虚拟磨削关键理论及其技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磨削加工是机械制造中重要的加工工艺,通常被用于零件的最后一道加工工序,以获得光洁的加工表面和精确的公差,是目前应用最为广泛的高效、高精密加工工艺。磨削加工与车、铣等加工方法相比存在着巨大的优势,但是由于磨削工具的独特性,即砂轮表面上磨粒形状的不规则性、尺寸的不确定性、分布的随机性以及砂轮运动的高速性,使得对磨削加工机理的研究及磨削加工过程的预测分析较其它加工方法困难得多。
     采用传统的解析法和实验法研究磨削过程都存在一定的弊端,解析模型的应用范围有限,而实验工作任务繁重。仿真法弥补了这两种方法的不足,是磨削加工研究的新方法。虚拟磨削加工技术的应用进一步扩展了磨削加工仿真研究的范围。虚拟的磨削过程使研究者能够更加直观地观察砂轮的磨削行为及材料的去除过程,从而有利于研究者对砂轮的磨削性能及加工质量做出准确的评价,因此,将虚拟磨削加工技术应用于磨削加工理论的研究极具实际意义。
     本文采用虚拟磨削加工与实验相结合的方法,对磨削加工机理及虚拟磨削表面形貌系统的开发两个方面进行了较深入的研究。论文的研究工作主要包括以下几个方面:
     (1)根据磨削加工的特点,确立了磨削物理仿真研究的数值模拟方法。分析了有限元法和光滑粒子流体动力学法的特点与适用范围,并通过仿真实例验证了其应用于磨削加工仿真研究的可行性。
     (2)采用Lagrange/Euler耦合算法与Lagrange/SPH耦合算法分别进行了单颗CBN磨粒切削45钢的仿真研究。根据仿真结果分析了各自算法的优缺点,并选择最佳方法进行了不同加工参数下的单颗磨粒切削仿真,进而分析了磨粒的切削机理。
     (3)考虑到砂轮表面上磨粒形状的不规则性、尺寸的不确定性、分布的随机性特点,构建了具有实际砂轮地貌特征的虚拟砂轮模型。采用该模型进行了磨削加工物理仿真,进而分析了砂轮的磨削特性及工件表面形貌的创成机理。
     (4)采用光滑粒子流体动力学法模拟了CBN磨粒的磨耗、破碎过程。根据磨粒的磨损形态及断裂行为分析了CBN磨粒的磨损机理。
     (5)基于虚拟现实技术理论,采用Visual C++编程软件及三维图形软件标准接口OpenGL开发了虚拟磨削表面形貌系统。以正六面体作为磨粒的基本形态,将其随机分布在砂轮基体表面上,建立了虚拟砂轮模型;建立了虚拟磨粒与工件的干涉计算模型。以平面磨削为例,进行了不同加工参数下的磨削仿真,进而测试了虚拟砂轮的磨削性能,并分析了磨削加工参数对工件表面粗糙度的影响。
     (6)采用超高速陶瓷CBN砂轮贴片样块,设计了磨粒划擦实验、砂块磨削实验及砂块磨损实验。通过比较实验结果与仿真结果,初步验证了单颗磨粒切削仿真、虚拟砂轮建模及其加工仿真、砂轮磨损仿真的正确性。
Grinding is an important processing technology in the machinery manufacturing industry. It is often used in the last manufacturing procedure for achieving smooth surface and precise tolerance. It is currently the most used high-performation, high precision processing technology. Grinding is superior to cutting such as turning and milling in some respects, but grinding process is much more complex than cutting process owing to its unique grinding tool. The abrasive grains on grinding wheel have no fixed shape and size, and their distribution is also irregular. Grinding wheel works in high speed. So the study on grinding mechanism and the prediction for grinding results are more difficult than some cutting process.
     Analysis and experimentation are traditional method in the research of grinding, but they both have some shortcomings. Analytical model is based on assumption, so its application is limitied. Experimentation is tedious. Simulation is a new research method of grinding. It makes up for the two methods'shortcomings. Virtual grinding is a more advanced simulation for grinding. The researcher can intuitively observe grinding behavior of wheel and removing process of workpiece material. It is conducive for reasearcher to make accurate evaluation for the performation of wheel and processing quality. So, its application in the research of grinding has great practical significance.
     Grinding mechanism and development of grinding simulation software are deeply researched by virtual grinding method and experimentation in this paper. The research tasks of the paper are as follows:
     (1) According to the characteristics of grinding process, Numerical simulation methods suitable for the grinding simulation are chosed. The characteristics and application scope of Finite Element Method (FEM) and Smoothed Particle Hydrodynamics (SPH) are analyzed. The feasibility of their application in the research of grinding is verified by grinding simulation examples
     (2) 45 steel cutting with single grain are simulated by Fluid-Solid-Interaction Method and Smoothed Particle Hydrodynamics respectively. Advantages and disadvantages of the two methods are compared. The cutting processes of single grain with different cutting parameters and orthogonal rakes are simulated by Smoothed Particle Hydrodynamics method. The mechanism of chip formation of single grain is analyzed according to the simulation results.
     (3) The abrasive grains have no fixed shape, size and distribution. Considering these, topography of the grinding wheel is modeled. The model is basically consistent with the actual topography of the grinding wheel. Physical process of grinding is simulated with the model. Then, the performations of the wheel and formation mechanism of workpiece surface are analyzed.
     (4) The processes of the rubbing and fracture of CBN abrasive are simulated by Smoothed Particle Hydrodynamics method. According to the dynamic simulation, the wear mechanism of CBN abrasive is analyzed.
     (5) Based on Virtual Reality Technology, virtual grinding surface system is developed by Visual C++ and OpenGL. Takes ortho-hexahedron as basic shape of abrasive grain and distribut it randomly on the grinding wheel base, then virtual grinding wheel is modeled. Interaction model of abrasive grain workpiece is also modeled. Takes surface grinding as an example, grinding processes with different machining parameters are simulated. Grinding performance of virtual grinding wheel is tested. Influencing factors of formed surface roughness were analyzed.
     (6) In order to verify the correctness of the single abrasive cutting simulation, the wheel model and its grinding simulation and abrasive wear simulation, scratching experiment, grinding experiment and wear experiment are made By using abrasive block of ultra-high speed vitrified bonded CBN wheel.
引文
1.张树生,杨茂奎,朱名铨等.虚拟制造技术[M],西安:西北工业大学出版社,2006.2.
    2.杭燚.火炮虚拟现实技术研究[D],南京:南京理工大学,2007,5.
    3.赵沁平.DVENET分布式虚拟环境[M].北京:科学出版社,2002.
    4.赵沁平,郝爱民,陈小武DVENET中的虚拟现实技术[J],系统仿真学报,2000,12(4):296-299.
    5.赵沁平,沈旭昆,吴威.分布式虚拟环境DVENET研究进展[J],系统仿真学报,2000,12(4):291-295.
    6.吴晓君,王吕金.基于Creator/Vega的战场飞行视景系统的实时仿真[J],系统仿真学报,2005,17(9):2297-2299.
    7.傅晨,彭群生.一个桌面型虚拟建筑环境实时漫游系统的设计与实现[J],计算机学报,1998(9):793-799.
    8.徐丹,潘志庚等.虚拟现实中基于图像的绘制技术[J],中国图像图形学报,1998,(12):1005-1010.
    9.杨建华,吴朝晖,潘云鹤.面向虚拟战场的攻防对抗仿真技术研究[J],计算机仿真,2005,22(8):1-4.
    10.熊坚,曾纪国,宋健.汽车操纵稳定性虚拟仿真的研究[J],汽车工程,2002,(5):430-433.
    11.李实扬斌,叶棒,孙增沂.基于虚拟现实的船舶轮机仿真训练系统[J],系统仿真学报,2000,12(3):193-196.
    12.皮兴忠,范秀敏,严隽琪.VR Flier:一个面向虚拟现实通用应用开发的软件平台[J],系统仿真学报,2005,17(5):1157-1166.
    13.张尚娇,吴咏.虚拟现实技术在汽车工业中的应用[J],汽车科技,2004,(5):4-7
    14.刘晓波,张琴舜,张和林.一个基于MultiGenNega的虚拟场景漫游系统[J],计算机应用,2002(12):85-86.
    15.李敏,孙继银.虚拟战场环境生成系统设计与研究[J],系统仿真学报.2005,17(5):1153-1156.
    16. Y.D. Gong, B. Wang, W.S. Wang. The simulation of grinding wheels and ground surface roughness based on virtual reality technology. Journal of materials Processing Technology [J],2002,129(1-3):123-126.
    17. Su Chong, Zhu Lida, Hou Junming, Wang Wanshan. Research and Development of Simulation System for Virtual Grinding [A], Proceedings-2008 International Symposium on Computer Science and Computational Technology,2008,1:409-412
    18.全红艳,刘庆江,张田文.虚拟样机工程中的虚拟现实系统研究[J],哈尔滨工业大学学报.2004,(1):32-35
    19.周云波,李宏才,阎清东.虚拟现实在坦克机动性虚拟试验中的应用技术研究[J],系统仿真学报[J],2006,18(s1):120-122.
    20.万毕乐,刘检华,宁汝新,张烨.面向虚拟装配的CAD模型转换接口的研究与实现[J],系统仿真学报,2006,18(2):391-394.
    21.郑洁,张卫民,吴昊,孙富春.基于Vega的柔性双臂空间机器人的三维动画仿真[J],计算机工程与科学,2004,(10):72-74.
    22.段春梅,张艳,战守义.Vega特效模块扩展的研究与设计[J],计算机工程,2006,23(5):271-273.
    23.张红朴,杜承烈.引信虚拟试验的视景仿真实现[J],计算机测量与控制,2006(7):926-928.
    24.江波,刘更等.基于视景仿真的航炮弹道仿真系统研究[J],微电子学与计算机,2006(8):84-87
    25.赵建卫,唐硕,吴催生.武器系统虚拟样机设计环境[J],飞行力学.2000,(2):15-18
    26.宋志明,康凤举等.虚拟地空战场通用视景仿真软件系统的设计[J],计算机工程与应用,2004(12):208-211.
    27.宋志明,康凤举.视景仿真的关键技术[J],计算机应用,2004(5):67-68
    28.熊越东.基于虚拟现实技术的螺旋锥齿轮CNC加工仿真理论与方法的研究[D],天津:天津大学,2005,6.
    29.张忠健,浅析虚拟制造技术应用[J],新西部,2007,(16):44.
    30.徐建国.网络化制造系统中虚拟加工若干关键技术研究[D],南京:南京理工大学,2007.
    31. Hook T V. Realtime shaded NC milling display [J], Computer Graphics,1986,20(4): 15-20.
    32. Atherton P R, Earl C, Fred C. A graphical simulation system for dynamic five-axis NC verification. Proceedings of Autofact [J], SME,1987,11(2):1-12.
    33. Menon J P, Robinson D M. Advanced NC verification via massively parallel ray casting [J], Manufacturing Review,1993,6(2):141-154.
    34. Menon J P, Marisa R J, Zagajac J. More Powerful Solid Modeling through Ray Representations [J], Computer Graphics and Applications,1994,4(3):22-35.
    35. Takafumi Saito, Tokiichiro Takahashi. NC machining with G-buffer method[J], ACM SIGGRAPH Computer Graphics,1991,25(4):207-216.
    36. Chappel I T. The use of vectors to simulate material removed by numerically controlled milling [J], Computer Aided Design,1983,15(3):156-158.
    37. Chang K Y, Goodman E D. A method of NC tool path interference detection for a multi-axis machining system [J], ASME Control of Manufacturing Processes,1991,28: 23-30.
    38. Huang Y C, Oliver J H. Integrated Simulation, error assessment, and tool path correction for five-axis NC milling [J], Journal of Manufacturing Systems,1995,14(5): 331-344.
    39. Voelker H B, et al. An introduction to PADL:Characteristics, status and rationale. Technical Report Research Memo, TM-22, Production Automation Project, University of Rochester, Rochester, NY,1974.
    40. Voelker H B, et al. The PADL-1.0/2 system for defining and displaying solid objects [J], Computer Graphics,1978,12(3):257-263.
    41. Piegl L, Tiller W. The NURBS Book[M],2nd Edition, Springer,1997.
    42. Bourjault A. Contribution a une approche methodologique de 1'assemblage automatise: Elaborationautomatique des sequences operatoires [PhD Dissertation].Universite de Franche- Comte, France,1984.
    43. Lee K, Gossard D C. A hierarchical data structure for representing assemblies:part 1 [J], Computer-Aided Design,1985,17(1):15-19.
    44. Lee K, Andrews G.Inference of the positions of components in an assembly:part 2 [J], Computer-Aided Design,1985,17(1):20-24.
    45. Kim S H, Lee K. An assembly modeling system for dynamic and kinematics analysis [J], Computer-Aided Design,1989,21(1):2-12.
    46. Shah J J, Tadepalli R. Feature based assembly modeling [J], Computers in Engineering, 1992,1:253-260.
    47. Shah J J, Rogers M T. Assembly modeling as an extension of feature-based design [J], Research Engineering Design,1993, (5):218-237.
    48. Xiaoyuan Tu, Terzopoulos D. Artificial Fishes:Physics, Locomotion, Perception, Behavior [J], Computer Graphics,1994,28(4):43-50.
    49. Blumberg Bruce M, Galyean Tinsley A. Multilevel Direction of Autonomous Creatures for Real Time Virtual Environments [J], Computer Graphics,1995,29(4):47-54.
    50. Millar R J, Hanna J R P, Kealy S M. A Review of Behavioural Animation [J], Computers and Graphics,1999,23(1):127-143.
    51. Volecker H B, Hunt W A. The role of solid modeling in machine-process modeling and NC verification, Proceedings of SAE1981 International Congress and Exposition, Detroit Michigan,1981.
    52. Ruberl S T. Verification of part programs with interactive computer graphics. In: Proceeding CAM-110th annual meeting and CAD/CAM graphics user's exposition, 1981.
    53. Jung W P, Yang H S, Yun C. Hybrid cutting simulation via discrete model [J], Computer-Aided Design,2005,37(4):419-430.
    54. Airey J M, Rohlf J H, Brooks F P. Towards image realism with interactive update rates in complex virtual building environments [J], Computer Graphics,1990,24 (2):41-50.
    55. Erikson C, Manocha D. GAPS:General and automatic polygonal simplification. In: Proceedings ofACM Symposium on Interactive 3D Graphics,1999,225:79-88.
    56. Isenburg M. Triangle strip compression[J], Computer Graphics Forum,2001,20(2): 91-101.
    57. Kay T L, Kajiya J T. Ray tracing complex scenes[J], Computer Graphics 1986,20(4): 269-278.
    58. Hubbard P M. Real-time collision detection and time-critical computing. In:SIVE95, The First Workshop on Simulation and Interaction in Virtual Environments, Iowa City. 1995,1:92-96
    59. Lin M C, Canny J. Efficient algorithms for incremental distance computation. Proceedings of the IEEE International Conference on Robotics and Automation,1991, 1008-1014.
    60. Lin M C. Efficient Collision detection for animation and robotics [PhD Dissertation], Berkeley:University of California,1993.
    61. Mirtich B. V-Clip:Fast and Robust Polyhedral Collision Detection [J], ACM Transaction on Graphics,1998,17(3):177-208.
    62. Van den Bergen, G. Efficient collision detection of complex deformable models using AABB trees [J], Journal of Graphics Tools,1997,2(4):1-14.
    63. Larsson T, Moller T A. Collision detection for continuously deforming bodies, Proceedings of Eurographics'2001,2001,325-333.
    64.肖田元,韩向利,王新龙.通用NC代码翻译技术[J],系统仿真学报,1998 10(5):1-7.
    65.肖田元.虚拟制造[M],北京:清华大学出版社,2004.
    66.韩向利,袁析俊.直线与刀具扫描体求交算法及其应用研究[J],计算机辅助设计与图形学学报,1997,9(2):123-129.
    67.梁小军,韩向利.材料切除过程三维动画仿真软件GNCV[J],系统仿真学报,1998,10(5):8-13.
    68.罗堃.在微机上实现数控铣床加工仿真[J],计算机辅助设计与图形学学报,2000,12(3):203-206.
    69.罗堃.三角片离散法实现数控铣床加工仿真[J],计算机辅助设计与图形学学报,2001,13(11):1024-1028.
    70. Liu Huaming, Li Jiping, Ren Bingyin. Discrete representation of sculptured surface for dimensional NC verification, International Conference on Advanced Manufacturing Technology, Xi'an, China,1999,240-244.
    71.刘华明,李吉平.NC验证中通用铣刀扫描体生成方法[J],制造技术与机床,1999,(9):43-45.
    72.李吉平,刘华明,张文铭等.复杂曲面加工精度检验中曲面法矢与刀具扫描体求交算法的研究[J],计算机辅助设计与图形学学报,2002,12(12):931-935.
    73.李吉平,刘华明.基于空间分层索引模型的数控加工碰撞检测法[J],制造技术与机床,1999,(11):39-41.
    74.汤幼宁,魏生民,杨海成.基于Dexel模型的NC加工仿真和验证研究[J],西北工业大学学报,1997,15(4):629-633.
    75.赵继政,魏生民.基于图像空间的数控加工图形仿真[J],中国机械工程,1998,9(5):28-31.
    76.龚堰珏.数控加工仿真关键技术的研究[D].西安:西安交通大学,2003.
    77.葛研军,江早.基于光线跟踪的虚拟数控车削加工图形生成技术[J],中国图象图形学报,1999,4(1):28-32.
    78.卢碧红,葛研军,王启义等.虚拟数控车削加工精度预测研究[J],机械工程学报,2002,38(2):82-85.
    79.卢碧红,葛研军,王启义.虚拟车削加工尺寸精度预报方法[J],大连铁道学院学报,2000,21(3):56-60.
    80.王蕾,葛研军,巩亚东等.基于Web数控加工3D几何仿真技术[J],东北大学学报(自然科学版),2002,23(5):463-465.
    81.沙智华,张生芳,葛研军,赵亮.通用数控代码编译系统研究与实现[J],中国机械工程,2003,14(9):763-766.
    82.伍铁军.数控加工仿真关键技术研究与软件开发[D],南京:南京航空航天大学,2001.
    83.伍铁军,周来水,周儒荣.数控仿真的实时真实感图形显示[J],计算机辅助设计与图形学学报,2000,12(4):291-293.
    84.余湛悦.并行化数控编程和加工仿真关键技术研究与实现[D],南京:南京航空航天大学,2003.
    85.余湛悦,周来水,张臣等.提高数控加工仿真速度和效果的关键技术研究[J],计算机辅助设计与图形学学报,2004,16(5):642-647.
    86.王书亭,陈立平,吴义忠.制造系统虚拟仿真原型工具的研究[J],计算机辅助设计与图形学学报,2003,15 C2):221-227.
    87.伍抗逆,李斌,陈吉红.面向开放式数控系统平台的NC代码解释器开发[J],中国机械工程,200617(2):168-171.
    88.周杰韩,杜润生.用OpenGL开发虚拟制造环境[J],计算机应用技术,1999,13(3):21-23
    89.林朝旭.机载雷达关键件虚拟加工物理仿真研究[D].西安:西安电子科技大学,2006.
    90.范胜勇.虚拟数控车削加工质量预测系统的研究[D].天津:天津大学,2005.
    91.毕运波.铣削加工过程物理仿真及其在航空整体结构件加工变形预测中的应用研究[D].杭州:浙江大学,2007.
    92.陈建满.高速铣削表面形貌的仿真与实验研究[D],南京:南京航空航天大学,2002.
    93.胡家国.铣削力及铣削表面微观形貌分纬数的研究[D],南京:南京理工大学,2003.
    94.高彤.铣削加工表面形貌及端铣加工变形仿真研究[D].西安:西北工业大学,2004.
    95.徐安平,曲云霞,段国林等.基于工件网格划分的周铣加工表面形貌仿真算法[J],西安交通大学学报,2001,35(5):502-505.
    96.陈秀生.基于STEP-NC的数控车削加工仿真关键技术研究[D],济南:山东大学,2007.
    97.沙智华.基于拟实体数控车削加工仿真研究[D],大连:大连交通大学,2005.
    98.陈勇.平面铣削加工过程虚拟仿真系统的开发及其应用研究[D],泉州:华侨大学,2004.
    99.李清.虚拟数控铣床加工过程仿真系统及相关技术的研究[D],天津:天津大学,2004
    100.Armarego E J A, Whitfield R C. Computer based modeling of popular machining operations for forces and power prediction [J], Annals of the C1RP,1985,34(1):65-69.
    101. Armarego E J A, Smith A J R, Gong Z J. Four plane facet point drills-basic design and cutting model predictions [J], Annals of the CIRP,1990,39(1):41-45.
    102. Armarego E J A, Deshpande N P. Computerized End-milling force predictions with cutting models allowing for eccentricity and cutter deflections [J], Annals of the CIRP, 1991,40(1):25-29.
    103. Armarego E J A. The unified generalized mechanics of cutting approach-a step towards a house of predictive performance models for machining operations [J], Machining Science and Technology,2000,4(3):319-362.
    104.Carrino L, Giorleo G, Polini W, Prisco U. Dimensional errors in longitudinal turning based on the unified generalized mechanics of cutting approach. Part I: three-dimensional theory [J], International Journal of Machining Tools & Manufacture, 2002,42(14):1509-1515.
    105. Budak E, Altintas Y, Armarego E J A. Prediction of milling force coefficient from orthogonal cutting data [J], ASME Journal of Engineering for Industry,1996,118(2): 216-224.
    106. Lee P, Altintas Y. Prediction of ball-end milling forces from orthogonal cutting data [J], International Journal of Machining Tools & Manufacture,1996,36(9):1059-1072.
    107. Merdol S D, Altintas Y. Mechanics and dynamics of serrated cylindrical and tapered end mills [J], ASME Journal of Manufacturing Science & Engineering,2004,126(2): 317-326.
    108. Martellotti M E. An analysis of the milling process [J], Transactions of the ASME,1941, 63:667-700.
    109. Koenigsberger F, Sabberwal A J P. An investigation of the cutting force pulsations during the milling process [J], International Journal of Machine Tool Design and Research,1961,1:15-33.
    I 10. Kline W A, Devor R E, Shareef I A. Prediction of surface accuracy in end milling [J], J ENG IND TRANS ASME,1982,104(3):272-278.
    111. Liao C L, Tsai J S. Dynamic response analysis in end milling using pretwisted beam finite element [J], Journal of Vibration and Acoustics, Transactions of the ASME,1995, 117(1):1-10.
    11 2. Tsai J S, Liao C L. Finite-element modeling of static surface errors in the peripheral milling of thin-walled workpieces [J], Journal of Materials Processing Technology, 1999,94(2):235-246.
    113.Endres W J, Devor R E, Kapoor S G. Dual-mechanism approach to the prediction of machining forces, Part 1:Model development [J], Journal of Engineering for Industry, 1995,117(4):526-533.
    114. Endres W J, Devor R E, Kapoor S G. Dual-mechanism approach to the prediction of machining forces, Part 2:Calibration and validation [J], Journal of Engineering for Industry,1995,117(4):534-541.
    115.Szecsi T. Cutting force modeling using artificial neural networks [J], Journal of Materials Processing Technology,1999,92-93:344-349.
    116. Alique A, Haber R E, Haber R H, etc. A neural network-based model for the prediction of cutting force in milling process. A progress study on a real case. IEEE International Symposium on Intelligent Control - Proceedings,2000,121-125.
    117.Zuperl U, Cus F. Tool cutting force modeling in ball-end milling using multilevel perception [J], Journal of Materials Processing Technology,2004,153-154:268-275.
    118. Radhakrishnan T, Nandan Uday. Milling force prediction using regression and neural networks [J], Journal of Intelligent Manufacturing,2005,16(1):93-102.
    119. Li X, Venuvinod P K, Chen M K. Feed cutting force estimation from the current measurement with hybrid learning [J], International Journal of Advanced Manufacturing Technology,2000,16(12):859-862.
    120. Chen S J, Pang Q L and Cheng K. Finite element simulation of the orthogonal metal cutting process [J], Materials Science Forum,2004,471-472:582-586.
    121.Mamalis A G, Horvath M, Branis A S, et al. Finite Element Simulation of Chip Formation in Orthogonal Metal Cutting [J], Journal of Materials Processing Technology, 2001,110(5):19-27.
    122. Melkote S N, Liu K. Finite element analysis of the influence of tool edge radius on size effect in orthogonal micro-cutting process [J], International Journal of Mechanical Sciences,2007,49(5):650-660.
    123. Ceretti E, Lazzaroni C, Menegardo L, Altan T. Turning simulations using a three-dimensional FEM code [J], Journal of Materials Processing Technology,2000, 98(1):99-103.
    124. Ceretti E, Lucchi M, Altan T. FEM simulation of orthogonal cutting:serrated chip formation [J], Journal of Materials Processing Technology,1999,95(1-3):17-26.
    125. Jaeger J C. Moving Sources of Heat and the Temperature at Sliding Contacts [J]. Journal and Proceedings Royal Society of New South Wales,1942,76:133-228.
    126. Trigger K J, Chao B T. An analytical evaluation of metal cutting temperature [J], ASME Journal of Engineering for Industry,1951,73:57-68.
    127. Chao B T, Trigger K J. The significance of thermal number in metal machining [J], Journal of Engineering for Industry,1953,75:109-120.
    128. Boothroyd G. Fundamentals of Metal Machining and Machine Tools[J], McGraw-Hill, New York,1975.
    129. Venuvinod P K, Lau W S. Estimation of rake temperatures in free oblique cutting [J], International Journal of Machine Tool Design and Research,1986,26(1):1-14.
    130. Chan C L, Chandra A. Boundary element method analysis of the thermal aspects of metal cutting processes [J], Journal of Engineering for Induetry,1991,113(3):311-319.
    131.Tanaka Y, Honma T, Kaji I. On mixed element solutions of convection-diffusion problems in three dimensions [J], Applied Mathematics Modelling,1986,10(3): 174-175.
    132. Boothroyd G. Temperatures in orthogonal metal cutting, Proceedings of the Institution of Mechanical Engineers,1963,177 (29):789-810.
    133. Levy E K, Tsai C L, Groover M P. Analytical investigation of the effect of tool wear on the temperature variations in a metal cutting tool [J], ASEM Journal of Engineering for Industry,1976,98(1):251-257.
    134. Smith A J R, Armarego E J A. Temperature prediction in orthogonal cutting with a finite difference approach [J], Annals of the CIRP,1981,30(1):9-13.
    135. Tay A O, Stevenson M G, de Vahl Davis G. Using the finite element method to determine temperature distribution in orthogonal machining. Proceedings of the Institution of Mechanical Engineers,1974,188(55):627-638.
    136. Stevenson M G, Wright P K, Chow J. Cz Further developments in applying the finite element method to the calculation of temperature distributions in machining and comparisons with experiment [J], Journal of Engineering Industry,1983,104(3): 149-154.
    137. Dawson P R., Malkin S. Inclined moving heat source model for calculating metal cutting temperatures [J], Journal of Engineering Industry,1984,106(3):179-186.
    138. Ceretti E, Fallbohmer P, Wu W T, Altars T. Application of 2D FEM to chip formation in orthogonal cutting [J], Journal of Materials Processing Technology,1996,59(1-2): 169-180.
    139. Shet C, Deng X. Finite element analysis of the orthogonal metal cutting process [J], Journal of Material Processing Technology,2000,105(1):95-109.
    140. Hamid A A, Wifi A S, Gallab M. A three dimensional finite element thero-mechanical analysis of intermittent cutting process [J], Journal of Materials Processing Technology, 1996,56:643-654.
    141. Lazoglu L, Altintas Y. Prediction of tool and temperature in continuous and interrupted machining [J], International Journal of Machine Tools & Manufacture,2002,42(9): 1011-1022.
    142. Mamalis A G, HorvaAthb M, Branis A S. Modelling of precision hard cutting using implict finite element methods [J], Jounal of Material Processing Technology,2002, 123(3):461-475.
    143. Altintas Y, Lee P. General Mechanics and dynamics model for helical end mills [J], Annals of the CIRP,1996,45(1):59-64.
    144. Sata T, Inamura T. Development of method to predict and prevent chattering in metal cutting [J], Annals of the CIRP,1975,24(1):309-314.
    145. Litak Grzegorz. Chaotic vibrations in a regenerative cutting process [J], Chaos, Solitons and Fractals.2002,13(7):1521-1535.
    146. Clancy Bason E, Shin Yung C. A comprehensive chatter prediction model for face turning operation including tool wear effect [J], International Journal of Machine Tools & Manufacture.2002,42(9):1035-1044.
    147. Suresh Jayaram. Stability and vibration analysis of turning and face milling processes [D], Urbana-Champaign:University of Illinois,1997.
    148. Baek Dae Kyun, Ko Tae Jo, Kim Hee Sool. Dynamic surface roughness model for face milling [J], Precision Engineering,1997,20(3):171-178.
    149. Zhang G M, Kapoor S G. Dynamic Generation of Machined Surfaces, Part 1: Description of a Random Excitation System [J], Journal of Engineering for Industry, 1991,113(5):137-144.
    150. Zhang G M, Kapoor S G. Dynamic generation of machined surfaces, Part 2: Construction of surface topography [J], Journal of Engineering for Industry,1991, 113(5):145-153.
    151. Mayer J R Rene, Phan Anh-Vu, Cloutier Guy. Prediction of diameter errors in bar turning:A computationally effective model [J], Applied Mathematical Modeling,2000, 24(12):943-956.
    152. Endres W J, Sutherland J W, DeVor R E, Kapoor S G. Dynamic Model of cutting force System in the Turning Process, American Society of Mechanical Engineers [J], Production Engineering Division (Publication) PED,1991,44:193-212.
    153. Ei-Sinawi A H, Kashani R. Improving surface roughness in turning using optimal control of tool's radial position [J], Journal of Materials Processing Technology,2005, 167(1):54-61.
    154. Choudhury S K, Appa Rao I V K. Optimization of cutting parameters for maximizing tool life [J], International Journal of Machine Tools & Manufacture,1999,39(2): 343-353.
    155. Kopac J, Bahor M, Sokovic M. Optimal machining parameters for achieving the desired surface roughness in fine turning of cold pre-formed steel workpieces Intermational Journal of Machine Tools & Manufacture,2002,42(6):707-716.
    156.Zuperl U, Cus F. Optimization of cutting conditions during cutting by using neural networks [J], Robotics and Computer-Integrated Manufacturing,2003,19(1-2): 189-199.
    157. Arezoo B, Ridgwong K, AI-Ahmari A M A. Selection of cutting tools and onditions of machining operations using an expert system [J], Computers in ndustry,2000, (42): 435-438.
    158. Cus F, Balic J. Optimization of cutting process by GA approach [J], Robotics and Computer-Integrated Manufacturing,2003,19(1-2):113-121.
    159.姚英学,李荣彬.面向加工质量预测的虚拟加工检测单元的研制[J],中国机械工程,2000,11(5):520-524.
    160.王洪祥,医理申,李旦.通过切削参数的优选的控制振动对超精密加工表面质量影响[J],中国机械工程,2000,11(4):453-455.
    161.孙宏伟,马玉林.基于加工质量预测与分析的数控铣削过程仿真系统研究与开发[J],制造业自动化,2000,22(6):25-28.
    162.黄志刚,柯映林,董辉跃.基于正交切削模拟的直齿圆柱铣刀前角优化,浙江大学学报(工学版),2005,39(6):780-784
    163. Dong Huiyue, Ke Yinglin. Simulation of 3D chip shaping of aluminum alloy 7075 in milling processes [J], Transactions of Nonferrous Metals Society of China,2005,15(6): 1315-1321.
    164.董辉跃,柯映林,成群林.航空铝合金材料三维铣削加工的有限元模拟与分析[J],浙江大学学报(工学版),2006,5:759-762.
    165.成群林,柯映林,董辉跃.航空铝合金铣削加工中切削力的数值模拟研究[J],航空学报,2006,27(4):724-727.
    166.徐安平,曲云霞,李为民等.带再生反馈的柔性立铣刀铣削过程模型[J],机械工程学报,1999,(5):31-36.
    167.张大卫,冯志勇,黄田,曾子平.圆锥螺旋铣刀非线性铣削力模型[J],机械工程学报,1997,(6):14-19.
    168.冯志勇,徐安平,黄田,曾子平.圆锥螺旋铣刀的铣削力仿真[J],天津大学学报,1998,31(4):447-453.
    169.徐安平,曲云霞,张大卫等.考虑刀杆柔性的周铣加工表面创成模型实验验证[J],机械设计,1999,(8):20-23.
    170.王太勇,郭千里,林滨等.集成数控车削中刀具状态的智能识别与监控[J],天津大学学报,1995,28(5):673-676.
    171.王国锋.基于虚拟现实技术的数控车削智能仿真理论与方法研究[D],天津:天津大学,2002.
    172.汪文津,王太勇,范胜波.基于自适应遗传算法的数控铣削过程参数优化仿真[J],制造业自动化,2004,26(8):28-30.
    173.黄雪梅,赵明扬,王启义.虚拟数控车削物理仿真系统的研究与开发[J],中国机械工程,2002,13(15):1336-1338.
    174.黄雪梅,赵明扬,陈书宏.加工过程物理仿真技术研究[J],组合机床与自动化加工技术,2002,(9):8-10.
    175.杨国哲,巩亚东,葛研军,王宛山.高真感虚拟车削加工系统中工件模型的建立[J],制造技术与机床.2003,(12):48-50.
    176.黄雪梅.虚拟数控车削加工物理仿真系统研究[D],沈阳:东北大学,2001.
    177.杨国哲.关于虚拟车削建模中若干问题的研究[D],沈阳:东北大学,2004.
    178.乐清洪,赵骥,朱名铨.人工神经网络在产品质量控制中的应用研究[J],机械科学与技术,2000,19(3):433-435.
    179.乔咏梅,张定华,张森,魏生民.数控仿真技术的回顾与评述[J].计算机辅助设计与图形学学报,1995 7(4):311-315.
    180.李亮.钛合金高速铣削加工机理及工艺研究[D]。南京:南京航空航天大学,2004
    181.郭魂.航空多框整体结构件铣削变形机理与预测分析研究[D],南京:南京航空航天大学,2005.
    182.阎海鹏.高速铣削铝合金切削温度的研究[D],南京:南京航空航天大学,2004.
    183.陈明,袁人炜,凡孝勇,严隽琪.三维有限元分析在高速铣削温度研究中应用[J],机械工程学报,2002,38(7):76-79.
    184.陈庆虎,李柱.表面粗糙度提取的小波频谱法[J],机械工程学报,1996,35(3):41-44.
    185.葛研军,卢碧红等.车削加工物理仿真实现技术[J],机械科学与技术,2001 20(3):421-425.
    186.卢碧红,黄文丽,葛研军.用人工神经网络预测切削力[J],机械工程师,2002,(2):28-30.
    187.周忆,梁锡吕.超高速铣削加工的温度场计算及生产应用[J],中国机械工程,2003,14(13):1158-1160.
    188.刘佳,卢晓煌.计算机辅助加工工件变形分析方法[D],北京理工大学学报,2002,22(6):687-690.
    189.刘光复,陈熙源,刘学平等.切削颤振模型及机理研究.机械工程学报.1998,34(4):40-46.
    190.李伯民,赵波.现代磨削技术[M],北京:机械工业出版社,2003.
    191. Baul R M, R Shilton. Mechanics of metal grinding with particular reference to Monte-Carlo simulation [J], Proc.8th Int. MTDR Conf,1967,8(2):923-946.
    192. Suto T, Sata T. A simulation model of a grinding process. IV. Research on adaptive control of high efficiency cylindrical plunge grinding [J], Journal of the Japan Society of Precision Engineering,1979,45(5):554-559.
    193. Suto T, Sata T. Simulation of grinding process based on wheel surface characteristics [J], Bulletin of the Japan Society of Precision Engineering,1981,15(1):27-33.
    194. K Steffens, W Konig. Closed loop simulation of grinding [J], Ann CIRP,1983,32(1): 255-259.
    195. Koshy P, Jain V K, Lal G K. Stochastic simulation approach to modeling diamond wheel topography [J], International Journal of Machine Tools and Manufacture,1997,37 (6): 751-761.
    196. Hegeman J B J W. Fundamentals of Grinding:Surface Conditions of Ground Materials [D], University of Groningen, Netherlands,2000.
    197. Chen X, Rowe W B. Analysis and simulation of the grinding process. Part I:generation of the grinding wheel surface [J], International Journal of Machine Tools and Manufacture,1996,36 (8):871-882.
    198. Cooper W, Lavine A S. Grinding process size effect and kinematics numerical analysis [J], Journal of Manufacturing Science and Engineering,2000,122 (1):59-69.
    199. Nguyen T A, Butler D L. Simulation of precision grinding process, part 1:generation of the grinding wheel surface [J], International Journal of Machine Tools & Manufacture, 2005,45(11):1321-1328.
    200. Chuang T J, Wang Z D, Hill M. White G. Fatigue life predictions of PZT using continuum damage mechanics and finite element methods [J], Fracture Mechanics of Ceramics-Fatigue, Composites, and High- Temperature Behavior,1996,12:135-48.
    201. Amit M. Wani, Vinod Yadava, Atul Khatri. Simulation for the prediction of surface roughness in magnetic abrasive flow finishing (MAFF) [J], Journal of Materials Processing Technology,2007,190(1-3):282-290.
    202. Stowers I F, Komanduri R, Baird E D. Review of precision surface generation processes and their potential application to the fabrication of large optical components, Proceeding of the SPIE, San Diego,1989,966:62-73.
    203. Belak I F, Hoover W G, Hoover C G, et al. Molecular dynamics modeling applied to indentation and metal cutting problems [J], Thrust area Reps,1990,89:4-8
    204. Belak J, Boercker D B, Stower I F. Simulation of nanomerter-scale deformation of metallic and ceramic surface [J], MRS Bulletin,1993,18(5):55-60.
    205. Belak J, Glosli J N, Boercker D B, Stower I F. Molecular dynamics simulation of mechanical deformation of ultra-thin metal and ceramic films [J], Mat.Res.Soc.Symp. Proc,1995,389:181-190.
    206. Ikawa N, Shinada S, Tanaka H. Minimum thickness of cutting in micromachining. Nanotechnology [J],1992,3(1):6-9.
    207. Inamura T, Suzuki H, Takezawa N. Cutting experiment in a computer using atomic models of a copper crystal and a diamond tool [J], JSPE,1990,56(8):1480-1486.
    208. Rudiger Rentsch, Lchiro Lnasaki. Investigation of surface integrity by molecular dynamics simulation [J], Annals of the CIRP,1995,44(1):295-298.
    209. Shimizu Jun, Zhou Libo, EDA Hiroshi. Simulation and experimental analysis of super high-speed grinding of ductile material. Proceedings of the 10th international manufacturing conference Paper,2002,10:8-22.
    210.韩成顺,董申,唐余勇.离轴非球面超精密磨削加工几何模型的探讨[J],中国机械 工程,2004,15(17):1520-1522.
    211.罗熙,淳董.申单晶铝纳米切削过程分子动力学模拟技术研究[J],中国机械工程,2000,11(8):860-863.
    212.唐玉兰,梁迎春,霍德鸿,程凯.单晶硅和单晶铝纳米切削过程比较[J],哈尔滨工业大学学报,2004,36(1):39-42.
    213.林滨,韩雪松,于思远等.纳米磨削过程中分子动力学计算机仿真实验[J],天津大学学报,2000,33(5):652-656.
    214.林滨,吴辉,于思远,徐燕申.纳米磨削过程中加工表面形成与材料去除机理的分子动力学仿真[J],纳米技术与精密工程,2004,2(2):136-140.
    215.王晓峰,朱爱菊,丁同梅,田毅红.金刚石磨削石英陶瓷表面粗糙度的计算机模拟[J],超硬材料工程,2006,18(6):5-8.
    216.田晓,林彬,张建刚,徐燕申.杯形砂轮平面磨削温度场的有限元分析[J],精密制造与自动化,2004(2):23-25.
    217.郭晓光,郭东明,康仁科,金洙吉.单晶硅纳米级磨削过程中磨粒磨损的分子动力学仿真[J],半导体学报,2008,29(6):1180-1183.
    218.高航,李剑.磨削温度场通式及其计算机仿真分析[J],东北大学学报,2004,25(6):574-577.
    219.巩亚东,邵忠,王宛山.磨削温度场的科学计算可视化研究[J],机械设计与制造,2002,6:18-20.
    220.李长河,刘晓玲,侯亚丽,蔡光起.磨削区磨料流体动压力仿真研究[J],润滑与密封,2007,32(10):59-61.
    221.宾鸿赞,陈芳.CBN球面砂轮数控磨削复杂形状刀具[J],中国机械工程,2008,19(12):1406-1409.
    222.熊烽,宾鸿赞,金建新.复杂形状刀具前刀面数控磨削过程的三维仿真研究[J],机械与电子,2002,(2):31-34.
    223.王龙山,李国发.磨削过程模型的建立及其计算机仿真[J],中国机械工程,2002,13(1):1-4.
    224.李国发,王龙山,张卫波.磨削过程优化及其计算机仿真[J]。中国机械工程,2002,13(6):501-505.
    225.邓朝晖,荆琦,安磊.纳米结构WC/12Co涂层精密平面磨削表面残余应力有限元模拟与试验[J],机械工程学报,2008,44(7):58-62.
    226.郭力.钛合金材料超高速磨削湿式温度场的有限元仿真[J],湖南文理学院学报(自然科学版),2008,20(4):56-60.
    227.张磊,葛培琪,张建华等.40Cr钢磨削强化的试验与数值仿真[J],机械工程学报,2006,42(8):60-63.
    228.王霖,葛培琪,秦勇等.基于有限元法的湿式磨削温度场分析,机械工程学报,2002,38(9):155-158.
    229.李裕春,时党勇,赵远.Ansys10.0/LS-DYNA基础理论与工程实践[M],北京:中国水利水电出版社,2006.
    230. Okuyama S, Nishihara T, Kawamura S, Hanasaki S. Study on the Geometrical Accuracy in Surface Grinding - Thermal Deformation of Workpiece in Traverse Grinding [J], Int. J. Japan Soc. Prec. Eng.,1994,28(4):13-23.
    231. Hesselbach J, Hoffmeister H W, Maiz K, Machanova I. Surface grinding with cryogenics [J], Production Engineering,2004, X1/2:1-4.
    232. T Jin, D J Stephenson. Three dimensional finite element simulation of transient heat transfer in high efficiency deep grinding [J], Annals of the CIRP,2004,53(1):259-262.
    233. Le M F, Marya S. Serrated Chip Prediction in Numerical Cutting Models, Proceedings of 8th CIRP International Workshop on Modelling of Machining Operations,2005, 115-122.
    234.段进,倪栋,王国业.ANSYS10.0结构分析从入门到精通[M],北京:兵器工业出版社,2006.
    235. E D Doyle, S K Dean. Insight into grinding from a materials viewpoint [J], CIRP annals- manufacturing technology,1980,29(2):571-575.
    236. Maan N, Broese Van Groenou A. Low speed scratch experiments on steels [J], Wear, 1977,42(2):365-390.
    237. P Gilormini, E Felder. Theoretical experimental study of the ploughing of a rigid-plastic semi-infinite body by a rigid pyramidal indenter [J], Wear,1983,88(2):195-206.
    238. Torrance A A. A new approach to the mechanics of abrasion [J], wear,1981,67(2): 233-57
    239. Lucy L B. A numerical approach to the testing of the fission hypothesis [J], Astronomical Journal,1997,82(12):1013-1024.
    240. R A Gingold, J J Monaghan. Smoothed Particle Hydrodynamics:Theory and application to non-spherical stars [J], Monthly Notices of the Royal Astronomical Society,1997, 181(2):375-389.
    241. Monaghan J J, Gingold R A. Shock simulation by the particle method SPH [J], Journal of Computational Physics,1983,52(2):374-389.
    242. Monaghan J J. Heat conduction with discontinuous conductivity [J], Applied Mathematics Reports and Preprints, Monash University,1995,95/18.
    243. Libersky L D, Petschek A G. Smoothed Particle Hydrodynamics with Strength of Materials [J], Advances in the Free Method, Lecture Notes in Physics,1990,395: 248-257.
    244. Johnson G R, Petersen E H, Stryk R A. Incorporation of an SPH option in the EPIC code for a wide range of high velocity, impact computations [J], Int. J. Impact. Engng,1993, 14:385-394.
    245. Limido J, Espinosa C, Salaun M, Lacome J L. SPH method applied to high speed cutting modeling [J], International Journal of Mechanical Sciences,2007,49(7):898-908.
    246. Medina D F, Chen J K. Three-dimensional simulations of impact induced damage in composite structures using the parallelized SPH method [J], Composites Part A (Applied Science and Manufacturing),2000,31(8):853-60.
    247.胡晓燕.计算流体力学中的SPH方法和MLSPH方法研究[D],北京:中国工程物理研究院,2006.
    248.陈建设.无网格SPH方法在板冲击问题中的数值模拟与应用研究[D],西安:西北工业大学,2007.
    249. Monaghan J J, Thompson M C, Hourigan K. Simulating of free surface flow with SPH [J], American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED,1994,196:375-380.
    250. Libersky L D, Petscheck A G, Carney T C, et al. High strain Lagrangian hydrodynamics: a three-dimensional SPH code for dynamic material response [J], Journal of Computational physics,1993,109(1):67-75.
    251. Randles P W, Libersky L D. Smoothed Particle Hydrodynamics:Some recent improvements and applications [J], Computer Methods in Applied Mechanics and Engineering,1996,139(1-4):375-408.
    252. Hallquist J Q. LS-DYNA Theoretical Manual, Livermore Software Technology Corporation. Livermore, California,1998.
    253. Matsuo T, Okamura K. Wear characteristic of general and superhard abrasive grains against various hard materials [J], Cirp annals - manufacturing technology,1981,30(1): 233-236.
    254. Ohbuchi Y, Matsuo T. Force and chip formation in single-grit orthogonal cutting with shaped CBN and diamond grains [J], Annals of CIRP,1991,40(1):327-329.
    255. Matsuo T, Toyoura S, Oshima E, Ohbuchi Y. Effect of grain shape on cutting force in superabrasive single-grit tests [J], Annals of CIRP,1989,38(1):323-326.
    256. Tamaki J, Mahmoud T, Jiwang Y, et al. Effect of cutting-edge shape on ductile regime grinding of optical glass in single-grit diamond grinding [J], Key Engineering Materials, 2004,257-258:89-94.
    257. Yoshino M, Aoki T, Shirakashi T, et al. Some experiments on the scratching of silicon: in situ scratching inside an SEM and scratching under high external hydrostatic pressures [J], International Journal of Mechanical Sciences 2001,43(3):335-347.
    258. Jardret V, Zahouani H, Loubet J L, et al. Understanding and quantification of elastic and plastic deformation during a scratch test [J]. Wear,1998,218(1):8-14.
    259. Puttick K E, Whitmore L C, Zhdan P, et al. Energy scaling transitions in machining of silicon by diamond [J], Tribology International,1995,28(6):349-355.
    260.冯宝富.磨削速度对磨削机理诸方面影响的研究[D],沈阳:东北大学,2003.
    261.霍凤伟.硅片延性域磨削机理研究[D],大连:大连理工大学,2006.
    262. Malkin S. Grinding technology theory and applications of machining with abrasives [M]. America:Halsted Press,1989.
    263. Optiz H, Konig W, Werner G. Kinematics and Mechanics in Grinding with regard to the Machining Process, New Development in Grinding,1972,259.
    264. Verkerk J, Peters J. Finial Report Concerning CIRP Cooperative Work on the Characterization of Grinding Wheel Topography [J], Annals of CIRP,1977,26(2): 385-395.
    265. K Chen, X Luo,R Ward, R Holt. Modeling and simulation of the tool wear in nanometric cutting [J], wear,2003,255(7-12):1427-1432.
    266. L Fang, Q H Cen, K Sun, et al. FEM computation of groove ridge and Monte Carlo simulation in two-body abrasive wear [J], Wear,2005,258(1-4):265-274.
    267.任敬心,华定安.磨削原理[M],西安:西北工业大学出版社,1988.
    268. Loladze T N, Bockachave G V. Criteria for Determining Cutting Properties of Abrasive Tools, New Development in Grinding,1972.
    269. Graham W, Voutsadopoulos C M. Fracture Wear of Grinding Wheel [J]. Int J Mach Tool Des Res,1978,18(2):95-103.
    270.和平鸽工作室.OpenGL三维图形系统开发与实用技术[M],北京:清华大学出版社,2003.
    271.方勇.虚拟数控铣削加工的几何与物理仿真研究[D],吉林大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700