Invar 36合金的加工性及低应力加工工艺
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为最常用的低膨胀材料,Invar 36合金在精密仪器、精密模具、精密加工设备和武器装备等领域具有无可替代的应用价值,例如可用于制造光刻机的精密结构件和激光器反射镜基板等关键零件。然而,Invar 36合金在物理特性、机械性能等方面与普通合金差异较大,对Invar 36合金的加工性、加工表面完整性以及加工残余应力引起的变形等重要方面认识的不足限制了该合金的应用。本文比较系统地研究了Invar 36合金切削加工性、磨削加工性、磨削加工表面完整性及低应力加工工艺,在此基础上提出了Invar 36合金低应力加工的工艺路线和工艺参数。
     本文的主要研究工作及结论如下:
     通过车削试验,从切削力、断屑性能、表面粗糙度、加工变质层以及刀具寿命等方面研究了Invar 36合金切削加工性。与C45钢和1Cr18Ni9Ti不锈钢相比较,Invar 36合金加工表面粗粗糙度较好,加工变质层厚度较小,刀具寿命较长,但是切削力大,并且易生成连续带状切屑,切屑内表面纤维化也比较明显,滞流层厚度是C45钢和1Cr18Ni9Ti不锈钢的10~12倍,因此,断屑性能差。综合评价,Invar 36合金的切削加工性优于1Cr18Ni9Ti不锈钢,但是比C45钢差。
     从磨削力、磨削温度、磨削表面粗糙度和表面变质层深度、成屑形态、磨削比等方面分析了Invar 36合金磨削加工性。Invar 36合金的磨削力高于1Cr18Ni9Ti不锈钢和C45钢,磨削温度介于C45钢和1Cr18Ni9Ti不锈钢之间,磨削比明显低于C45钢但略高于1Cr18Ni9Ti不锈钢。Invar 36合金正常磨屑呈弯曲的纤维状。当磨削深度超过20μm时,砂轮粘附和堵塞比较严重,砂轮过早钝化,并导致磨削温度升高、工件表面质量下降。综合比较认为,Invar 36合金的磨削加工性介于C45钢与1Cr18Ni9Ti不锈钢之间。
     从表面粗糙度、表层残余应力、加工硬化及变质层等方面研究了Invar 36合金的磨削表面完整性,着重研究了Invar 36合金磨削残余应力。在本文试验条件下,Invar 36合金表面有较大的残余拉应力,峰值残余应力位于表面以下40~50μm,表面80μm以下为较小的残余压应力,磨削表面残余应力层深度小于180μm。磨削温度是磨削残余拉应力生成的主要原因。Invar 36合金的磨削温度对工艺参数比较敏感,其中磨削深度的影响最为显著。当磨削深度减小时,磨削温度降低,表面层残余拉应力减小;当磨削深度小于20pm时,磨削表面层温度约降低到300℃以下,材料热膨胀系数急剧减小,磨削表面层残余拉应力显著减小。为降低磨削残余应力,磨削深度不宜超过20μm。
     通过总结Invar 36合金已有的热处理工艺和本文加工工艺试验结果,以控制加工变形和减小残余应力为目标,提出了低应力加工工艺路线,即在粗加工、半精加工和精加工之间分别引入去应力及稳定化处理,并在精加工中采用低应力加工工艺参数。在此基础上,进行了精加工工艺参数的选择。切削加工Invar 36合金时,YG8硬质合金刀片切削力较小,适宜于Invar 36合金精加工。提高切削速度、增大刀具前角、减小切削深度均可减小切削力,并减小加工硬化程度和表面变质层厚度。铬钢玉砂轮磨削Invar 36合金时磨削力小,磨削温度低,磨削表面粗糙度好,适宜于Invar 36合金低应力磨削。
As a kind of low-expansion materials, Invar 36 alloy is widely used in manufacturing of precision instruments, mould and machining equipments. For instance, it is used as precision components of lithography machine and the substrate of laser mirror. However, the physical and mechanical properties of Invar 36 alloy are very different from other alloys, and its machinability, machined surface integrity and deformation induced by the residual stress have not been well understood, which limited the application of Invar 36 alloy. In this thesis, the machinability, grindability, ground surface integrity and low-stress processing of Invar 36 alloy were studied systematically. On the basis of the above research, the low-stress process routes and the researsonable processing parameters are proposed.
     The main research contents and conclusions are as follows:
     The machinability of Invar 36 alloy was evaluated in terms of the cutting force, the chip-breaking performance, the surface roughness, the affected layer, the tool life, etc. by the turing tests. When turning Invar 36 alloy, in comparison with C45 steel and 1Cr18Ni9Ti stainless steel, the better surface roughness, thiner affected layer, the longer tool life, but the larger cutting force were obtained. The cutting chips are generally continuous in turning Invar 36 alloy. The stagnant layer is about 10~12 times thincker than that of C45 steel and 1Cr18Ni9Ti stainless steel. Therefore, the chip-breaking performance of Invar 36 alloy is poor. In conclusion, the machinability of Invar 36 alloy is better than that of 1Cr18Ni9Ti stainless steel, but worse than that of C45 Steel.
     The grindability of of Invar 36 alloy was estimated in respects of the grinding force, the grinding temperature, the chip characteristics, the affected layer, the grinding ratio, etc. The larger grinding force was detected when grinding Invar 36 alloy compared with that of C45 steel and 1Cr18Ni9Ti stainless steel. The grinding temperature of Invar 36 alloy is higher that of 1Cr18Ni9Ti stainless steel, but lower than that of C45 steel. The grinding ratio of Invar 36 alloy is much lower than that of C45 steel, but a little higher than that of 1Cr18Ni9Ti stainless steel. The grinding chips of Invar 36 alloy were normally curved with fibroid shape. When grinding depth is more than 20μm, the higher grinding temperature and worse surface quality were obtained owning to the grinding wheel dull resulted from the severe loading and adhesion, conclusively, the grindability of Invar 36 alloy is between C45 Steel and 1Cr18Ni9Ti stainless steel.
     The ground surface integrity, especially the grinding residual stress, of Invar 36 alloy was investigated by the surface roughness, the residual stress in the surface layer, the work-hardening and the metamorphic layer. Under current experimental conditions of this test, the apparent residual tensile stress were left in the grinding surface layer of Invar 36 alloy, the peak value of which located at about 40~50μm under the surface. In the subsurface deeper than 80μm , the residual stress is compressive stress, the value of which is lower than that of the residual tensile stress in the shallow surface layer. The total depth of residual stress layer is less than 180μm. The grinding temperature is one of the key reasons for the generation of the grinding residual tensile stress. The grinding temperature is sensitive to the processing parameters, especially to the grinding depth. As the decreasing of grinding depth, both the grinding temperature and the residual tensile stress in the surface layer decrease. When the grinding depth is lower than 20μm, the grinding temperature is no more than 300℃.The thermal expansion coefficient of the material drops distinctly from 300℃, resulting in the ovvious decreasing of the residual tensile stress in the surface layer. Therefore, the grindinig depth should be lower than 20μm to reduce the grinding residual stress.
     To control the workpiece deformation and reduce the residual stress in the machined surface,, a low-stress processing route for Invar 36 alloy was proposed based on the existing heat treatment process and the experimental results obtained from this work. The proposed processing route include the rough machining, semi finish machining and finish machining, The stress relief and the stabilization treatment are employed between the rough and semi finish maching, and between the semi finish and finishing machining. The low-stress processing parameters in the finish machining of Invar 36 alloy are determinted. In the finish turning of Invar 36 alloy, the YG8 carbide blade is suitable because the relative low cutting force could be obtained. The cutting force, the surface hardening and the affected layer decrease as the inceasing of the cutting speed and the tool rake angle, as well as the decreasing of the cutting depth. In the finish grinding of Invar 36 alloy, the chromium corundum wheel is suitable due to the low grinding force, grinding temperature and surface roughness.
引文
[1]Mohn P. Materials science:A century of zero expansion. Nature,1999,400(6739):18-18.
    [2]Lagarec K, Rancourt D G, Bose S K et al. Observation of a composition-controlled high-moment/low-moment transition in the face centered cubic Fe-Ni system:Invar effect is an expansion, not a contraction. Journal of Magnetism and Magnetic Materials,2001, 236(1-2):107-130.
    [3]Hideo S, Chikazumi S, Hirone T. Physics and Applications of Invar Alloys. Tokyo:Honda Memorial Series on Materials Science,1978.
    [4]周俊,林慧国.世界各国钢号手册.北京:机械工业出版社,1970.
    [5]Marsh G. GKN Aerospace extends composites boundaries. Reinforced Plastics,2006,50(6): 24-26.
    [6]刘振兴,吴金声,刘克佩.膨胀合金手册.北京:冶金工业出版社,1979.
    [7]张绍维.低膨胀高温合金的发展与应用.航空制造工程,1994(9):5-8.
    [8]Baker H. Alloy Phase Diagram:ASM International Handbook Committee,2005.
    [9]樊东黎,徐跃明,佟晓辉等.热处理工程师手册.北京:机械工业出版社,2002.
    [10]工程材料实用手册编辑委员会.工程材料实用手册第四卷:中国标准出版社,1989.
    [11]胡庚祥.金属学.上海:上海科学技术出版社,1980.
    [12]方昆凡.工程材料手册黑色金属材料卷.北京:北京出版社,2007.
    [13]莫洛季洛娃主编.精密合金手册(简光沂译).北京:北京科学技术出版社,1989.
    [14]http://www.engineeringtoolbox.com/thermal-conductivity-d 429.html#.
    [15]Kondorsky E I. Obituary. Journal of Magnetism and Magnetic Materials,1990,86(1):v-v.
    [16]沈婕,王晓军,夏天东.因瓦效应及因瓦合金的研究现状.功能材料,2007,增刊38:3198-3201.
    [17]何开元.精密合金材料学.北京:冶金工业出版社,1991.
    [18]Kaufman L, Clougherty E V, Weiss R J. The lattice stability of metals--Ⅲ. Iron. Acta Metallurgica, 1963,11(5):323-335.
    [19]Matsui M, Chikazumi S. Analysis of anomalous thermal expansion coefficient of Fe-Ni Invar alloys. Journal of the Physical Society of Japan,1978,45(2):458-465.
    [20]Chikazumi S. Invar anomalies. Journal of Magnetism and Magnetic Materials,1979,10(2-3): 113-119.
    [21]Chikazumi S. Low spin states in Invar alloys-the Invar problems. Journal of Magnetism and Magnetic Materials,1979,15-18(Pt 3):1130-1135.
    [22]卢志超,鲜于泽,李际周等.非晶态Fe_(90-x)Co_xZr_(10)合金的非弹性中子散射研究.科学通报,1993,38(23):2131-2132.
    [23]鲜于泽,卢志超,李际周等.铁基非晶态因瓦合金的声子谱研究.物理学报,1994,43(1):99-102.
    [24]Moriya T, Usami K. Magneto-volume effect and invar phenomena in ferromagnetic metals. Solid State Communications,1993,88(11-12):911-915.
    [25]Moriya T, Usami K. Magneto-volume effect and invar phenomena in ferromagnetic metals. Solid State Communications,1980,34(2):95-99.
    [26]Kohgi M, Ishikawa Y, Wakabayashi N. Spin waves in an invar alloy(Fe0.65Ni0.35). Solid State Communications,1976,18(4):509-512.
    [27]Ishikawa Y, Onodera S, Tajima K. Longitudinal spin fluctuations in invar alloys of ordered Fe3Pt and disorder Fe65Ni35. Solid State Communications,1981,38(7):561-564.
    [28]Ishikawa Y, Yamada K, Tajima K et al. Spin dynamics in the amorphous invar alloy of Fe86B14. Journal of the Physical Society of Japan,1981,50(6):1958-1963.
    [29]Shiga M, Nakamura Y. Characterization of the phase transition of Invar type alloys by magnetoelasticity. Journal of Magnetism and Magnetic Materials,1990,90 pt 91:733-734.
    [30]Shiga M, Yamamoto M. Magnetism and phase stability of fcc Fe-Co alloys precipitated in a Cu matrix. Journal of Physics Condensed Matter,2001,13(29):6359-6369.
    [31]Shimizu M. Anomalous properties and magnetic heterogeneity of Fe-Ni invar alloys. Journal of Magnetism and Magnetic Materials,1980,19(1-3):219-221.
    [32]Shimizu M. Magnetovolume effects in itinerant electron ferromagnets. Journal of Magnetism and Magnetic Materials,1980,20(1):47-55.
    [33]Yamada H, Tohyama T, Shimizu M. Magnetic properties of Zr(Fe-Co)2. Journal of Magnetism and Magnetic Materials,1987,66(3):413-416.
    [34]于恩华,刘庆国.因瓦问题研究近况.仪表材料,1982,13(1):35-39.
    [35]Window B. Invar Anomalies. Journal of Applied Physics,1973,44(6):2853-2865.
    [36]Schilfgaarde v M, Abrikosov A, Johansson B. Origin of the Invar effect in iron-nickel alloys. Nature,1999,400:46-49.
    [37]Loree T. Improve our understanding of the world. NICKEL 2006,21(3):7-10.
    [38]刘江.低膨胀合金的应用和发展.金属功能材料,2007,14(5):33-37.
    [39]Zurcher N, Atchley G, Hobson W et al. Design of instruments for the measurement of large-size anamorphic optical components,1993, San Diego, CA, USA:Publ by Society of Photo-Optical Instrumentation Engineers.
    [40]Patterson S R. thermal management of a large diamond turning machine,1985, Interlaken, Switz.
    [41]McCue H K. Motion Control System for the Large Optics DiamondTurning Machine (LODTM),1983, San Diego, CA, USA:SPIE.
    [42]Saito T T, Wasley R J, Stowers I F et al. Pricision and manufacturing at Lawrence Livermore National Laboratory. NASA's Fouth National Technology Transfer Conference and Exposition,1993, Anahein, California.
    [43]Patterson S R. Development of precision Turning Capabilities at Lawrence Livermore National Laboratory. Third Biennial International Machine Tool Technology Conference, 1986.
    [44]DeBra D B. Vibration Isolation of Precision Machine Tools and Instruments. CIRP Annals-Manufacturing Technology,1992,41(2):711-718.
    [45]Falter P J, Dow T A. Design and performance of a small-scale diamond turning machine. Precision Engineering,1987,9(4):185-190.
    [46]Ikawa N, Donaldson R R, Komanduri R et al. Ultraprecision Metal Cutting - The Past, the Present and the Future. CIRP Annals-Manufacturing Technology,1991,40(2):587-594.
    [47]杨福兴,袁哲俊.大型光学零件金刚石车床.机械工艺师,2001(3):38-40.
    [48]Leadbeater P B, Clarke M, Wills-Moren W J et al. A unique machine for grinding large, off-axis optical components:the OAGM 2500. Precision Engineering,1989,11(4):191-196.
    [49]谢德东.光刻机结构动力学建模与仿真(硕士学位论文).武汉:华中科技大学,2007.
    [50]Lin Z, Zhang S W, Wu X R et al. Physical denotation of thermal expansion coefficient of low thermal expansion superalloys. Journal of Aeronautical Materials,,1999,19(1):27-30.
    [51]Edeson R, Aglietti G S, Tatnall A R L. Conventional stable structures for space optics:The state of the art. Acta Astronautica,66(1-2):13-32.
    [52]Sigmund O, Torquato S. Design of materials with extreme thermal expansion using a three-phase topology optimization method. Journal of the Mechanics and Physics of Solids, 1997,45(6):1037-1067.
    [53]Barlow D, Howe C, Clayton G et al. Preliminary study on cost optimisation of aircraft composite structures applicable to liquid moulding technologies. Composite Structures, 2002,57(1-4):53-57.
    [54]Ilcewicz L B, Anthony K, Carl Z. Composite Technology Development for Commercial Airframe Structures, in Comprehensive Composite Materials.2000, Pergamon:Oxford. p. 121-163.
    [55]Rawal S P, Goodman J W, Anthony K et al. Composites for Spacecraft, in Comprehensive Composite Materials.2000, Pergamon:Oxford. p.279-315.
    [56]Soutis C. Fibre reinforced composites in aircraft construction. Progress in Aerospace Sciences,2005,41(2):143-151.
    [57]任敬心,康仁科,史兴宽.难加工材料的磨削.北京:国防工业出版社,1999.
    [58]Outeiro J C, Pina J C, M'Saoubi R et al. Analysis of residual stresses induced by dry turning of difficult-to-machine materials. CIRP Annals-Manufacturing Technology,2008,57(1): 77-80.
    [59]Kwong J, Axinte D A, Withers P J. The sensitivity of Ni-based superalloy to hole making operations:Influence of process parameters on subsurface damage and residual stress. Journal of Materials Processing Technology,2009,209(8):3968-3977.
    [60]Matsumoto.Y, Hashimoto.Y. Surface integrity generated by precision hard turning. CIRP Annals-Manufacturing Technology,1999,48(1):59-62.
    [61]张雪萍,赵国伟,蒋辉等.精密干切削淬硬零件表面完整性.上海交通大学学报,2006,40(6):922-926.
    [62]Thiele.J.D, Melkote.S.N, Peascoe.R.A et al. Effect of cutting edge geometry and workpiece hardness on surface residual stresses in finish hard turning of AISI52100 steel. J.Manuf.Sci.Eng.,2000,122:642-649.
    [63]Abrao.A.M, Aspinwall.D.K. The surface integrity of turned and ground hardened bearing steel. Wear,1996,196:279-284.
    [64]Matsumoto.Y, Hashimoto.F, Lahoti.G. Surface integrity generated by precision hard turning. Ann.CIRP,1999,48:50-53.
    [65]Thiele.J.D, Melkote.S.N. The effect of tool edge geometry on workpiece sub-surface deformation and through-thickness residual stresses for hard turning of AISI52100 steel. Trans.NAMRI/SME,1999,27:135-140.
    [66]Agha.S.R, Liu.C.R. Experimental study on the performance of superfinish hard turned surfaces in rolling contact Wear,2000,244:52-59.
    [67]Dahlman.P, Gunnberg.F, Jacobson.M. The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J. Mater. Proc. Tech,2004,147:181-184.
    [68]Liu.M, Takagi.J, Tsukuda.A. Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel. J. Mater. Proc. Tech,2004,150:234-241.
    [69]Hua.J, Cheng.X, Bedekar.V et al. Effect of feed rate, workpiece hardness and cutting edge on subsurface residual stress in the hard turning of bearing steel using chamfer+hone cutting edge geometry. Mater. Sci. Eng. A,2005,394:238-248.
    [70]Hua.J, Shivpuri.R, Umbrello.D. Investigation of cutting conditions and cutting edge preparations for enhanced compressive subsurface residual stress in the hard turning of bearing steel. J. Mater. Proc. Tech,2006,171(2):180-187.
    [71]Liu C R, Mittal S. Optimal pre-stressing the surface of a component by superfinish hard turning for maximum fatigue life in rolling contact Wear,1998,219(1):128-140.
    [72]Liu.C.R, Mittal.S. Single-step superfinishing using hard turning resulting in superior surface integrity. Journal of Manufacturing Systems,1995,14(2):124-133.
    [73]Sridhar.B.R, Devananda.G, Ramaehandra.K. Ramaraja.B. Effect of machining Parameters and heat treatment on the residual stress distribution in Titanium alloys IMI834. Journals of materials processing technology,2003,139:628-634.
    [74]Coelho R T, Silva L R, Braghini A et al. Some effects of cutting edge preparation and geometric modifications when turning INCONEL 718(TM) at high cutting speeds. Journal of Materials Processing Technology,2004,148(1):147-153.
    [75]辛民,解丽静,王西彬等.高速铣削高强高硬钢加工表面残余应力研究.北京理工大学学报,2010,30(1):19-23.
    [76]陈建岭,李剑峰,孙杰等.钛合金铣削加工表面残余应力研究.机械强度,2010,32(1):53-57.
    [77]龙震海,赵文祥,王西彬.高速端面铣削加工引入残余压应力场的试验研究.航空材料学报,2008,28(2):24-29.
    [78]许鸿昊,左敦稳,朱笑笑等.拉伸高速铣削对TC4钛合金疲劳性能的影响.南京航空航天大学学报,2008,40(2):260-264.
    [79]王威廉,荆长生.难加工材料缓进给磨削加工表面完整性的试验研究.航空学报,1989,10(6):315-323.
    [80]Kang.R.K, Ren.J.X, Wu.X.L. A study of grinding burn and residual stress of ultra-high strength steel 300M. Procesdings of the 6th international manuacturing conferece,1993,1: 9-12.
    [81]张春江,罗先义.难加工材料的低应力磨削.航空工艺技术,1989(5):1-4.
    [82]Chen L, El-Wardany T I, Harris W C. Modelling the Effects of Flank Wear Land and Chip Formation on Residual Stresses. CIRP Annals-Manufacturing Technology,2004,53(1): 95-98.
    [83]Guo Y B, Barkey M E. FE-simulation of the effects of machining-induced residual stress profile on rolling contact of hard machined components. International Journal of Mechanical Sciences,2004,46(3):371-388.
    [84]Umbrello D, Ambrogio G, Filice L et al. A hybrid finite element method-artificial neural network approach for predicting residual stresses and the optimal cutting conditions during hard turning of AISI52100 bearing steel. Materials & Design,2008,29(4):873-883.
    [85]Umbrello D, Ambrogio G, Filice L et al. An ANN approach for predicting subsurface residual stresses and the desired cutting conditions during hard turning. Journal of Materials Processing Technology,2007,189(1-3):143-152.
    [86]佟晓静.4J36低膨胀合金及其工艺性.机械,2002,29(S):205-207.
    [87]牟森.低膨胀合金构件变形及磨削性能的试验研究(硕士学位论文).大连:大连理工大学,2005.
    [88]李文,周燕飞.超因瓦合金薄壁筒件的加工变形控制研究机械与电子,2008(05):14-15.
    [89]王伟丽.纳米三坐标测盘机机械结构及接触式测头技术研究(博士学位论文).合肥:合肥工业大学,2008.
    [90]吴敏镜.超精密加工技术综述.系统工程与电子技术,1985(8):53-60.
    [91]Hufenbach W, Gude M, Kroll. L. Design of multistable composites for application in adaptive structures. Composites Science and Technology 2002:2201-2207.
    [92]Juijerm P, Altenberger I. Effect of temperature on cyclic deformation behavior and residual stress relaxation of deep rolled under-aged aluminum alloyAAA6110. Materials Science and Engineering:A,2007,452-453(15):475-482.
    [93]Juijerm P, Altenberger I. Effective boundary of deep-rolling treatment and its correlation with residual stress stability of Al-Mg-Mn and Al-Mg-Si-Cu alloys. Scripta Materialia,2007, 56(9):745-748.
    [94]Deville S, Chevalier J, Gremillard L. Influence of surface finish and residual stresses on the ageing sensitivity of biomedical grade zirconia. Biomaterials,2006,27(10):2186-2192.
    [95]丁辉.基于多尺度仿真的超精密切削表面残余应力研究(硕士学位论文).哈尔滨:哈尔滨工业大学,2007.
    [96]张旦闻.基于裂纹柔度的金属板带残余应力分析研究(博士学位论文).西安:西安理工大学,2007.
    [97]胡创国.薄壁件精密切削变形控制与误差补偿技术研究(博士学位论文).西安,2008.
    [98]白万金.航空薄壁件精密铣削加工变形的预测理论及方法研究(博士学位论文).杭州,2009.
    [99]金小常,李周.厚截面轴承钢件中的残余应力及其对尺寸稳定性的影响.光电工程,1986,63(3):27-34.
    [100]文崇銈.超因瓦合金谐振腔体的制造技术宇航学报,1982(01):84-89.
    [101]杨晓华,陈伟庆.生产Fe-Ni膨胀合金的新工艺研究.铸造技术,2008,29(04):474-477.
    [102]袁均平.变形及热处理对因瓦合金组织与性能的影响(硕士学位论文).长沙:中南大学,2005.
    [103]李莉娜.YG20与因瓦合金真空扩散焊接技术的研究(硕士学位论文).大连:大连交通大学,2009.
    [104]唐利,高逸晖.控制殷钢波导变形的工艺方法.电子工艺技术,2008,30(04):233-235.
    [105]南俊马,李光新,徐可为等.显示器荫罩用因瓦合金的高温变形行为与力学特性材料工程,2001(01):19-21.
    [106]郭合忠.光刻机主基板的模态分析和优化设计:华中科技大学(硕士学位论文),2007.
    [107]章丛福.国产首台直写式光刻机在合肥问世.半导体信息,2008(10):1-1.
    [108]刘爽.中科院光电所研制出新型光刻机.中国企业报,2008年9月16日:第7版.
    [109]谢传钵.分步重复投影光刻机精密快速定位工件台研究.光电工程,1996,23(4):65-72.
    [110]佟军民,宁玉伟,严伟等.接近式光刻机间隙分离机构设计.机械设计与制造,2008(7):43-44.
    [111]邓习树,吴运新,王永华.光刻机掩模台宏动定位系统的控制器设计.微细加工技术,2006(6):22-27.
    [112]陈文枢.光刻机掩模台系统的动力学分析:华中科技大学(硕士学位论文),2007.
    [113]葛嫏,林永水,石宗宝等.大面积液晶显示面板光刻机新型工作台设计.福州大学学报(自然科学版),1995(S1):66-69.
    [114]陈学东,郭合忠,严天宏等.光刻机主基板的动态特性分析及优化.中国机械工程,2007(21):2524-2527.
    [115]周泽华.金属切削原理.上海:上海科学技术出版社,1984.
    [116]郑克瑞.车削不锈钢时切削条件对积屑瘤和切削温度的影响.陕西机械学院学报,1983(2):56-76.
    [117]朱晓春.先进制造技术.北京:机械工业出版社,2004.
    [118]株洲硬质合金厂.硬质合金的使用.北京:冶金工业出版社,1973.
    [119]肖诗纲.现代刀具材料.重庆:重庆大学出版社,1992.
    [120]范继美,万光珉.位错理论及其在金属切削中的应用.上海:上海交通大学出版社,1991.
    [121]Shaw M C. Principles of Abrasive Processing. Oxford:Clarendon Press,1996.
    [122]臼井英治.切削磨削加工学(高希正刘德忠译).北京:机械工业出版社,1982.
    [123]袁哲俊,王先奎.精密和超精密加工技术:机械工业出版社,1999.
    [124]康仁科,原京庭,任敬心.陶瓷结合剂CBN砂轮磨削难加工材料时磨削液的作用.西北工业大学学报,2000,18(4):527-531.
    [125]王威廉,荆长生.难加工材料缓进给磨削加工表面完整性的试验研究.航空学报,1988,10(6):316-324.
    [126]武志斌,肖冰徐,鸿均.难加工材料磨削弧区强化换热的研究.航空工程与维修,2001(1):26-27.
    [127]陈明,浦学锋.CBN砂轮在难加工材料成形磨削中的应用研究.航空工艺技术,1995(2):29-31.
    [128]Uhlmann E, Holl S-E.难加工材料的超声波磨削.机电信息,1999(2):24-27.
    [129]王殿龙,陈劲枰,庞继有等.新型镍基高温合金磨削性能实验研究工具技术,2004,38(2):10-13.
    [130]李伯民,赵波.现代磨削技术:机械工业出版社,2003.
    [131]王霖,葛培琪,秦勇等.基于有限元法的湿式磨削温度场分析.机械工程学报,2002,38(9):155-158.
    [132]Tamotsu T. Grinding Performance in Carbon Steel. Research report of Ube Technical College,1972(15):5-11.
    [133]晨光.不锈钢切削:国防工业出版社,1974.
    [134]任敬心,华定安.磨削原理:西北工业大学出版社,1988.
    [135]米谷茂.残余应力的产生和对策(朱荆璞,邵会孟译).北京:机械工业出版社,1983.
    [136]Malkin S. Grinding technology, theory and applications of machining with abrasives. Soc Manuf Eng. Dearborn,1989.
    [137]周志雄,毛聪,周德旺等.平面磨削温度及其对表面质量影响的试验研究.中国机械工程,2008,119(8):980-984.
    [138]Yamamoto Y, Horike M, Hoshina N. A study of the Temperature Variation of Workpieces during Cylindrical Plunge Grinding. Annals of the CIRP,1977,25(1):147-149.
    [139]Henkin M L, Lockshin Y H.精密机械制造与仪器制造中金属与合金的尺寸稳定性(蔡安源,杜书芳译).北京:科学出版社,1981.
    [140]Anghel V, Chetwynd D G. Creating a low-cost, ultra-clean environment Precision Engineering,2002,26(1):122-127.
    [141]De Chiffre L, Kunzmann H, Peggs G N et al. Surfaces in Precision Engineering, Microengineering and Nanotechnology. CIRP Annals-Manufacturing Technology,2003, 52(2):561-577.
    [142]Geng. H.半导体制造手册(赵树武译).北京:电子工业出版社,2006.
    [143]Dini J W. Plating on Invar, VascoMax C-200, and 440C stainless steel. Surface and Coatings Technology,1996,78(1-3):14-18.
    [144]张定铨.材料中残余应力的X射线衍射分析和作用.西安:西安交通大学出版社,1999.
    [145]方刚,张定铨,胡奈赛.残余应力在低应力循环和温度场中的松弛规律.兵器材料科学与工程,1989(11):27-32.
    [146]崔忠圻.金属学与热处理.北京:机械工业出版社,1995.
    [147]Qiao Y P, Kang R K, Jin Z J G, D M. The Characteristics of surface Residual Stresses by Plane Grinding Invar and the Effects of Them on Structural Stability. Advanced Materials Reaserch,2008,53-54:293-298.
    [148]Freud L B, Suresh S.薄膜材料:应力、缺陷、结构与表面改性(卢磊译).北京:科学出版社,2003.
    [149]Gere J M. Mechanics of Materials:CL-Engineering,2000.
    [150]Oding I A, Ivanova V S, Burduksky V V et al. Theory of Creep strength and duration. M. Metallurgist,1959:488.
    [151]方博武.金属冷热加工的残余应力:高等教育出版社,1991.
    [152]张幼桢.航空制造工程手册(金属材料切削加工分册).北京:航空工业出版社,1994.
    [153]王广生.航空制造工程手册(热处理加工分册).北京:航空工业出版社,1993.
    [154]杨质苍.精密机械制造工艺学.银川:宁夏人民出版社,1988.
    [155]樊东黎,徐跃明,佟晓辉.热处理技术数据手册.北京:机械工业出版社,2000.
    [156]《金属切削理论与实践》编委会.金属切削理论与实践(上册).北京:北京出版社1979.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700