高速切削钛合金薄壁件表面完整性及型面变形预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空航天制造业作为制造业最重要的组成部分,代表了一个国家最高制造水平和技术实力。现代飞机、航天器等航空航天产品大量采用轻量化的高强度、薄壁零件来降低自身重量,提高发动机的推重比。可以预见,随着航空航天工业的进一步发展,薄壁零件的应用越来越广泛,质量需求也会进一步提高。钛合金具有耐高温、耐腐蚀性好、比强度高等优点,已成为当代飞机和发动机的主要结构材料之一,并且其用量比重呈逐渐增长的趋势。在美国某些军用飞机中,钛合金材料的用量已达40%以上,其中,又以TC4钛合金(Ti-6A1-4V)为代表的α+β相钛合金的应用最为普遍。
     为了满足零件的使用性能及可靠性,航空航天钛合金薄壁件对已加工表面质量、加工精度及加工效率要求很高。受钛合金材料小变形系数、低导热率、高化学活性及高表面缺陷敏感性等物理性能,以及薄壁结构导致的刚度低、切削振动大、加工工艺性差等因素影响,目前国内此类零件的整体加工水平不高,其中又以零件表面完整性与面形精度问题最为突出,已成为制约航空航天产品研制开发进程的重要瓶颈。高速切削加工技术正以其高效率、高精度、高表面质量等突出优点,已逐步成为美国波音、休斯公司,欧洲空客公司等大型飞机制造企业中钛合金薄壁件的主流加工技术,表现出蓬勃的生机。为此,本文进行如下研究:
     通过分析钛合金膜盘切削加工表面形成过程,建立了考虑刀具振动的高速切削钛合金膜盘表面形貌模型,进行了表面形貌仿真研究;通过表面粗糙度、表面形貌测试实验,对表面形貌的仿真结果进行验证;在表面形貌建模与仿真基础上,基于遗传算法,以已加工表面粗糙度和切削效率为目标,进行高速切削钛合金膜盘切削参数优化,建立钛合金膜盘切削参数优化及形貌仿真系统。
     针对钛合金膜盘不同夹紧方式,依据材料力学、弹塑性力学、计算力学,进行了夹紧力、切削力引起的钛合金膜盘型面扭转变形、弯曲变形的力学解析计算,并与有限元仿真结果进行对比分析,实现了不同夹紧方式、夹紧力和切削力作用下钛合金膜盘型面变形精度预测,同时为钛合金膜盘的夹紧方式优化和工装型面设计提供了力学理论基础。
     将实验测试与数值模拟相结合,研究了已加工表面残余应力变化规律,重点分析了加工过程中残余应力释放引起的变形;通过钛合金材料表面显微硬度的实验研究,获得了已加工表面硬化的评价指标变化范围;进行了表面变质层深度、金相组织、晶格、硬度及微观结构变化的SEM测试与理论分析。通过对上述表面物理性能参数变化规律的理论与实验研究,获得了切削参数对高速切削钛合金表面物理性能的影响规律,为进一步提高钛合金材料、钛合金薄壁件已加工表面质量提供了理论依据与实验数据支持。
As the most important component of manufacturing industry, aerospace manufacturing industry represents national highest manufacturing standard and technical strength. Modern aircraft and spacecraft as well as other aerospace products use a large number of lightweight and high strength thin-walled components to reduce its weight, and increase the thrust weight ratio of engine. It can be predicted that along with the further development of aerospace industry, thin-walled components will be used more and more widely, and the demand of quality will also be further improved. Titanium alloy has many advantages, such as high temperature resistance, good corrosion resistance, and high strength, which has become one of the main structure materials of modern aircraft and engine, and its dosage proportion shows increasing trend. In some military aircraft of U.S, the dosage of titanium alloy material has reached over 40%, among them, TC4 titanium alloy (Ti-6A1-4V) as the representative ofα+βphase titanium alloy is used frequently.
     In order to meet the performance and reliability of components, aerospace titanium alloy thin-walled component has high demand on machined surface quality and machining precision as well as machining efficiency. Because of the titanium alloy material physical properties such as small deformation coefficient, low thermal conductivity, high chemical activity and high surface imperfection sensitivity and others, as well as the low stiffness and large cutting vibration, poor processing technology and other factors caused by thin-walled structure, the overall processing level of this kind component is not high in China currently; especially the component surface integrity and face shape precision are the most prominent problem which has become the important bottleneck to restrict aerospace product developing. With its high efficiency, high precision, high surface quality and other advantages, high speed machining technology has become the mainstream processing technology of titanium alloy thin-walled components in America Boeing, Hughes Company, the European Airbus Corporation and other large aircraft manufacturing enterprises, which has showed vigorous vitality. Accordingly, the following is researched in this paper:
     Considering tool vibration, surface topography model of high speed cutting titanium alloy diaphragm disk is established by analyzing the machined surface forming process of titanium alloy diaphragm disk after cutting, and the simulation of surface topography is also researched; by testing experiment of surface roughness and surface topography, the simulation results of the surface topography are validated. On the basis of surface topography modeling and simulating, using genetic algorithm, and taking machined surface roughness and cutting efficiency as the goal, high speed cutting titanium alloy diaphragm disk cutting parameters optimization is made, and the titanium alloy diaphragm disk cutting parameters optimization membrane and morphology simulation system are also established.
     On account of the titanium alloy diaphragm disk with different clamping means, titanium alloy diaphragm disk surface torsion deformation and bending deformation induced by clamping force and cutting force are calculated according to material mechanics, elastic-plastic mechanics and computational mechanics; meanwhile comparative analysis of the results with finite element simulation is made, which can achieve deformation precision prediction of titanium alloy diaphragm disk surface with different clamping method and clamping force as well as cutting force. At the same time, it offers mechanical theoretical basis for titanium alloy diaphragm disk clamping method optimization and tool profile design.
     Combined the experiment results with numerical simulation, the change law of surface residual stress is studied, and the deformation caused by the release of residual stress in the process is selective researched. Through researching on titanium alloy material surface micro-hardness experiments, the machined surface hardening evaluation index value changing range is obtained; Surface metamorphic layer depth and metallographic structure as well as lattice and hardness and microstructure changes are theoretical analyzed and tested with SEM; Based on the theoretical and experimental study of surface physical performance parameters change law mentioned above, the influence law of cutting parameters on physical properties of titanium alloy machined surface in high speed cutting is obtained, which has provided the theoretical basis and experimental data support for improving machined surface quality of titanium alloy material and titanium alloy thin-walled component.
引文
[1]蔡建明,李臻熙,马济民等.航空发动机用600℃高温钛合金的研究与发展[J].材料导报:2005,19(1):50-53.
    [2]张伯霖.高速切削技术及应用[M].北京:机械工业出版社,2002:41-48.
    [3]付艳艳,宋月清,惠松骁等.航空用钛合金的研究与应用进展[J].稀有金属:2006,30(6):850-855.
    [4] Donachie M J. Titanium-A Technical Guid ASM International[M]. New York:The Materials Information Society,2000.
    [5]艾兴.高速切削加工技术[M].北京:国防工业出版社,2003:25-37.
    [6]张桂木,杨玉海,赵树国等.钛合金薄壁件车削加工的研究[J].机械设计与制造:2004,21(1):140~141.
    [7]刘占强,艾兴. PCBN刀具加工TC4钛合金的切削加工性[J].山东大学学报(工学版),2009,39(1):77-83.
    [8]牟涛.高速铣削钛合金Ti6A14V的刀具磨损研究[D].山东:山东大学,2009年5月.
    [9]王晓琴.钛合金Ti6Al4V高效切削刀具摩擦磨损特性及刀具寿命研究[D].山东:山东大学,2009年10月.
    [10]秦龙.钛合金切削加工中颤振与刀具磨损的试验研究[D].大连:大连理工大学,2009年12月.
    [11]舒彪,何宁.无污染切削介质下钛合金铣削刀具磨损机理研究[J].机械科学与技术:2005,24(4):455-461.
    [12]李一民,韩满林.硬质合金刀具高速切削Ti6Al4V合金时扩散磨损的数值模拟[J].工具技术:2008,42(7):22-25.
    [13] N Corduan, T Himbert,G Poulachon,et al.Wear mechanisms of new tool material for Ti6Al4V high performance Machining[J]. Annals of CIRP, 2003, (52) : 73-76.
    [14] Cheharon C H,Ginting A,Arshad H. Performance of alloyed uncoated and CVD-coated carbidetools in dry milling of titanium alloys Ti-6242S[J].Journal of Materials Processing Technology.2007,185(1-3):77-82.
    [15]陆丰玮,李乐洲.车削TC4钛合金的刀具磨损与切屑形态分析[J].制造技术研究:2009,6(3):18-21.
    [16]满忠雷,何宁.不同介质下高速铣削钛合金时切屑的变形研究[J].航空精密制造技术:2005,41(1):54-56.
    [17]曹自洋,何宁.高速切削钛合金Ti6Al4V切屑的形成及其数值模拟[J].中国机械工程:19(20):2450-2453.
    [18]陈建岭,李建峰.钛合金高速切削切屑形成机理的有限元分析[J].设计与研究:2007年第1期:25-31.
    [19]张春江,苑伟政.钛合金切削形成过程的动态研究[J].航空学报:1987,8(3):164-169.
    [20]朱文明.高速切削Ti6Al4V切屑形成仿真研究[D].南京:南京航天航空大学,2007年3月.
    [21] Komanduri,R.Some Clarifications on the Mechanics of Chip Formation When Machining Titanium Alloys[J].Wear,1982(76):15-34.
    [22] Komanduri,R.Schroeder,T.A.BandhoPadhyay, D.K.Hazra. Titanium: a model material for analysis of the high-speed machining proeess[J].Advaneed processing methods for titanium,The Metallurgical Society of ASME,1982:241-256.
    [23] C.A.Van.Luttervelt,The split shearzone-mechanism of chip segmentation[J]. Annals of the CIRP,1977 Vol.25(1):33-37.
    [24]史兴宽,陈明.钛合金TC4高速铣削表面完整性的研究[J].科技成果:2001年第1期:30-35.
    [25]冯浩. TiAl4V钛合金高速铣削表面完整性研究及切削参数数据库开发[D].山东:山东大学,2008年4月.
    [26]陈建岭.钛合金高速铣削加工机理及铣削参数优化研究[D].山东:山东大学,2009年5月.
    [27]杜随更,吕超.钛合金TC4高速铣削表面形貌及表层组织研究[J].航空学报:2008,29(6):1710-1715.
    [28]杨振朝,张定华.高速铣削速度对TC4钛合金表面完整性的影响机理[J].南京航空航天大学学报:2009,41(5):645-648.
    [29]肖鹏.钛合金TC4超高速磨削表面完整性的研究[D].湖南:湖南大学,2009年5月.
    [30]耿国盛.钛合金高速铣削技术的基础研究[D].南京:南京航空航天大学,2006年5月.
    [31]李甜甜.PCBN高速切削钛合金实验研究[D].山东:山东大学,2008年4月.
    [32] C.H.Che-Harona,A.Jawaid.The effect of machining on surface integrity of titanium alloy Ti-6%Al-4%V[J].Journal of Materials Processing Technology, 2005,166:188-192.
    [33] A.L.Mantle,K.Aspinwall.Surface integrity of a high speed milled gamma titanium aluminide.Journal of Materials Processing Technology 1118(2001): 143-150.
    [34]刘献礼.硬态干式切削GGr15时的临界硬度[J].机械工程学报:2000,93(3):100-124.
    [35]董申,周明,袁哲俊.刀具刃口质量对超光滑切削表面完整性的影响[J].仪器仪表学报:1996,17(1):410-412.
    [36]刘牧.数控加工表面粗糙度预测的关键技术研究[D].西安:西北工业大学,2006年3月.
    [37]王素玉,艾兴.高速铣削表面粗糙度建模与预报[J].工艺与检测:2006年第8期:65-68.
    [38] S.C.Lin, M.F.Chang. A study on effects of vibrations on the surface finish using a simulation model for turning[J]. Int.J.Mach. Tools Manuf: 1998,34(38):763-782.
    [39] Y.Mizugaki, M.Hao, K.Kikkawa. Geometric generating mechanism of machined surface by ball-nosed end milling. Ann.CIRP:2001,50(1):69-72.
    [40] Furukawa Y,Moronuki N. Effect of material properties on ultra-precise cutting process. Ann CIRP:1988,37(41):113-120.
    [41]高彤.铣削加工表面形貌及端铣加工变形仿真研究[D].西安:西北工业大学,2004年3月.
    [42]陈建满.高速铣削表面形貌的仿真与实验研究[D].南京:南京航空航天大学,2002年3月.
    [43]朱双霞.磨削表面纹理表征及其摩擦特性研究[D].南昌:南昌大学,2007年12月.
    [44]冯付良.轴向车铣表面粗糙度的研究[D].上海:上海交通大学,2008年2月.
    [45] Y Mizugaki,K.Kikkaw,H.Terai,et al.Theoretical estimation of maehined suracfe profile based on cutting edge movement and tool orientation in ball-nosed end milling.Annals of the CIRP,2003,52(l):49-52.
    [46]何柏林,绍尔玉.表面粗糙度和硬度的匹配性对接触疲劳性能的影响[J].热加工工艺:1995年第3期:16-18.
    [47]李晓梅,丁宁.表面粗糙度模糊神经网络在线识别模型[J].机械工程学报:2007,43(3):212-217.
    [48]余晓芬,俞建卫.表面粗糙度三维表征参数的研究与测量[J].合肥工业大学学报(自然科学版):1996,19(1):89-93.
    [49]葛世荣.粗糙表面的分形特征与分形表达的研究[J].摩擦学学报:1997,17(1):73-80.
    [50]李成贵,董申.表面粗糙度评定参数的分形表征[J].宇航计测技术:1998,18(4):33-39.
    [51]张雷.高速铣削表面粗糙度的研究[J].组合机床与自动化加工技术.2002年第12期:21-24.
    [52]陈秀生,张承瑞.基于表面粗糙度预测的数控车削加工物理仿真模型的研究[J].2007,41(1):36-39.
    [53]王洪祥,孙涛.超精密车削表面粗糙度的控制与优化[J].制造技术与机床:2003,4(9) :55-57.
    [54]武美萍,翟建军.数控加工切削参数优化研究[J].中国机械工程:2004,15(3):235-237.
    [55]王宗荣,左敦稳.TC4钛合金高速铣削参数的模糊正交优化[J].南京理工大学学报:2005,29(6):709-712.
    [56]宋寒,彭芳瑜.基于STEP-NC切削特征的切削参数优化[J].机械工程师:2007年第5期,122-125.
    [57]李忠群.复杂切削条件高速铣削加工动力学建模、仿真与切削参数优化研究[D].北京:北京航空航天大学,2008年6月.
    [58]李小忠.高速切削有限元仿真及加工参数优化的研究[D].南京:南京理工大学,2007年6月.
    [59]汪振华,赵成刚.高速铣削AlMnlCu表面粗糙度变化规律及铣削参数优化研究[J].南京理工大学学报:2010,34(4):537-542.
    [60]张发平,王丽.基于CAE和神经网络的切削参数优化[J].机床与液压:2007,35(3):28-30.
    [61]高亮,高海兵.基于粒子群优化的切削参数优化算法研究[J].第五届全球智能控制与自动化大会:2004,2867-2871.
    [62]蒋亚军,娄臻亮.基于模糊粗糙集理论的模具数控切削参数优化[J].上海交通大学学报:2005,39(7):1115-1118.
    [63]张玉周,刘菊东.基于模糊分析方法的切削参数优化[J].湖南科技大学学报:2009,24(4):39-43.
    [64]潘永智,艾兴.基于切削力预测模型的刀具几何参数和切削参数优化[J].机械工程师:2008,19(4):428-431.
    [65]卢泽生,王明海.基于遗传算法的超精密切削表面粗糙度预测模型参数辨识及切削用量优化[J].机械工程学报:2005,41(11):158-162.
    [66]姜彬,郑敏利.数控铣削用量多目标优化[J].哈尔滨理工大学学报:2002,7(3):67-70.
    [67]王晓琴,艾兴.涂层刀具铣削Ti6Al4V刀具寿命及切削参数优化[J].2008,30(10):109-112.
    [68]刘畅,王焱.针对航空难加工材料的刀具与切削参数优化途径[J].航空制造技术:2010年第15期:40-43.
    [69] F.Cus,J.Balic.Optimization of Cutting Process by GA.Approach Robot Comput Integr Manuf.2003,19(1-2):113~121.
    [70] U.Zuperl,F.Cus.Optimization of Cutting Conditions During Cutting by Using Neural Networks.Robot Comput Integr Manuf.2003,19(1-2):189-199.
    [71]孙舒晨.铝合金残余应力测量及零件加工变形研究[D].北京航空航天大学.2010,7
    [72] E. K. Henriksen. Residual Stresses in Machined Surfaces. Trans. ASME. 1951, 73: 69~76.
    [73] K.Tsuchida,Y,Kawada,S.Kodama.A study of the residual stress distributions by turning.Bulletin of the Japan Society of Metals,1975,18(116):123-130.
    [74] J.C.Outeiro,A.M.Dias,J.L.Lebrun,etc.Machining residual stresses in AISI 316L steel and their correlation with the cutting parameters.Machining Science and Technology, 2002,6(2):25 1-270.
    [75] J.D.Thiele,S.N.Melkote,R.A.Peascoe,et al.Effect of cutting-edge geometry and workpiece hardness on surface residual stress in finish hard turning of AISI 52100 steel.ASME Journal of Manufacturing Science and Engineering, 2000,122:642-649.
    [76] E.Brinksmeier,J.T.Gammett.W.Koenig,etc.Residual stresses-measurement and causes in machining process.Annals of the CIRB 1982,31(2):491-510.
    [77] K.H.Fuh,C.EU.A residual-stress model for the milling of aluminum alloy(2014-T6).Journal of Materials Processing Technology,1995,51:87-105.
    [78] M.H.El-Axir. A method of modeling residual stress distribution in turning for different materials. International Journal of Machine Tools and Manufacture, 2002,42:1055-1063.
    [79] B.R.Sridhar,Q Devananda,K.Ramachandra,etc.Effect of machining parameters and heat treatment on the residual stress distribution in titanium alloy IMI-834.Journal of Materials Processing Technology,2003,139:628·634.
    [80] S.Torbaty,A . Moisan,J.L.Lebrun,etc.Evolution of residual stress during turning and cylindrical grinding of carbon steel. Annals of the CIRP,1982,31(1):441-445.
    [81] K Jacobus,S.G Kapoor and R.E.Devor.Experimentation on the residual stresses generated by endmilling.Journal of Manufacturing Science and Engineering,2001,123:748-752.
    [82]刘战强.高速切削技术的研究与应用.济南:山东大学博士后出站报告,2001.
    [83] Usui.E, Shirakashi.T. Mechanics of Meching-from‘Descriptive’to‘Predicitive’Theory[J]. On the Art of Cutting Metals - 75 Years Later, A Tribute to F. W. Taylor. Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers.
    [84] Matsumoto, Y.F.Hashimoto,G.Lahoti. Surface integrity generated by precision hard turning. CIRP Annals Manufacturing Technology, 1999.48(1):59-62.
    [85] Liu,M.,J.I.Takagi,A.Tsukuda. Effect of tool nose radius and tool wear on residual stress distribution in hard turning of bearing steel. Journal of Materials ProcessingTechnology,2004.150(3):234-241.
    [86] Liu C.R.,Barash M.M., The mechanical state of the sublayer of a surface generated by chip-removal process, Part2:Cutting with a flank wear, Transactions of the ASME, Journal of Engineering for Industry, 1976b,11:1202-1208.
    [87] Liu,C.R.and M.M.Barash,Variables governing patterns of mechanical residual stress in a machined surface.Journal of Engineering for Industry,Transactions ASME,1982.104(3):257-264.
    [88] Jacobson,M. Surface integrity of hard-turned M50 steel.Proceedings of the of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2002.216(1):47-54.
    [89]刘海涛,卢泽生,孙雅洲.切削加工表面残余应力研究的现状与进展[J].航空机密制造技术:2008,42(1):17-19,21.
    [90] J.S.Strenkowski, J.T.Carroll. A finite element model of orthogonal metal cutting. Transactions of the ASME,Journal of Engineering of Industry.1985,107:349-354.
    [91] E.Usui,T.Shirakashi.Mechanics of Machining-from descriptive to predietive theory,on the art of cutting metals-75 years later a tribute.Amercian Society of Mechanical Engineering of Society,Pressure Vessel Directive(PED):1982.
    [92] K.lwata,K.Osakada,Y.Terasaka.Process modeling of orthogonal cutting by the rigid-Plastic finite element mehtod.Eng.Mate.r.Teehnol.1984,106:132~138.
    [93] H.Sasahara..T.Obikawa b, T.Shirakashi.Predietion model of surface residual stress within a machined surface by combining two orthogonal plane models. Intenrational Journal of Maehine Tools&Manuafacture44(2004)815-822.
    [94] T.Segawa,H.Sasahara, M.TSustumi.Development of a new tool to generate compressive residual stress within a machined surface.International Journal of Machine Tools&Manufacture 44(2004):1215~1221.
    [95] Z.C.Lin,Y.Y.Lin.Fundamental modeling for oblique cutting by thermo-plastic–Plastie FEM.Int.J.Mech.Sci.1999(41):941~965.
    [96] Liang,S.Y.,Su,J.-C.,Residual stress modeling in orthogonal machining,CIRP Annals-Manufacturing Technology,2007,56(1):65-68.
    [97] UMBRELLO D,AMBROGIOA G,FILICE L,et al. A hybrid finite element method–artificial neural networkapproach for predicting residual stresses and the optimal cutting conditions during hard turning of AISI 52100 bearing steel[J]. Materials and Design,2007,3:1-17.
    [98]艾兴,肖虹.陶瓷刀具切削加工[M].北京:机械工业出版社.1998.
    [99]胡华南,周泽华,陈澄洲.切削加工表面残余应力的理论预测[J].中国机械工程. 1995,6(1):48~51.
    [100]胡华南,周泽华,陈澄洲.预应力加工表面残余应力的理论分析.华南理工大学学报[J].1994,22(2).
    [101]孔庆华,于云鹤.车削加工残余应力的实验研究[J].同济大学学报.,27(5)549~552.
    [102]王立涛.关于航空框类结构件铣削加工残余应力和变形机理的研究[D].浙江大学.2003,1.
    [103]陈建岭,李剑峰,孙杰,王中秋.钛合金铣削加工表面残余应力研究[J].机械强度:2010, 32(1): 053-057.
    [104]王明海,刘中海,王虎军,于贺苓,吕以巍.精密切削钛合金TC4表面残余应力的模拟研究[J].制造业自动化:2010,32(11):68~71.
    [105]吴红兵,刘刚,柯映林,董辉跃.钛合金的已加工表面残余应力的数值模拟[J].浙江大学学报:2007,41(8):1389~1393.
    [106]王立涛,柯映林,黄志刚.铝合金材料数控加工残余应力的分析[J].机械工程学报,2004,40(4):123-126.
    [107]孙杰,柯映林.残余应力对航空整体结构件加工变形的影响分析[J],机械工程学报,2005,41(2):117-122.
    [108]程敢峰.刀具磨损与切削力及工件表面残余应力的研究[J]冷热工艺:2004,6:23-25.
    [109]张亦良,黄惠茹,李想.车削加工残余应力分布规律的实验研究[J].北京工业大学学报:200632(7):582~586.
    [110]辛民,解丽静,王西彬等.高速铣削高强高硬钢加工表面残余应力研究[J].北京理工大学学报:201030(1):19-23.
    [111] N.Zlatin, M.E.Merchant. Hardness distributionb in chips and machined surfaces.The Iron Age.1947,5
    [112] E.K.Henriksen.Residual stresses in maehined surfaces.Transactions of the ASME.1951,73(1)
    [113] Palmer WB,Oxley PLB.Mechanics of orthogonal machining[J]. Proc. Inst.Mech. Engrs,1959,173:623
    [114] PLB.Oxley.Shear angle solutions in orthogonal machining[J].International of Journal of Machine Tool Design Researeh.1965,2:219.
    [115] Wardant T.I, Kishawy Y.H.A,Elbestaw I.M.A. Sur-face integrity of diematerial in high speed hard machi-ning, part 2: microhardness and residual stress[J]. Journal of Manufacturing Science Engineering, 2000, 122(11):632-641.
    [116] Chou Y K, Evans C J. White layers and thermal model-ing of hard turned surfaces[J]. International Journal of Machine Tool & Manufacture, 1999, 39:1863-1881.
    [117] Chou Y K, Song Hui. Thermal modeling for layer pre-dictions in finish hard turning[J]. International Journal of Machine Tool & Manufacture, 2005,45:481-495.
    [118] T1.EI-Wardany,H.A.Kishawy,M.A.Elbestawi.Surface Integrity of Die Materialin High Speed Hard Machining Partl:Micrographical Analysis.Transactions of the ASME.Journal of Manuafcturing Science and Engineering, 2000,122(11):620-631.PartZ:Microhardness Variations and Residual Stresses. Transactions of the ASME.Joumal of Manuafacturing Seience and Engineering.2000e122(11):632-641.
    [119] Jing Shi, C. Richard Liu. Decomposition of Thermal and Mechanical Effects on Microstructure and Hardness of Hard Turned Surfaces. Journal of Manufacturing Science and Engineering.2004,126:264-273.
    [120]文东辉,郑力,刘献礼,严复钢.精密硬态切削过程金属软化效应与表面塑性侧流的研究.金刚石与磨料磨具工程,2003,4:9~13.
    [121] Barry J, Byrne G.TEM study on the surface white layerin two turned hardewned steels[J]. Materials Science and Engineering A, 2002, 325(1-2): 356-364.
    [122] Han S,Melkote S N,Haluska M S,et al,White layer foration due to phase transformation in orthogonal machining of AISI 1045 annealed steel[J]. Materials Science and Engineering,2008,488(1-2):195-204.
    [123] Chou Y.K, Evans C J. White layers and thermal modeling og hard turned surfaces[J]. International Journal of MaCHINE Tools & Manufacture, 1999,39(12):1863-1881.
    [124]杨继昌,刘伟成.剪切面边界条件对工件表面层加工硬化深度的影响.江苏理工大学学报,1995,03:49~54.
    [125]韩荣第,王大镇,韩滨.铝复合材料超精密加工表面微观分析.中国机械工程,2003,9:747~749.
    [126]赵文祥,龙震海,王西彬,王好臣.高速切削超高强度合金钢时次表面层组织特性研究.航空材料学报,2005,25(4):22~2.
    [127]景璐璐,沈中,陈明.铣削淬硬模具钢SKD11铣削表面质量试验研究(英文).南京航空航天大学学报(英文版),2007,1:157~1.
    [128]蒋克强.高速铣削参数对加工表面质量影响的初步研究[D],华中科技大学.2009,5.
    [129]翟元盛.精密超薄切削加工机理及其表面质量的研究[D].哈尔滨工业大学.2008,9.
    [130]辛民,解丽静,王西彬等.高速铣削高强高硬钢加工表面硬化实验[J] ,北京理工大学学报,2010,30(2):154-157.
    [131]付秀丽.高速切削航空铝合金变形理论及加工表面形成特征研究[D].山东大学,2007,4.
    [132]张雪萍,赵国伟,蒋辉.精密干切削淬硬零件表面完整性试验分析[J],上海交通大学学报,2006,40(6):922-926.
    [133]杜随更,汪志斌,吕超等.高温合金高速铣削表面形貌及组织研究[J],航空学报,2011,32(6):1156-1162.
    [134] O.Gonzalo, G.Peigne. High speed machining simulation of thin-walled components[C]. Fifth International conference on High Speed Machine. 2006: 525-536.
    [135] J. Tlusty, S.Smith, W.R.Winfough. Techniques for the use of long slender end mills in high speed milling[J]. Annals ofthe CIRP, 1996, 45(1):393-396.
    [136] W. A. Kline, R. E. Devor. The prediction of surface accuracy in end milling[J]. ASME Journal of Engineering for Industry. 1982, 104(3):272-278.
    [137] Law K M Y, Geddam A. Error compensation in the end milling of pockets: a methodology[J]. Mater. Process. Technol.,2003, 6716: 1-7.
    [138] S. Ratchev, S. Liu, W. Huang, et al. An advanced FEA based force induced compensation strategy in milling[J]. International Journal of Machine Tools and Manufacture. 2006,46(5):542-551.
    [139] S.Ratchev,K.Phuah,G..Lammel,et al. An experimental investigation of fixture workpiece contact behaviour for the dynamic simulation of complex fixture-workpiece systems[J]. Journal of Materials Processing Technology. 2005, 164-165(15):1597-1606.
    [140] Kim G M, Kim B H, Chu C N. Estimation of cutter deflection and form error in ball-end milling processes[J]. Int. J. Mach. Tools Manuf., 2003, 43:917-924.
    [141]白万金.航空薄壁件精密铣削加工变形的预测理论及方法研究[D].杭州:浙江大学,2008年12月.
    [142]胡创国.薄壁件精密切削变形控制与误差补偿技术研究[D].西安:西北工业大学,2007年6月.
    [143]汤爱君.薄壁件高速铣削三维稳定性及加工变形研究[D].济南:山东大学,2009年4月.
    [144]康永刚,王仲奇,吴建军,姜澄宇.基于实际切深的薄壁件加工变形误差的预测.西北工业大学学报:2007,25(2):251-256.
    [145]孔啸,李铭,卞大超.铝合金薄壁零件切削加工变形控制技术.机械设计与制造.2010年2月:246-248
    [146]陈华.薄壁件加工过程优化仿真技术研究[D].南京:南京航空航天大学,2008年5月.
    [147]郑晓盼.薄壁变壁厚零件切削加工建模及其实验研究[D].哈尔滨:哈尔滨工业大学,2009年6月.
    [148]胡韦华.薄壁件加工变形的模拟仿真与变形补偿技术研究[D].杭州:浙江工业大学,2006年5月.
    [149] Hong.M.S. Generation. Characterization and Synthesis of Engineering Surfaces: [Ph.D.Disertation]. Evanston,Illinois:Northwestern University,1994..
    [150]李成贵,董申.三维表面微观形貌的表征趋势[J].中国机械工程,2000:488-492.
    [151]曾泉人,刘更,刘岚.机械加工零件表面完整性表征模型研究[J].中国机械工程. 2010,21(24): 2997-2999.
    [152] M Sao ubi R, Out eiro J C, Chandrasekar an H, et al.A Review of Sur face Integr ity in M achining and ItsImpact on Functio nal Perfo rmance and Life of Machined Products[J].Int.J. Sustainable Manufacturing, 2008,1(1/2): 203-236.
    [153] X. B. Liu, M. Soshi, A. Sahasrabudhe, K. Yamazaki, M. Mori. A Geometrical Simulation System of Ball End Finish Milling Process and Its application for the Prediction of Surface Micro Features[J]. ASME J. Manuf. Sci. Eng., 2006, 128:74-85.
    [154]陈东祥,田延岭.超精密磨削加工表面形貌建模与仿真方法[J].机械工程学报, 2010, 46(l3): 186-191.
    [155] Wan min, Zhang weihong, Tan gang, Qin guohua, efficient algorithms for calibration of cutting force coefficients in flat end milling[C]. Material Science Forum, 2006, 532-533: 713-716.
    [156] Y Mizugaki, K.Kikkaw and H.Terai et al.Theoretical estimation of maehined suracfe profile based on cutting edge movement and tool orientation in ball-nosed end milling[C].Annals of the CIRP,2003,52(l): 49-52.
    [157]谭美田编著.金属切削微观研究[M].上海科学技术出版社,1988.
    [158] Cheharon C.H, Ginting A, Arshad H. Performance of alloyed uncoated and CVD-coated carbidetools in dry milling of titanium alloys Ti-6242S[J].Journal of Materials Processing Technology.2007,185(1-3):77-82.
    [159]李玉和,张弘韬.金刚石刀具切削硬脆材料时切削力与刀具振动的关系[J].工具技术:1998,33(5):10-12.
    [160] Komanduri.Some Clarifications on the Mechanics of Chip Formation When Machining Titanium Alloys[J].Wear,1982(76):15-34.
    [161] (日)臼井英治.金属加工力学[M].康元国等译.北京:国防工业出版社,1984:2
    [162]郭毅,王桂芳.圆形弹性薄板非轴对称大挠度问题的一个解法.应用数学和力学, 1998,Vol19.No.9:837-845.
    [163]朱可柯,朱如鹏.膜盘联轴器非对称弯曲的一种解析解法.应用数学和力学, 2008,Vo29.No.12:1495-1501.
    [164]郭小明,王顺玉,龚建民.膜盘联轴器力学性能研究与优化设计[J] .东南大学学报, 1993,23( 6):135- 138.
    [165]许德刚.材料力学[M] .郑州:郑州大学出版社.2007:205.
    [166] W.S. Lee, C.F. Lin. Plastic deformation and fracture behavior of Ti-6A1-4V alloy loaded with high strain rate under various temperatures, Materials Science and Engineering, 1998,A241(1-2) :4859.
    [167]王素玉.高速铣削加工表面质量的研究[D].山东大学,2006,4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700