生物法脱除工业废气中SO_2和NO的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化石燃料(包括石油及煤炭)中含有硫氮物质,在燃烧过程中以SO2和NOx气体的形式排放出来,是形成“酸雨”的主要污染物,给人类的生存带来严重危害。NO气体是NOx气体的主要存在形式,本论文着重讨论SO2和NO气体的净化处理。
     SO2和NOx气体污染问题受到了世界范围的普遍关注,许多国家都制定了严格的限排控制措施。目前,我国在SO2先期治理的基础上,又出台了对NOx的限排政策。SO2和NOx的治理已成为世界领域的研究热点,各种治理技术百花齐放层出不穷,正在全球范围内深入研究与开展。
     传统的SO2和NOx气体治理技术主要采用物理化学方法,应用较广的有湿式烟气脱硫(Wet?FGD)和NH3选择性催化还原(SCR)技术脱氮组合、活性焦吸附法和等离子体法等,这些方法在SO2和NOx的污染治理中起到了重要作用,但也都不同程度地存在成本高、工艺复杂、二次污染及吸附剂、催化剂或吸收液等再生的问题。生物法脱硫脱氮是近年来的新兴技术,它的主要优势在于工艺设备简单,管理维护方便,能耗低,运行费用低,二次污染少,去除有害成分的效率也比较高,因此具有广阔的工业应用前景。
     论文采用生物滴滤工艺进行SO2和NO气体的净化处理。总体分为四部分:
     (1)采用异养反硝化菌进行NO气体的脱除实验,并考察了最佳工艺操作条件。
     通过在生物滴滤塔中进行填料挂膜,利用反硝化菌处理模拟的NO工业废气。实验表明:当气体空塔停留时间为80s,液体喷淋密度为16?20 m3/(m2·h),进气浓度为30?500 mg/m3时,NO平均去除率可达到98.4%。同时,在液相中只能检测到微量的NO3?,说明塔内发生了较为彻底的反硝化作用,采用生物反硝化是处理含NO废气的可行途径。
     (2)采用硫酸盐还原菌(SRB) +脱氮硫杆菌(TD)两级生物滴滤塔串联工艺进行SO2和NO气体的脱除实验,并考察了最佳工艺操作条件。
     分别在两个生物滴滤塔中进行SRB和TD的填料挂膜,模拟的SO2工业废气进入SRB生物塔,并在厌氧条件下进行SO2和NO气体脱除实验。实验表明:操作平稳后,当气体空塔停留时间为30s,喷淋密度为26 m3/(m2·h),SO2进气浓度为500—1500 mg/m3时,SO2气体去除率可达99%以上,生成的H2S气体平均去除率达到90.5%。当停留时间为180s,喷淋密度为16 m3/(m2·h),NO进气浓度为500—2000 mg/m3时,NO去除率最高可达到98%,平均去除率为73.3%。采用SRB处理SO2气体和采用TD处理NO气体的生物法可行。
     (3)采用SRB + TD +异养反硝化菌的单级生物滴滤塔进行SO2和NO气体同步脱除实验,并考察了最佳工艺操作条件。
     在一个生物滴滤塔中进行SRB + TD +异养反硝化菌三种优势菌的混菌填料挂膜,处理含SO2和NO的模拟工业废气。实验表明:维持喷淋液pH值7?8,S2O32?浓度3g/L左右,当气体空塔停留时间为135s,喷淋密度为18 m3/(m2·h),SO2进气浓度为200—5000 mg/m3时,NO进气浓度为20—500 mg/m3时,SO2气体平均去除率为97.6%,NO气体平均去除率为51.4%。生物法同步脱除SO2和NO气体还需深入研究,解决SRB与TD对S2O32?的底物竞争与其它矛盾问题,进一步提高NO气体的去除效率。
     (4)生物法脱除SO2和NO气体的机理研究。
     探讨了生物膜的形成机理与菌落构成,分析了单级生物滴滤塔中几种优势菌的相互关系。在传统生物膜理论的基础上,结合实验过程改进了生物膜理论,主要根据含水量的多少将塔生物膜区分为水膜型生物膜、固膜型生物膜和活性生物膜。并阐述了适合处理SO2和NO气体的最佳生物膜形式。论述了同步脱除SO2和NO气体的生物反应机理。找出了制约生物法同步脱除SO2和NO气体去除效率的不利因素,提出了新的研究方向。同时讨论了本课题研究将面对工业化应用的实际问题。
Fossil fuels such as petroleum and charcoal contain sulfur and nitrogen which can convert into SO2 and NOx let off after burning. SO2 and NOx can bring sour rain on the earth and detroy the health of mankind. NO is the main exist material of NOx, so the removal of SO2 and NO from industry waste gases are investigated in this paper.
     The pollution of SO2 and NOx catch the worldwide attention, and many countries are taking some effective measures to control the pollution. Now, the regulation of controlling NOx is established while the pollution of SO2 is being controlled. And the treatment of the pollution of SO2 and NOx is a hot research in the world, all kinds of techniques are developed to solve the problem of the pollution of SO2 and NOx.
     Traditional disposal techniques of SO2 and NOx mainly adopt physical and chemical methods. The common ones are wet flue gas desulfurization and NH3 election catalyse reduction combined technique, active char adsorption and plasma method and so on. These techniques have taken the important roles in the process of controlling the pollution of SO2 and NOx, but they have some problems such as high cost, complex technics, secondary pollution and the reborn problem of sorbents and catalyzers. Biological one is a new technique and applied wildly by virtue of its simple apparatus, convenient maintenance, low energy consumption, less secondary contamination and high removal efficiency.
     In this paper bio-trickling towers were established to purify SO2 and NO gases. The whole paper included four parts as follows:
     (1) Heterotrophic denitrificans were adopted to purify NO simultation waste gases, and the optimal operation conditions were investigated.
     Biological trickling tower with biofilm carrier was used to investigate the process of purifying the simulating nitric-oxide-containing waste gas by denitrifiers. The experiment demonstrated that rod bacillus denitrifyers can be gotten by dynamic cultured and tamed for carrying on the packing materials. Nitric oxide removal efficiency is up to 98.4%, with empty-bed residence time(EBRT)80 s, inlet nitric oxide concentration 30~500 mg/m3 and circulating liquid flux 90-100L/h. In addition, only little NO3- could be detected in the liquid. The way of purification of nitric-oxide-containing waste gas by denitrifying is feasible.
     (2) SRB + TD two bio-trickling towers in series were developed to purify SO2 and NO simulation waste gases respectively, and the optimal operation conditions were investigated.
     Biological trickling technique is usually carried out to purify those biodegradable waste gases. In this experiment, Sulfate-Reducing Bacteria(SRB) and Thiobacillus denitrificans(TD) were cultured for carrying on the packing materials in the two bio-trickling towers respectively to treat the waste gases of sulfur dioxide and nitric oxide under the anaerobic conditions. The experiment demonstrated that sulfur dioxide removal efficiency can reach over 99%, with empty-bed residence time(EBRT)30s, inlet concentration 500?1500mg/m3 and circulating liquid spraying density 26m3/(m2·h), and the average removal efficiency of hydrogen sulfide produced by SRB is 90.5%; Nitric oxide removal efficiency can reach 98%at its maximum and average removal efficiency was 73.3% , with empty-bed residence time(EBRT)20s, inlet nitric oxide concentration 500?2000mg/m3 and circulating liquid spraying density 26m3/(m2·h). So, conclusion can be drawn that the way of purification of sulfur dioxide and nitric oxide waste gases by microorganism is worth investigating.
     (3) SRB + TD + heterotrophic denitrificans cultured in one bio-trickling tower was developed to purify SO2 and NO simulation waste gases, and the optimal operation conditions were investigated.
     SRB + TD + heterotrophic denitrificans were cultured in one bio-trickling tower to simlutaneous remove SO2 and NO simulation waste gases. The experiment demonstrated that sulfur dioxide average removal efficiency can reach 97.6% and nitric oxide average removal efficiency can reach 51.4%, with pH 7?8,the concentration of S2O32? 3g/L, empty-bed residence time(EBRT)135s, circulating liquid spraying density 18m3/(m2·h), sulfur dioxide inlet concentration 200?5000mg/m3 and nitric oxide inlet concentration 20?500mg/m3. To elevate gases removal efficiency, the further study on simultaneous biological removal of SO2 and NO gases need to solve some problems such as the competition between SRB and TD on S2O32?.
     (4) The study on biological mechanism of removal of SO2 and NO gases
     In the four part of this paper, the mechanism of biofilm forming and the structure of microorganism in the biofilm was discussed. On the basis of tradition biofilm theory and experiment, a transformed biofilm theory was brought forward which divides biofilm in the bio-trickling tower into three kinds: liquid biofilm, solid biofilm and active biofilm according to different containing water quantity. And the suitable biofilm to biological removal of SO2 and NO were analyzed. In addition, biological removal mechanism were discussed in this part. Some disadvantages of biological removal of SO2 and NO wrer found and next research goals were brought forward and some practical problems which will be confronted in the process of indutrial application of this subject were also discussed in this part.
引文
[1]孙克勤,电厂烟气脱硫设备及运行,北京:中国电力出版社,2007
    [2]郑小明,周仁贤,《环境保护中的催化治理技术》,北京:化学工业出版社2004:52—54
    [3]童志权,工业废气净化与利用,北京:化学工业出版社,2001
    [4]王金南,曹东,杨金田等,能源与环境中国2020,北京:中国环境科学出版社,2004
    [5]赫吉明,王书肖,陆永琪,燃煤二氧化硫污染控制技术手册,北京:化学工业出版社,2001
    [6]孙克勤,钟秦,火电厂烟气脱硝技术及工程应用,北京:化学工业出版社,2006
    [7]国家环境保护总局,2007年国家环境保护工作报告,北京
    [8]邓永强,谭庆锋,国外烟气同时脱硫脱氮技术研究现状,江西化工,2006(1)
    [9] Huang Z G, Zhu Z P, Liu Z Y, etal. Formation and reaction of ammonium sulfate salts on V2O5/AC Catalyst during selective catalytic reduction or nitric oxide by ammonia at low temperatures[J].Journal of catalysis,2003,2l4(2):213~219
    [10] J L Haslbeck, L G Neal, W T Ma. Development status of the VOXSO combined NOX/SO2 flue gas treatment process [J]. Integrated Environmental Control, 1998(3):2~4
    [11]王旭伟,鄢晓忠,陈彦菲等,国内外电厂燃煤锅炉烟气同时脱硫脱硝技术的研究进展[J].电站系统工程,2007, 23(4):5~7
    [12] Okamoto M.SO2 Separation by Liquid Reactive Membranes[J].Process Techno1.Proc(Separation Tech.),l 994,(l):755~802
    [13] Nii S.Removal of CO2/SO2 fromGas Stream by aMembrane [J].Gas Separation Purification,1994,8(2):l07~l14
    [14]李定邦,刘兆辅,张大年.节能型光解法废气脱硫脱硝技术研究[J].化学世界,2002(S1):53~55
    [15] Lee Tae Gyu , Jeon Myeong Seok , Ju Hyeon Gyu . Optical catalyst reaction/plasma composite system for processing denitrification or desulfurization [P].Korean,KR 20000017881A,2000—04—06
    [16]孙智.环境工程中的高级氧化技术[M].北京:化学工业出版社,2003:288
    [17]邱鸿恩,吴丹,王睿.烟气同时脱硫脱硝技术进展[J].化学工业与工程技术,2004,25(6):1~5
    [18]刘志全关于燃煤二氧化硫排放污染防治技术政策的研究[J],环境保护,2001 (2): 8-10.
    [19]王玮,屠传经,胡亚才,微生物烟气脱硫技术的展望[J],环境污染与防治,1997, 19(2):28-30.
    [20]任南琪,环境污染防治中的生物技术[M].北京:化学工业出版社,2003
    [21]李建政,任南琪,环境工程微生物学[M].北京:化学工业出版社,2003:270
    [22]周少奇,环境生物技术[M].北京:科学出版社,2003:249
    [23] William A. Apel and Charles E. Turick,Use of denitrifying bacteria for the removal of nitrogen oxides from combustion gases,Fuel,1993,72(12):1714?1719
    [24] Ramesh Shanmugasundram, Cheng-Ming Lee and Kerry L. Sublette,Reduction of nitric oxide by denitrifying bacteria, Applied Biochemistry and biotechnology, 1993, 39/40: 727?738
    [25]蒋文举,毕列锋,李旭东,生物法废气脱硝研究,环境科学,1999,20(3):34?37
    [26]樊凌雯,冯安吉,应用生物技术净化硝酸尾气小试,应用与环境生物学报,1999,5(增刊):61?63
    [27]张华,矿化垃圾生物反应床处理NOX废气的工艺与机理研究,硕士学位论文,同济大学,2002,3
    [28]郭斌,马一太,任爱玲,王晓辉,生物法净化含NOX尾气的研究,环境工程,2003,21(2):37?39
    [29] R.Kumaraswamy, G. Muyzer, J. G. Kuenen and M. C. M. Loosdrecht, Biological removal of NOX from flue gas, Water Science and Technology, 2004, 50(6): 9-15
    [30] William P. Flanagan, William A. Apel, Joni M. Barnes, Brady D. Lee, Development of gas phase bioreactors for the removal of nitrogen oxides from synthetic flue gas streams, Fuel 81, 1953—1961,2002
    [31] Apel W A. Biofilter for removal of nitrogen oxides from contaminated gases under aerobic conditions. US Patent 5795751, 1998-04-18
    [32] Ming-Shean Chou and Jean-Hong Lin, Biotrickling filtration of nitric oxide, Air&Waste Manage Assoc., 2000(50): 502-508
    [33]张唯,孙珮石,生物法净化废气中NOX的实验研究,贵州环保科技,2004,4(10)
    [34]叶建锋,废水生物脱氮处理新技术,化学工业出版社,北京,2003
    [35]吴根,陈旭东等,微生物脱硫技术的现状及发展前景,环境保护[J],2001(1): 21-23
    [36]曹从荣,柯建明,崔高峰等,荷兰的烟气生物脱硫工艺[J],中国环保产业,2002 (5): 38-39
    [37] Philip Ligy, Deshusses Marc A. Sulfur dioxide treatment from flue gases using a biotrickling filter-bioreactor system [J].Environ. Sci. Technol, 2003, 37 (9):1978-1982
    [38] Lee K H, Sublette K L. Simultaneous combined microbial removal of sulfur dioxide and nitric from a gas stream [J].Applied Biochemistry and Biotechnolog, 1991 (28):623-634
    [39]苏丹,苏仕军等,垃圾渗滤液烟气脱硫体系的实验研究[J],环境污染治理技术与设备,2003,4 (5):9-11
    [40] Vao Houten RT. Hulshoff Pol LN&Lettinga G,Biological sulphate reduction using gas-lift reactors fed with hydrogen and carbon dioxide as energy and carbon source [J]. Biotech. Bioeng. 1994 (44):586-594
    [41] Selvaraj Punjai T. Little Mark H&Kaufman Eric, Analysis of immobilized cell bioreactors for desulfurization of flue gases and sulfite/sulfate-laden wastewater [J]. Biodegradation. 1997 (8): 227-236.
    [42] Punjai T. Selvaraj, Mark H. Little&Eric N. Kanfman, Analysis of immobilized cell bioreactors for desulfurization of flue gases and sulfite/sulfate-laden wastewater, Biodegradation, 1997, 8: 227-236
    [43]王锦艳,郑正等,生物法烟气脱硫技术的研究进展,火电厂烟气脱硫脱硝技术研讨会论文集,2005
    [44]宣群,肖文彦,张玲琪等,降解低浓度二氧化硫废气的菌株分离及其固定化研究[J].云南大学学报(自然科学版),2003, 25 (2): 157-160.
    [45]王安,张永奎等,微生物法烟气脱硫技术的展望[J],重庆环境科学,2001,23(2):37-39.
    [46]邱建辉,邱进申,赵新巧,氧化亚铁硫杆菌固定化技术研究[J],生物技术,2002,12 (2): 18-20.
    [47]王小燕,微生物脱硫工艺条件的研究,环境科学,2003,24(5)
    [48] Kuoh H. Lee and Kerry L. Sublette, Simultaneous Combined Microbial Removal of Sulfur Dioxide and Nitric Oxide from a Gas Stream, Applied Biochemistry and Biotechnology, Vol.28/29,1991:623-634
    [49] Aleksey L., Stepanov and Timo K. Korpela. Review microbial basis for the biotechnological removal of nitrogen oxides from flue gases, Biotechnol. Appl. Biochem. (1997)25, 97-104
    [50] Gommers P.J.F., Simultaneous sulfide and acelate oxidation in a denitrifying fluidized bed reactor. I. Start up and reactor performance[J]. Wat. Res., 1988 ,22: 1075-1083
    [51] Robertson L.A, Kuenen J.G., Anaerobic and aerobic denitrification by sulfide oxidizing bacteria from waste water[A], Anaerobic Waste Water Treatment TNO Corp Comm Dept[C]. Netherlands:[s.n], 1983: 3-12
    [52]马溪平,厌氧微生物学与污水处理,北京,化学工业出版社,2004
    [53]胡纪萃,周孟津,左剑恶等,废水厌氧生物处理理论与技术,北京:中国建筑工业出版社,2003
    [54] Robertson LA and Kuenen JG. Nitrogen removal from waterand waste, In: Microbial Control of Pollution, Jones CW, Cambridge University Press, 1992, 227-267
    [55] Stefess G.C. Jyebeb J.G., Factors influencing elemental sulfur production from sulfide or thiodulfate by autotrophic thiobacilli [J]. Forum Microbiology, 1989,12:92-101
    [56] Buisman C J., Optimization of sulfur production in a biotechnologicalsulfide-removing reactor [J]. Biotech Bioeng, 1990,35: 50-56
    [57] Buisman C J., Kinetics of chemical and biological sulfide oxidation in aqueous solutions [J]. Wat. Res. 1990, 24(5): 667-671
    [58] Buisman C J., Lettinga G. Sulfide from anaerobic waste treatment effluent of a papermill [J]. Wat. Res. 1990, 24(3): 313-319
    [59] Buisman C J., Biotechnological sulfide removal from effluent [J]. Wat. Sci&Tech, 1991,24(3/4): 347-356
    [60] Henshaw P F, Biotechnological removal of hydrogen sulfide from refinery wastewater and conversion to elemental sulfur [J]. Wat. Sci&Tech, 1992, 25(3): 265-267
    [61] Dezham P. Digester gas H2S control using iron salts [J]. JWPCF, 1998,60(4): 514-517
    [62] Millero F J. Oxidation of H2S in seawater as a function of temperature, pH, and ionic strength [J]. Environ Sci&Technol, 1987,21(5): 439-443
    [63] Jesus Reyes-Avila, Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification, Water Research, 2004, 38: 3313-3321
    [64] Peter J.F. Gommers, Willfm Bijleveld and J. Gijs Kuenen, Simultaneous sulfide and actate oxidation in a denitrifying fluidized bed reactor-ⅠStart-up and reactor performance, Wat. Res., 1988,22(9): 1075-1083
    [65] B. Krishnakumar & V. B. Manilal,Bacterial oxidation of sulphide under denitrifying conditions,Biotechnology Letters 21:437—440,1999
    [66]吴忠标.大气污染控制技术[M].北京:化学工业出版社,2002,244-319.
    [67]刘美英,何天荣.氮氧化物对大气环境的污染与控制[J].锅炉压力容器安全技术,2004,3:4-5.
    [68]周军英,汪云岗,钱谊.氮氧化物的污染控制对策[J].环境检测管理与技术,2000,12(2):8-12.
    [69]孙德荣,吴星五.我国氮氧化物烟气治理技术现状及发展趋势[J].云南环境科学,2003,22(3):47-50.
    [70]丁忠浩,翁达,固体和气体废弃物再生与利用[M].北京:国防工业出版社,2006:280?282
    [71]夏北成,环境污染生物降解[M].北京:化学工业出版社,2002:39
    [72]温军杰,厌氧流化床生物膜形成及脱落研究进展,中国沼气,2004,22(2).
    [73] Seok Jonghyuk. Hybid adaptive optimal control of nanerobic fluidized bed bioreactor for the waste treatment [J]. J. Biotechnol. 2003,102(2):165-175
    [74]国家环境保护总局,水和废水监测分析方法(第四版),中国环境科学出版社,北京:2003
    [75]刘宏芳,汪梅芳,许立铭,脱氮硫杆菌生长特性及其对SRB生长的影响,微生物学通报,2003,30(3):46~49
    [76]朱晓丽,用微生物防止硫酸盐还原菌对油田管材腐蚀的研究,西北大学硕士学位论文,27~29
    [77] Eleni Vaiopoulou , Paris Melidis, Alexander Aivasidis,Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification,Water Research,2005 (39): 4101–4109
    [78] Kleerebezem,R.,Mendez,R.,2001.Autotrophicdenitrification for combined hydrogen sulfide removal from biogas and post-denitrification. In: Proceedings of the World Congress Anaerobic Digestion 01, Belgium, pp. 725–730.
    [79] B.Krishnakumar and V.B.Manilal, Bacterial oxidation of sulfide under denitrifying conditions, Biotechnology Letters, 1999(21): 437-440
    [80] Fernando Fdz-polanco, Maria Fdz-polanco, Neivy Fernandez, et al, New process for simultaneous removal of nitrogen and sulphur nuder anaerobic conditions, Wat. Res. 2001,35(4):1111-1114
    [81] Jesus Reyes-Avila, Elias Razo-Flores, Jorge Gomez. Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Water Research, 2004(38):3313?3321
    [82] WANG Aijie, DU Dazhong, REN Nanqi, Tentative study on a new way of simultaneous desulfurization and denitrification, Chinese J. Chem. Eng. 2005, 13(3): 422?425
    [83] Qaisar Mahmood, Ping Zheng, Jing Cai, et al. Anoxic sulfide biooxidation usring nitrite as electron acceptor, Journal of Hazardous Materials, 2007(147): 249?256
    [84] Cai Jing, Zheng Ping, Mahmood Qaisar, et al. Effects of loading rate and hydraulic residence time on anoxic sulfide biooxidation. Journal of ZhejiangUniversity-Science A. 2007,8: 1149-1156
    [85] Justin, P. and D. P. Kelly. 1978a. Growth Kinetics of Thiobacillus denitrificans in Anaerobic and Aerobic Chemostat Culture. Journal of General Microbiology. 107: 123-130.
    [86] Harts G.Truper.Methods in Enzymol,1994, 243: 422~426
    [87] Bayy F.Taylor.M ethods in Enzymol,1994,243: 393~400
    [88]王玮,屠传经,胡亚才,微生物烟气脱硫技术的展望,环境污染与防治,1997,19(2): 28-31
    [89]王玮,一株脱硫自养菌的分离与特性研究,工业微生物[J] ,1997,27(4):30-33.
    [90] Pauline Justin and D.P. Kelly, Metabolic changes in Thiobacillus denitrificans accompanying the transition from aerobic to anaerobic growth in continuous chemostat culture. Journal of General Microbiology, 1978, 107: 131-137
    [91] Justin, P. and D. P. Kelly. 1978a. Growth Kinetics of Thiobacillus denitrificans in Anaerobic and Aerobic Chemostat Culture. Journal of General Microbiology. 107: 123-130.
    [92] Justin, P. and D. P. Kelly. 1978b. Metabolic Changes in Thiobacillus denitrificans Accompanying the Transition from Aerobic to Anaerobic Growth in Continuous Chemostat Culture. Journal of General Microbiology. 107: 131-137.
    [93] Aminuddin, M. and D. J. D. Nicholas. 1974b.“Electron Transfer During Sulphide and Sulphite Oxidation in Thiobacillus denitrificans”. Journal of General Microbiology, 82: 115-123.
    [94] Carpenter, W.T. 1932. Sodium nitrate used to control nuisance. Water Works Sewage 79: 75-176
    [95] Bentzen, G., Smith, A. T., Bennett, D., Webster, N. J., Reinholt, F., Sletholt, E. and Hobson, J. 1995. Controlled dosing of nitrate for prevention of H2S in a sewer network and the effects of the subsequent treatment processes. Wat. Sci. Technol. 31: 293-302
    [96] Allen, L.A. 1949. The effect of nitro-compounds and some other substances on production of hysrogen sulfide by sulphate-reducing bacteria in sewage. Proc. Soc. Appl. Bacteriol. 2: 26-38
    [97] Jack, T. R., Lee, E. and Mueller, J. 1985. Anaerobic gas production: controlling factors, p. 167-180. In J. E. Zajic and E. C. Donaldson (ed.), Microbes and oil recovery. Proceedings of the International Conference on Microbial Enhancement of Oil Recovery, Petroleum Bioresources, E1 Paso, Tex.
    [98] Jenneman, G.E., Mcinerney, M.J. and Knapp, R.M. 1986. Effect of nitrate on biogenic sulfide production. Appl. Environ. Microbiol. 51:1205-1211.
    [99] Telang, A.J., Ebert, S., Foght, J.M., Westlake, D.W.S., Jenneman, G.E., Gevertz, D. and Voordouw, G. 1997. Effect of nitrate injection on the microbial community in an oil field as monitored by reverse genome probing. Appl. Environ. Microbiol. 63: 1785-1793.
    [100] Thorstenson, T., Bodtker, G., Sunde, E. and Beeder, J. 2002. Biocide replacement by nitrate in sea water injection systems. Corrosion/2002, paper 02033,(Houston, TX: NACE International, 2002).
    [101] Jordan, L.C. and Walsh, J.M. 2004. Selection of an active souring management solution for a Gulf of Mexico waterflood. Corrosion 2004, paper 04759, (Houston, TX: NACE International, 2004).
    [102] Larsen, J. 2002. Downhole nitrate applications to control sulfate reducing bacteria activity and reservoir souring. Corrosion/2002, paper 02025,(Houston, TX: NACE International, 2002).
    [103] Sandbeck, K.A., and Hitzman, D.O. 1995. Biocompetitive exclusion technology: a field system to control reservoir souring and increase production, p. 311-320. In R. Byrant and K.L. Sublette (ed.), Proceedings of the 5th International Conference on Microbial Enhanced Oil Recovery and Related Biotechnology for Solving Environmental Problems. National Technical and Information Services, Springfield, VA.
    [104] Moura, I., Bursakov, S., Costa, C., and Moura, J.J.G. 1997. Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe. 3: 270-290.
    [105] Nemati, M,. Jenneman, G.E. and Voordouw, G. 2001b. Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotech. Bioeng. 74: 424-434.
    [106] Gevertz, D., Telang, A. J., Voordouw, G. and Jenneman, G. E. 2000. Isolationand characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide oxidizing bacteria isolated from oil field brine. Appl. Environ. Microbiol. 66: 2491-2501.
    [107] Nemati, M., Jenneman, G. E. and Voordouw, G. 2001c. Impact of nitrate-mediated microbial control of souring in oil reservoirs on the extent of corrosion. Biotechnol. Prog. 17: 852-859.
    [108] Greene, E.A., Hubert, C., Nemati, M., Jenneman, G. and G. Voordouw. 2003. Nitrite reductase activity of sulfate-reducting bacteria privents their inhibition by nitrate-reducing, sulfide-oxidizing bacteria. Env. Microbiol. 5: 607-617.
    [109]Claus, G. and H. J. Kutzer. 1985a. Physiology and Kinetics of Autotrophic Denitrification by Thiobacillus denitrificans. Applied Microbiology and Biotechnology. 22: 283-288.
    [110] Wejma, J.; Heerkens, J. P.; Stams, A. J. M.; Hulshoff, P. L. W.;Lettinga, G. Water Sci. Technol. 2000, 42, 251-258.
    [111]赵宇华,叶央芳,硫酸盐还原菌及其影响因子,环境污染与防治,1997,19(5) , 41―43
    [112]张小里,环境因素对硫酸盐还原菌生长的影响,中国腐蚀与防护学报,2000, 20(4)
    [113]万由令,厌氧处理废水过程中硫酸盐还原菌的生态特性,农机化研究,2004,9(5)
    [114]李新荣,沈德中,硫酸盐还原菌的生态特性及其应用[J],应用与环境生物学报,1999,(5):10—13
    [115]付玉斌,硫酸盐还原菌诱发腐蚀的研究特点[J],材料开发与应用,1999,14(5):45-47.
    [116]沈耀良,黄勇,固定化微生物污水处理技术,化工出版社,2001,35
    [117]李亚新,利用硫酸盐还原菌烟道气生物脱硫技术,环境科学与技术,2003, 26(3)
    [118] Dalsgaard, T. and Bak, F. 1994. Nitrate reduction in a sulfate-reducing bacterium, Desulfovibrio desulfuricans, isolated from rice paddy soil: sulfide inhibition, kinetics and regulation. Appl. Environ. Microbiol. 60: 291-297
    [119] Saraiva, L.M., da Costa, P.N., Conte, C, Xavier, A..V. and Legall, J. 2003. In the facultative sulphate/nitrate reducer Desulfovibrio desulfuricans ATCC 27774,the nine-haem cytochrome c is part of a membrane-bound redox complex mainly expressed in sulphate-grown cells. Biochim. Biophys. Acta. 1520: 63-70
    [120] Moura, I., Bursakov, S., Costa, C., and Moura, J.J.G. 1997. Nitrate and nitrite utilization in sulfate-reducing bacteria. Anaerobe. 3:270-290
    [121]胡纪萃,周孟津,左剑恶等,废水厌氧生物处理理论与技术,北京:中国建筑工业出版社,2003:270
    [122]郑平,冯孝善,废物生物处理[M],北京:高等教育出版社,2006,70
    [123]周少奇,环境生物技术[M].北京:科学出版社,2003:279
    [124]朱晓丽,用微生物防止硫酸盐还原菌对油田管材腐蚀的研究,硕士学位论文,西北大学微生物学,2000
    [125]孙德荣,吴星五.我国氮氧化物烟气治理技术现状及发展趋势[J].云南环境科学,2003,22(3):47-50.
    [126]何志桥,王家德,陈建孟.生物法NOX废气的研究进展[J].环境污染治理技术与设备,2002,12(2):8-12.
    [127] Kyung-Nan Min, Ergas S J, Harrison J M. Hollowfiber membrane bioreactor for nitric oxide removal[J]. Environmental Engineering Science, 2002, 19(6): 575-583
    [128]陈建孟,Lance Hershman,陈浚, Daniel P Y C.自养型生物过滤器硝化氧化一氧化氮[J].环境科学,2003, 24(2): 1-6
    [129] Davidova Y B, Schroeder E D, Chang D P Y. Biofiltration of nitric oxide. Proceedings of the 90th `Annual Meeting and Exhibition of A&WMA, Canada, June 8-13, 1997
    [130] Ming-shean Chou, Jean-hong Lin. Biotrickling filtration of nitric oxide [J]. Journal of the Air&Waste Management Association, 2000, 50: 502-508
    [131] Flanagan W P, Apel W A, Barnes J M et al. Development of gas phase bioreators for the removal of nitrogen oxides from synthetic flue gas streams [J]. Fuel, 2002, 81: 1953-1961
    [132]蒋文举,毕列锋,李旭东.生物法废气脱硝研究[J].环境科学,1999,20(3):34-37
    [133]樊凌雯,冯安吉.应用生物技术净化硝酸尾气小试[J].应用与环境生物学报,1999,5 (增刊):61-63
    [134]张华.矿化垃圾生物反应床处理NOX废气的工艺与机理研究:硕士论文,同济大学,2002
    [135]郭斌,马一太,任爱玲等.生物法净化含NOX尾气的研究[J].环境工程,2003,21(2):37-39
    [136]郑平,环境微生物学,浙江大学出版社,杭州,2002
    [137]郑平,新型生物脱氮理论与技术,科学出版社,北京,2004
    [138] Kyung-Nan Min, Ergas S J, Harrison J M. Hollowfiber membrane bioreactor for nitric oxide removal[J]. Environmental Engineering Science, 2002, 19(6): 575?583
    [139]王德民,微生物法处理工业废气研究,硕士学位论文,华东理工大学,1998
    [140]李连华,硫酸盐还原菌的驯化培养及脱硫性能研究,矿物岩石地球化学通报,2005, 24(2)
    [141]邱建辉,邱进申,赵新巧,氧化亚铁硫杆菌固定化技术研究[J],生物技术,2002,12 (2): 18-20.
    [142]王小燕,微生物脱硫工艺条件的研究,环境科学,2003,24(5)
    [143] Philip Ligy, Deshusses Marc A. Sulfur dioxide treatment from flue gases using a biotrickling filter-bioreactor system [J].Environ. Sci. Technol, 2003, 37 (9):1978-1982
    [144] Lee K H, Sublette K L. Simultaneous combined microbial removal of sulfur dioxide and nitric from a gas stream [J].Applied Biochemistry and Biotechnolog, 1991 (28):623-634
    [145]曹从荣,柯建明,崔高峰等,荷兰的烟气生物脱硫工艺[J],中国环保产业,2002 (5): 38-39
    [146]李建政,任南琪,环境工程微生物学,化学工业出版社,2004,92
    [147] R.Kumaraswamy, G. Muyzer, J. G. Kuenen and M. C. M. Loosdrecht, Biological removal of NOX from flue gas, Water Science and Technology, 2004, 50(6): 9-15
    [148] Ming-Shean Chou and Jean-Hong Lin, Biotrickling filtration of nitric oxide, Air&Waste Manage Assoc., 2000(50): 502-508
    [149]张唯,孙珮石,生物法净化废气中NOX的实验研究,贵州环保科技,2004,4(10)
    [150] Gommers P.J.F., Simultaneous sulfide and acelate oxidation in a denitrifying fluidized bed reactor. I. Start up and reactor performance[J]. Wat. Res., 1988 ,22: 1075-1083
    [151] Robertson L.A, Kuenen J.G., Anaerobic and aerobic denitrification by sulfideoxidizing bacteria from waste water[A], Anaerobic Waste Water Treatment TNO Corp Comm Dept[C]. Netherlands:[s.n], 1983: 3-12
    [152]缪应祺,废水生物脱硫机理及技术[M].北京:化学工业出版社,200
    [153]贡俊,张肇铭等,脱硫脱硫弧菌去除SO2的工艺条件研究,应用与环境生物学报,2006,12(1):92?95
    [154]李华,微生物法烟气脱硫的基础研究,煤炭转化,2005,28(3)
    [155] Robert George Madean,Micliele Prevost, Josee Coallier,Thiosulfate interference in the biodegradable dissolved organic carbon assay, Wat. Res. 1996,30(8):1858-1864
    [156]任南琪,王爱杰,厌氧生物技术原理与应用,化学工业出版社,2004,132
    [157]肖琳,杨柳燕等,环境微生物实验技术,中国环境科学出版社,2004,217
    [158]郑平,冯孝善,废物生物处理,北京:高等教育出版社,2006,82
    [159]夏北成,环境污染生物降解,化学工业出版社,北京,2002,152
    [160]徐亚同,黄民生,废水生物处理的运行管理与异常对策,化学工业出版社,2003,57
    [161]李亚新,陈丽华,利用硫酸盐还原菌烟道气生物脱硫技术,环境科学与技术,2003,26(3):51?53
    [162] Jan weima,A1fons J M Stams,Look W Hulshoff Po1, et a1, Thermophi1ic Su1fate Reduction and Methangenesis with Methano1 in a High Rate Anaerobic Rearobic Reactor [J].Biotech biceng,2000,67:354—363.
    [163] Lee K H.Sublette K L.Simutaneous combined microbial removal of sulfur dioxide and nitric oixde from a gas stream[J] . Applied Biochemisty and Biotechnology.l991.28/29:623~634.
    [164] Sublette K L.Gwozdz K J.An economic analysis of microbial reduction of sulfur dioxide as a means of byproduct recovery from regenerable processes for flue gas desulfurization [J].Applied Biochemistry and Biotechnology.1991.28/29:635~646.
    [165] Carr GJ,Page MD and Ferguson SJ, The energy-conserving nitric-oxide-reductase system in Paracoccus denitrificans distination from the nitrite reductase that catalyses synthesis of nitric oxide and evidence from trapping experiments for nitric oxide as a free intermediate suring denitrification. Eur JBiochem, 1989,179:683-692
    [166] Carr GJ and Ferguson SJ, The nitric oxide reductase of Paracoccus denitrificans. Biochem J, 1990, 269:423-429
    [167] De Groote MA, Granger D, Xu Y,et al. Genetic and redox determinants of nitric oxide cytotoxicity in a Salmondla typhimurium model. Proc Natl Acad Sci USA, 1995,92:6399-6403
    [168] Acuna M?E, Perez F., Microbiological and kinetic aspects of a biofilter for the removal of toluene from waste gases. Biotechnology and Bioengineering,1999, 63(2):17 5-184
    [169]孙珮石,杨显万,生物法净化废气中低浓度有机废气的机理,中国环境科学,1997, 17(6).
    [170]孙珮石,生物化学法净化低浓度有机废气的研究,昆明理工大学博士论文,1999,12
    [171]马建锋,生物滤床处理含氮氧化物废气的实验研究与理论分析,硕士论文,浙江工业大学,2004年
    [172] F.M. Cuerro-Lopez, Effect of nitrogen loading rate and carbon source on denitrification and sludge settleability in upflow anaerobic sludge blanket(UASB), Wat. Sci. Tech., 1999, 40(8): 123-130
    [172]Aleksey L. Stepanov and Timo K. Korpela, Review microbial basis for the biotechnological removal of nitrogen oxides from flue gases, Biotechnol. Appl. Biochem. (1997)25, 97-104
    [173]程英爽,张会娟,靳兴华等,水中亚硫酸还原菌的检测,中国供水卫生,2000,30:10?11
    [174] Chen, K. Y., and J. C. Morris. 1972. Kinetics of oxidation of aqueous sulfide by O2. Environ. Sci. Technol. 6:529–537.
    [175] Janssen, A. J. H., R. Sleyster, C. van der Kaa, A. Jochemsen, J. Bontsema, and G.Lettinga. 1995. Biological sulphide oxidation in a fed-batch reactor.Biotechnol. Bioeng. 47:327–333.
    [176] I. Manconi, A. Carucci, Simultaneous biological removal of sulfide and nitrate by autotrophic denitrification in an activated sludge system, Water Science&Technology, 53(12): 91-99
    [177] Bisogni J.J. and Driscoll C.T., Denitrification using thiodulphate andsulphide, J. Enviro. Engineer. Div., 1977, 103: 31-36
    [178] Driscoll C.T.and Bisogni J.J., The use of sulphur and sulphide in packed bed reactors for autotrophic denitrification, Journal WPCF. 1978,50:569-577
    [179] Cervantes F, MonroyO, Go′mez J. Influence of ammonium on the performance of a denitrifying culture under heterotrophic conditions. Appl Biochem Biotechnol 1999;81:13–21.
    [180]Gommers PJ, Buleveld W, Zuiderwijk FJ, Kuenen JG. Simultaneous sulfide and acetate oxidation in a denitrifying fluidized bed reactor-I. Water Res 1988;22:1075–83.
    [181] S.E. Oh, Y.B. Yoo, Effect of organics on sulfur-utilizing autotrophic denitrification under mixtrophic conditions, Journal of Biotechnology, 2001, 91: 1-8
    [182]任延丽,靖元孝,反硝化细菌在污水处理作用中的研究,微生物学杂志,2005,25(2):88~92
    [183]贺延龄,废水的厌氧生物处理,中国轻工业出版社,pp47
    [184] S.E.Oh,Y.B.Yoo,J.C.Young,I.S.Kim.Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions[J].Journal of Biotechnology.2001,92:1—8
    [185]Van der Hock JP.Kappelhof JWNM.Hijnen WAM.Biological nitrate removal from ground water by sulfur/limestone denitrification[C].Extended summaries-Enviromental Biotechnology Group Meeting.1998,197—200
    [186]Zhang TC,Lampe DG.Sulfur:Limestone autotrophic denitrification processes for treatment of ni ed water batch experiments[J].Wat.Res.,1999,33(3):599—608
    [187]马溪平,厌氧微生物学与污水处理,北京:化学工业出版社,2005:83
    [188]贺延龄,废水的厌氧生物处理,中国轻工业出版社
    [189] Yang, J. et al. Recovery of anaerobic digestion after exposure to toxicants, Final Report, US Dept. of Energy. Contract No. EC-77-S-02-4391
    [190] Field J.A. and R.Sierra, Waste characteristics and factors affecting reactor performance, in: Int. Course on Anaerobic Wastewater Treatment. The Netherlands: WALL, 1990
    [191] Kugelman, I.J.,and K.K.Chin,”Toxicity,Synergism, and the Antagonism inAnaerobic Waste Treatement Processes”Amaerobic Biological Treatment Processes,F.G.Pohland, editor,American Chemical Society Adances in Chemistry Series, Vol. 105,p.55-99,1971.
    [192] Shin,H.S.,MLJ.Moon,J.J Lee,Y.J Chung,Y.C.Song,and B.U, Bae. Anaerobic Treatability of Food Waste with High Salt Concentration,Proc.7th International Symposia on Anaerobic Digestion-South Africa,p.120,1994.
    [193] Daoming,S.and C.F.Forster,An examination of the start-up of a thermophilic upflow sludge blandet reactor treating a synthetic coffee waste,Enmiron.Tech.,Vol.14,p.965-972,1993.
    [194] Dong.UK Lee,I1-su Lee,Ye-Duk Choi,Jae-Ho Bae.Effects of external carbo n source and empty bed contacttime on simultaneous heterotrophic and sulfur-utilizing autotrophic denitrification[J] . ProcessBiochemistry , 2001 ,36:1215—1224.
    [195] I. Manconi, A. Carucci, Simultaneous biological removal of sulfide and nitrate by autotrophic denitrification in an activated sludge system, Water Science&Technology, 53(12): 91-99
    [196]王德民,华东理工大学硕士学位论文,微生物法处理工业废气研究,1998
    [197]贺延龄,废水的厌氧生物处理,中国轻工业出版社,北京,2000
    [198] Sublette K.L., Kolhatkar R. and Raterman K. Technological aspects of the microbial treatment of sulfide-rich wastwaters: A case study, Biodegradation, 1998, 9: 259-271
    [199] Justin P. and Kelly D.P., Metabolic changes in Thiobacillus denitrificans accompanying the transition from aerobic to anaerobic growth in continuous chemostat culture, J. General Microb, 1978,107:131-137
    [200] T. Peeters and M.I.H.Aleem, Oxidation of sulfur compounds and electron transport in Thiobacillus denitrificans, Auch. Mikrobiol. 1970(71): 319-330
    [201] Barnes, J.M., Apel, W.A., Barrett, K.B. Removal of nitrogen oxides from gas streams using biofiltration, J. Haz. Mater. 1995(41): 315-326
    [202] R.M.Awadallah, M.E.Soltan, M.S.A. Shabeb and S.M.N. Moalla, Bacteial removal of nitrate, nitrite and sulphate in wastewater, Wat. Res.,1998, 32(10): 3080-3084

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700