity characterization by COadsorption, Microporous and Mesoporous Materials,2011,145,1-3,124-130.
    (14)、 Ma Jing, Qiang Liangsheng, Wang Jinfu, Tang Dongyan, Tang Xiangbo, An EasyRoute to Synthesize Novel Mesostructured Silicas Al/SBA-16and Its CatalyticApplication, Catalysis Letters,2010,1-8.
    (15)、 Kim Tae-Wan, Ryoo Ryong, Kruk Michal, Gierszal Kamil P., Jaroniec Mietek,Kamiya Satoshi, Terasaki Osamu, Tailoring the Pore Structure of SBA-16SilicaMolecular Sieve through the Use of Copolymer Blends and Control of SynthesisTemperature and Time, Journal of Physical Chemistry B,2004,108,31,11480-11489.
    (16)、 Gobin Oliver C., Wan Ying, Zhao Dongyuan, Kleitz Freddy, Kaliaguine Serge,Mesostructured Silica SBA-16with Tailored Intrawall Porosity Part1: Synthesisand Characterization, The Journal of Physical Chemistry C,2007,111,7,3053-3058.
    (17)、 Zhao Dongyuan, Huo Qisheng, Feng Jianglin, Chmelka Bradley F., Stucky GalenD., Nonionic Triblock and Star Diblock Copolymer and Oligomeric SurfactantSyntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures,Journal of the American Chemical Society,1998,120,24,6024-6036.
    (18)、 Sakamoto Yasuhiro, Kaneda Mizue, Terasaki Osamu, Zhao Dong Yuan, Kim JiMan, Stucky Galen, Shin Hyun June, Ryoo Ryong, Direct imaging of the pores andcages of three-dimensional mesoporous materials, Nature,2000,408,6811,449-453.
    (19)、 Kruk Michal, Hui Chin Ming, Thermally Induced Transition between Open andClosed Spherical Pores in Ordered Mesoporous Silicas, Journal of the AmericanChemical Society,2008,130,5,1528-1529.
    (20)、李瑛, Al-SBA-15和Fe-SBA-15介孔材料的合成、表征及催化性能研究,中国科学院大连化学物理研究所博士学位论文,2005.
    (21)、 Kim YongSuk, Guo XiaoFeng, Kim GeonJoong, Highly active new chiral Co(iii)salen catalysts immobilized by electrostatic interaction with sulfonic acid linkageson ordered mesoporous SBA-16silica, Chemical Communications,2009,28,4296-4298.
    (22)、 Jaroniec Mietek, Solovyov Leonid A., Improvement of the Kruk Jaroniec SayariMethod for Pore Size Analysis of Ordered Silicas with Cylindrical Mesopores,Langmuir,2006,22,16,6757-6760.
    (23)、 Ravikovitch Peter I., Neimark Alexander V., Density Functional Theory ofAdsorption in Spherical Cavities and Pore Size Characterization of TemplatedNanoporous Silicas with Cubic and Three-Dimensional Hexagonal Structures,Langmuir,2002,18,5,1550-1560.
    (24)、 Wang Ye, Noguchi Masato, Takahashi Yoshimoto, Ohtsuka Yasuo, Synthesis ofSBA-15with different pore sizes and the utilization as supports of high loading ofcobalt catalysts, Catalysis Today,2001,68,1-3,3-9.
    (25)、 Yang Hengquan, Zhang Gaoyong, Hong Xinlin, Zhu Yinyan, Silylation ofmesoporous silica MCM-41with the mixture of Cl(CH2)3SiCl3and CH3SiCl3:combination of adjustable grafting density and improved hydrothermal stability,Microporous and Mesoporous Materials,2004,68,1-3,119-125.
    (26)、 Khodakov Andrei Y., Bechara Rafeh, GribovalConstant Anne, Fischer-Tropschsynthesis over silica supported cobalt catalysts: mesoporous structure versus cobaltsurface density, Applied Catalysis A: General,2003,254,2,273-288.
    (27)、 Lira Estephanía, López Carmen M., Oropeza Freddy, Bartolini Mónica, AlvarezJuan, Goldwasser Mireya, Linares Francisco López, Lamonier Jean-Fran ois, PérezZurita M. Josefina, HMS mesoporous silica as cobalt support for theFischer-Tropsch Synthesis: Pretreatment, cobalt loading and particle size effects,Journal of Molecular Catalysis A: Chemical,2008,281,1-2,146-153.
    (28)、 Li Junhua, Xu Yao, Wu Dong, Sun Yuhan, Hollow mesoporous silica spheresupported cobalt catalysts for F-T synthesis, Catalysis Today,2009,148,1-2,148-152.
    (29)、 Ma Jing, Qiang Liang-Sheng, Wang Jin-Fu, Tang Xiang-Bo, Tang Dong-Yan,Effect of different synthesis methods on the structural and catalytic performance ofSBA-15modified by aluminum, Journal of Porous Materials,2011,18,5,607-614.
    (30)、 Zhao Yanxi, Zhang Yuhua, Chen Jian, Li Jinlin, Liew Kongyong, Nordin MohdRidzuan Bin, SBA-16-Supported Cobalt Catalyst with High Activity and Stabilityfor Fischer–Tropsch Synthesis, ChemCatChem,2012,4,2,265-272.
    (31)、 Sazama Petr, Wichterlova Blanka, Dedecek Jiri, Tvaruzkova Zdenka, MusilovaZuzana, Palumbo Luisa, Sklenak Stepan, Gonsiorova Olga, FTIR and27Al MASNMR analysis of the effect of framework Al-and Si-defects in micro-andmicro-mesoporous H-ZSM-5on conversion of methanol to hydrocarbons,Microporous and Mesoporous Materials,2011,143,1,87-96.
    (32)、 Kao Hsien-Ming, Chang Pai-Ching, Liao Yun-Wen, Lee Lung-Ping, ChienChu-Hua, Solid-state NMR characterization of the acid sites in cubic mesoporousAl-MCM-48materials using trimethylphosphine oxide as a31P NMR probe,Microporous and Mesoporous Materials,2008,114,1-3,352-364.
    (33)、罗晴,邓风,程谟杰,用固体核磁方法研究MCM-22分子筛中的Al状态,波谱学杂志,2001,18,2,143-148.
    (34)、 Li Changlin, Wang Yanqin, Guo Yanglong, Liu Xiaohui, Guo Yun, Zhang Zhigang,Wang Yunsong, Lu Guanzhong, Synthesis of Highly Ordered, ExtremelyHydrothermal stable SBA-15/Al-SBA-15under the Assistance of Sodium Chloride,Chemistry of Materials,2006,19,2,173-178.
    (35)、 Klimova T., Lizama L., Amezcua J. C., Roquero P., Terrés E., Navarrete J.,Domínguez J. M., New NiMo catalysts supported on Al-containing SBA-16for4,6-DMDBT hydrodesulfurization: Effect of the alumination method, CatalysisToday,2004,98,1-2,141-150.
    (36)、 Ungureanu A., Royer S., Hoang T. V., Trong On D., Dumitriu E., Kaliaguine S.,Aldol condensation of aldehydes over semicrystalline zeolitic-mesoporousUL-ZSM-5, Microporous and Mesoporous Materials,2005,84,1–3,283-296.
    (37)、 Riva Roberto, Miessner Hans, Vitali Roberto, Del Piero Gastone, Metal-supportinteraction in Co/SiO2and Co/TiO2, Applied Catalysis A: General,2000,196,1,111-123.
    (38)、 Ma Wen-Ping, Ding Yun-Jie, Lin Li-Wu, Fischer Tropsch Synthesis overActivated-Carbon-Supported Cobalt Catalysts: Effect of Co Loading andPromoters on Catalyst Performance, Industrial&Engineering Chemistry Research,2004,43,10,2391-2398.
    (39)、 Cai Qin, Li Jinlin, Catalytic properties of the Ru promoted Co/SBA-15catalysts forFischer-Tropsch synthesis, Catalysis Communications,2008,9,10,2003-2006.
    (40)、 Kang Sukhwan, Bae Jong, Sai Prasad P., Jun Kiwon, Fischer–Tropsch SynthesisUsing Zeolite-supported Iron Catalysts for the Production of Light Hydrocarbons,Catalysis Letters,2008,125,3,264-270.
    (41)、 Huang Xing, Hou Bo, Wang Jungang, Li Debao, Jia Litao, Chen Jiangang, SunYuhan, CoZr/H-ZSM-5hybrid catalysts for synthesis of gasoline-range isoparaffinsfrom syngas, Applied Catalysis A: General,2011,408,1–2,38-46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700