基于模糊函数切割法的典型无线电引信抗干扰性能测度
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线电引信抗干扰性能测度理论和方法是表征其抗干扰能力的度量原则和方法,也是评定引信抗干扰能力及其抗干扰技术指标的重要依据。对无线电引信抗干扰性能客观科学的评价是确保引信有效使用、弹药威力有效发挥的基础与前提。以几种典型无线电引信为研究对象,建立它们的等效统一模型,深入分析其中具有代表性的引信——伪码调相连续波引信的抗噪声性能和抗典型压制性干扰性能,建立有源干扰机理模型,提出基于模糊函数切割法的典型无线电引信抗干扰性能测度理论和方法,并用该方法分别对脉冲体制引信和周期调制连续波体制引信固有的抗干扰性能进行测度。主要内容有:
     (1)在归纳总结脉冲定距引信、脉冲多普勒引信、伪码调相脉冲定距引信与伪码调相脉冲多普勒引信等四种脉冲体制引信和对称三角调频连续波引信、锯齿调频连续波引信与伪码调相连续波引信等三种周期调制连续波体制引信工作原理的基础上,通过对引信系统各模块输入输出信号的分析与推导,提炼出这些引信基于相关(匹配)接收思想实现的本质,建立典型无线电引信工作原理的等效统一模型。
     (2)通过推导基于多普勒效应的伪码调相连续波引信接收机信噪比/信干比增益,研究其抗噪声(射频噪声干扰)性能、噪声调频干扰和噪声调幅干扰性能,并得出射频噪声、噪声调频和噪声调幅等干扰波形对伪码调相连续波引信的干扰效果依次减弱的结论。
     (3)分析不同多普勒频移和时延下的单载频矩形脉冲信号模糊函数的切割图;利用m序列的性质,结合概率统计的相应理论,推导m序列编码脉冲压缩信号的模糊函数。利用推导的公式,通过计算机仿真,揭示其原点附近的细微结构。
     (4)根据周期模糊函数的性质及其与单周期模糊函数的关系,推导出周期调制连续波信号周期模糊函数的统一表达式,并推导对称三角调频、锯齿调频连续波信号和伪码调相连续波信号的单周期模糊函数和周期模糊函数,对它们的3-D模糊图、不同多普勒频移下以及不同时延下的切割图进行分析。
     (5)在建立典型无线电引信等效统一模型、有源干扰机理模型,以及模糊函数和匹配滤与相关接收等效关系证明的基础上,提出基于模糊函数切割法的典型无线电引信抗干扰性能测度理论和方法。
     (6)利用模糊函数切割法对所研究的四种脉冲体制引信和三种周期调制连续波体制引信固有的抗干扰性能进行测度,揭示它们的抗干扰性能随其特征参数的变化规律,并分析它们之间固有抗干扰性能强弱的对比情况。
Not only measurement principles and means for anti-jamming capability of radio proximity fuzes (RPF), but also the important basis for their anti-jamming technology guide-lines are characterized by its evaluation theory and methodology. Anti-jamming capability of RPF can be evaluated objectively and scientifically, which is a foundation and prerequisite for the effective usage of RPF and effective release of ammunition power. Several typical RPF are taken as research objects. Their equivalent generalized theoretical model is established. The anti-noise performance and anti-typical-barrage-jamming capability of the pseudo-random binary phase coded CW fuze as a representative of them are analyzed. The active jamming mechanism model is established. The evaluation theory and methodology for anti-jamming capability of RPF based on methodology of ambiguity function incision is proposed, which is applied to evaluating the anti-jamming capability of typical pulse fuzes and periodic modulation CW fuzes respectively. The main contributions are as followings:
     (1) Operation principles of the four typical pulse type fuzes such as pulse ranging fuze, pulse Doppler fuze, pseudo-random binary phase coded pulse ranging fuze and pseudo-random binary phase coded pulse Doppler fuze are summarized. Meanwhile, it also summarizes the operation principles of three typical CW type fuzes such as symmetric triangular frequency modulated CW fuze, sawtooth frequency modulated CW fuze and pseudo-random binary phase coded CW fuze. On this basis, these fuzes are realized on the basis of correlation reception, by analyzing and deducing the input/output signal of each module of fuzes. Equivalent generalized model of them is established.
     (2) anti-noise performance/anti-radio-frequency jamming capability, anti-FM-by-noise jamming capability, anti-AM-by-noise jamming capability of pseudo-random binary phase coded CW fuze are analyzed, which is by means of deriving the SNR/SJR of the fuze receiver based on Doppler effect. The jamming effect decreases in order of radio frequency jamming, FM-by-noise jamming, AM-by-noise jamming.
     (3) Cuts of ambiguity function for rectangular pulse signal at certain different Doppler shifts and time delays are analyzed. Ambiguity function of pulse coded by m-sequence is derived by the properties of m-sequence and the related probability theory. Fine structures around the original are described by the formula derived and simulation.
     (4) According to the properties of periodic ambiguity function (PAF) and the relationship between PAF and single PAF, the generalized PAF of CW signal modulated periodically is derived. The single PAF and PAF of symmetric triangular frequency modulated CW signal, sawtooth frequency modulated CW signal and pseudo-random binary phase coded CW signal are derived. Their cuts of ambiguity function for rectangular pulse signal at certain different Doppler shifts and time delays are analyzed. Their 3-D ambiguity patterns are analyzed also.
     (5) On the basis of the equivalent generalized model, active jamming mechanism model and the equivalent between ambiguity function, match filter and correlator, the evaluation theory and methodology for anti-jamming capability of RPF based on the methodology of ambiguity function incision is proposed.
     (6) The inherent anti-jamming capability of the typical fuzes is evaluated by the methodology of ambiguity function incision. Their inherent anti-jamming capability changing with their characteristic parameters is described. The comparisons of anti-jamming capability between them are analyzed.
引文
[1]李玉清.近20年来国外导弹引信技术研究与发展概况.制导与引信,2002,23(3):1-8
    [2]Mehmet Akangol; Target Detection by the Ambiguity Function Technique and the Conventional Fourier Transform Technique in Frequency Coded Continuous Wave Radars, Master, thesis. Ankara, Turkey:the Graduate School of Natural and Applied Sciences of Middle East Technical University, Dec,2005.
    [3]Lars-Erik Skagerlund; Device for ground-controlled activation of proximity fuzes. US4,030,420,June21,1977
    [4]Arleigh B. Baker; Longwood, Fla; Adjustable range proximity fuze. US4,651,647, Mar. 24,1987.
    [5]Cook; Richard D., Macomber; Bennie D., Vizard; William F., Williamson; Eldridge A., Estrada; Anthony.; Short pulse automatic ranging anti-ship missile fuze. US6,617,998, Sep. 9,2003
    [6]Bogle Robert W.; Superregenerative pulse radar proximity fuze. US3,329,952, Jul.4, 1967
    [7]Weiss Frank; Coded pulse radar fuze. US4,214,240, July,22,1980
    [8]Philips Electronic and Associated Industries Limited of Abacus House; An electronic fuse for projectile. GB 1,308,886, Mar.7,1973
    [9]Kuck John H.; Mccord William M.; Pulse Doppler Fuze. CA927,959, Jun.5,1973.
    [10]Flowers John W.; Pulse Doppler proximity fuze. US3,994,229, Nov.30,1976
    [11]Bradford William C.; High altitude pulse Doppler fuze. US4,089,000, May.9,1978
    [12]Mark S. Miner; Charles W. Crickman; Air target fuze time-gated decision circuit. US4,096,480, Jun.20,1978
    [13]Mark S. Miner; Charles W. Crickman; Air target fuze decision circuit. US4,096,805, Jun.27,1978
    [14]Paul M. Tedder; Doppler fuzing system having a high resistance to noise and jamming. US4,139,849, Feb.13,1979
    [15]William E. Doyle; Grid pulsed oscillator and detector. US4,194,202, Mar.18,1980
    [16]Kuck John H.; Pulse Doppler-radio proximity fuze. US4,194,203, Mar.18,1980
    [17]Kuck John H.; Pulse Doppler radio proximity fuze. US4,195,295, Mar.25,1980
    [18]Peter F. Barbella; Ronald A. Wagner; Radar fuze system. US4,599,616, Jul.8,1986
    [19]John O.; Wedel Jr.; Electronic target radar simulator. US5,117,230, May 26,1992
    [20]Suenaga Shugo; Proximity fuze. JP8,114,400, May 7,1996
    [21]Delhote Christian; Pulse compression technique for phase coded radar transmissions. FR2734431,Nov.22,1996
    [22]Frank Weiss; Coded pulse radar fuze. US4,214,240, Jun.22,1980
    [23]Gregory Hubert Piesinger. Intrusion Detection, Tracking, and Identification method and apparatus. US6,912,145, Jul.26,2005
    [24]Gregory Hubert Piesinger. Method for independently setting range resolution, Doppler resolution, and processing gain of a pseudo-random coded radar system. US7,382,310, Jun. 3,2008
    [25]刘己斌,赵惠昌,杨方.伪码调相与脉冲多普勒复合引信的抗噪声性能分析.探测与控制学报.2003,25(3):44-47
    [26]丁庆海,陆锦辉,庄志洪等.随机脉位序列调制的脉冲多普勒引信原理.宇航学报,1999,20(1):104-108
    [27]朱晓华,王建新,刘中,是湘全.随机脉位调制和随机二相码调相复合体制雷达引信.兵工学报.2002,23(4):489-492
    [28]朱晓华,王建新,刘中等.随机脉位调制和随机二相码调相复合体制雷达引信.兵工学报,2002,23(4):489-492
    [29]刘己斌,赵惠昌.伪码调相与PAM复合测距系统研究.宇航学报.2004,25(2):152-157
    [30]刘己斌,赵惠昌,杨方.基于伪随机码的相位调制与脉位调制复合引信.兵工学报,2004,25(5):634-637
    [31]刘国岁,顾红,苏卫民.随机信号雷达.北京:国防工业出版社2005
    [32]Deng Jianping; Zhao huichang; Zhou xingang; Waveform Analysis of PRPPM-PRBC Compound Systemic Fuze.2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications,16-17 Aug.2007:1219-1222
    [33]熊刚,赵惠昌,杨小牛.伪码调相与正弦调频复合调制脉冲串引信.现代雷达,2007,29(2):12-16
    [34]邓建平,赵惠昌,周新刚,.李军华.伪随机脉位调制与单极性伪码调相复合体制引信.宇航学报,2007,28(2):398-403
    [35]Tozzi L. Mario:Resolution in frequency modulated radar, Ph.D. thesis. Michigan, US: University of Maryland, May,1972
    [36]David F. Scheets; FM-CW fuze system. US3,900,875, Aug.19,1975
    [37]Gilbert Wilkes; FM Fuze circuit. US4,203,366, May,20,1980
    [38]Salvador J. Peperone; Enhanced accuracy Doppler fuze. US4,205,316, May,27,1980
    [39]Salvador J. Peperone; FM-CW Fuze. US4,360,812, Nov.23,1982
    [40]Donald M. Bosch; Steven J. Loughbran; Scott M. Thomas; Proximity fuze transceiver. US5,266,957,Nov.30,1993
    [41]James R. Hager; Gregory J. Haubrich; Radar fuze. US Patent:5,387,917, Feb.7,1995
    [42]Igor V. komarov; Sergey M. Smolskiy; Fundamentals of short-range FM radar. Norwood, MA:Artech House, Inc.,2003
    [43]John G. Rawcliffe; David E. Patrick; John Anderson; Proximity fuze. US6,834,591, Dec,28,2004.
    [44]崔占忠.调频测距信号分析.探测与控制学报,2006,28(5):1-3
    [45]周新刚,赵惠昌,邓建平等.连续波线性调频引信中多普勒频率抑制研究.探测与控制学报,2007,29(5):44—47
    [46]Falconnier Jean-Claude; Klein Claude; Meriaux Claude; Electromagnetic system with correlation detection and proximity fuze using said system. EP0064900, Nov.17,1982
    [47]Eric L.C. White. Correlation arrangements. US4209785, Jun.24,1980
    [48]Alex J. Ivanov; James A. Driscoll; Richard P. Linnehan; etc. Directional warhead fuze. US5,359,934, Nov.1,1994
    [49]Damian F. Albanese; Richard R. Waer; Large area motion sensor using pseudo-random coding technique. US4,051,472, Sept.27,1977
    [50]张居正.伪随机码调相引信原理与设计.制导与引信.2000(3):1-7
    [51]龚济民.伪随机码调相引信.兵工学报,1989(4):16-23.
    [52]Lloyd D. Bruce; Dell R. Malstrom; Radar system and method of operating same. US5,734,389, Mar.31,1998
    [53]洪嘉祥.伪随机码调相与正弦调频复合引信.南京理工大学学报.1994(4):56~60
    [54]胡泽宾,赵惠昌,孙巍.伪码调相与正弦调幅复合体制引信.电子与信息学报,2005,27(8):1237-1239
    [55]周新刚,赵惠昌,刘凤格,涂友超.伪码调相与线性调频复合调制引信,宇航学报,2008,29(5):1026-1030
    [56]J. A. Boyd (Editor); D. B. Harris (Editor); D. D. King (Editor); etc. Electronic Counter-measures. Los Altos, CA:Peninsula Publishing,1978
    [57]杜汉卿.无线电引信抗干扰原理.第1版.北京:兵器工业出版社,1988
    [58]Burns, R.W.; Early history of the proximity fuze (1937-1940). Science, Measurement and Technology, IEE Proceedings A.1993,140(3):224-236
    [59]Brown. L.; The proximity fuze. Aerospace and Electronic Syetems magazine, IEEE, 1993,8(7):3-1OVolume 8, Issue 7, July 1993:3-10
    [60]梁棠文,李玉清,何武城等.防空导弹引信设计及仿真技术.北京:宇航出版社,1995.
    [61]Brown, L.; The origins of the proximity fuze. Microwave Symposium Digest, IEEE MTT-S International, Volume 2,7-12 June 1998 Page(s):425-428
    [62]梁棠文.国外防空导弹引信技术研究动向与发展趋势.制导与引信,1994,3:1-6,12
    [63]马宝华.战争、技术与引信——关于引信及引信技术的发展.2001,23(1):1-6
    [64]施坤林,黄峥,马宝华等.国外引信技术发展趋势分析与加速发展我国引信技术的必要性.2005,27(3):1-5
    [65]Paul M. Tedder; Doppler fuzing system having a high resistance to noise and jamming. US4,139,849, Feb,13,1979
    [66]Charles B. Brown; Doppler frequency proximity fuze. US4,196,433, Apr.l 1980
    [67]M. Musa; S. Salous; Ambiguity elimination in HF FMCW radar systems. IEE Proc.-Radaa Sonar Navig., Vol.147, No.4, August 2000:162-183
    [68]唐钟藩,张万周.国外导弹.北京:国防工业出版社,1977
    [69]Thomas B. Whiteley; Donald J. Adrian; Random FM autocorrelation fuze system. US4,220,952, Sep.2,1980
    [70]Peter F. Barbrlla; Ronald A. Wagner; Radar fuze system. US Patent:4,599,616, Jul.8, 1986
    [71]Louis F. Jones; Proximity fuze. US Patent.5,012,742, May 7,1991
    [72]Daniel C. Cawte; Fuze. US Patent:5,020,435, Jun.4,1991
    [73]William R. Magorian; Dual gate target detecting device (TDD). US Patent:5,218,164, Jun.8,1993
    [74]Perkins, T.O.; Teunas, J.A.; Cann, A.J.;etc; A Low Cost, Accurate, Target Detecting Device for Altimetry and Fuzing. Microwave Symposium Digest, IEEE MTT-S International, Volume 85, Issue 1, Jun 1985, Page(s):155-158
    [75]崔占忠,宋世和,徐立新.近炸引信原理.第2版.北京:北京理工大学出版社,2005
    [76]Burton, A.; Mountford, J.; Garrod, A.; An air target engagement simulation for radar proximity fuze development and performance assessment. Radar System Modeling, IEE Colloquium on,8 Oct.1998 Page(s):3/1-3/7
    [77]Pollman, M.D.; Katzin, P.; Bedard, B.; Aparin, V.; Grammer, W.; Orgusaar, R.; A MMIC radar chip for use in air-to-air missile fuzing applications. Microwave and Millimeter-Wave Monolithic Circuits Symposium,1996. Digest of Papers, IEEE 1996, 16-18 June 1996 Page(s):185-188
    [78]Nyongesa, H.O.; Kent, S.; O'Keefe, R.; Genetic programming for anti-air missile proximity fuze delay-time algorithms. Aerospace and Electronic Systems Magazine, IEEE. 2001,16(1):41-45
    [79]李红旗,李东光,李世义等.弹道修正引信修正弹道视景仿真系统.系统仿真学报,2007,19(20):4725-4726,4822
    [80]崔鹏飞,施坤林,苑伟政.基于极大值原理的弹道修正引信弹道优化控制研究.兵工学报,2007,28(3):301-304
    [81]李东国,周国勇,马宝华.一维弹道修正引信弹道敏感技术.兵工学报,2003,24(3):309-312
    [82]杨建伟,王跃科,杨俊.基于软件无线电的引信测距算法研究.制导与引信,2005,26(1):20-23
    [83]刘斌,涂建平,庄志洪.红外成像GIF引信起爆控制算法研究.探测与控制学报,2005,27(5):22-25
    [84]张健,李世义,李会杰.基于SystemView的引信用GPS弹道敏感器仿真.系统仿真学报,2005,17(12):3043-3045
    [85]冯鹏洲,朱继南,吴志亮.美国典型MEMS引信安全保险装置分析.探测与控制学报,2007,29(5):26-33
    [86]孙磊,张河,周晓东.一种微机电(MEMS)引信安全系统.探测与控制学报2004,26(2):10-12
    [87]S. L. Johnston (ed.). Radar Electronic Counter-Countermeasures, Norwood, MA: Artech House, Inc.,1979.
    [88]韩培尧.雷达抗干扰技术.第1版.北京:国防工业出版社,1980
    [89]林象平.雷达对抗原理.第1版.西安:西北电讯工程学院出版社,1985
    [90]D. C. Schleher. Introduction to Electronic Warfare, Norwood, MA:Artech House, Inc., 1986.
    [91]August Golden Jr.; Radar Electronic Warfare. Washington, DC:American Institute of Aeronautics and Astronautics, Inc.,1987
    [92]Filippo Neri. Introduction to Electronic Defense Systems,2nd Edition. Norwood, MA: Artech House, Inc.,2001
    [93]Sergei A. Vakin; Lev N. Shustov; Robert H. Dunwell. Fundamentals of Electronic Warfare. Norwood, MA:Artech House, Inc.,2001
    [94]赵国庆.雷达对抗原理.西安:西安电子科技大学出版社,2003
    [95]栗苹,赵国庆,杨小牛等.信息对抗技术.北京:清华大学出版社,2008
    [96]Maksimov, M. V., etc. Radar Anti-Jamming Techniques. Norwood, MA:Artech House, Inc.,1979.
    [97]David L. Adamy. Introduction to Electronic Warfare Modeling and Simulation. Norwood, MA:Artech House, Inc.,2003
    [98]Richard A. Poisel. Modern Communications Jamming Principles and Techniques. Norwood, MA:Artech House, Inc.,2004
    [99]柯甘.N.M.雷达引信原理.华恭,兴华,译.第1版.北京:国防工业出版社,1980
    [100]马忠怒.防空导弹非接触引信原理.北京:国防工业出版社,1983
    [101]余叔涵.无线电引信原理.第1版.北京:国防工业出版社,1982
    [102]张清泰.无线电引信总体设计原理.第1版.北京:国防工业出版社,1985
    [103]张玉琤.近炸引信设计原理.第1版.北京:北京理工大学出版社,1996
    [104]胡泽宾.伪码调相引信实验干扰源系统关键技术及工程应用研究.南京:南京理工大学电子工程与光电技术学院,2006
    [105]John O. Dick; System for testing proximity fuze. US4,083,238, Apr.11,1978
    [106]Richard E. Marinaccio; Ward M. Meier; Proximity fuze jammer. US4,121,214, Oct. 17,1978
    [107]Clifford G. Dorn; Filtered-noise jammer. US3,942,179, Mar.2,1976
    [108]William H. Proud; Radar jammer homing circuit. US4,092,645, May 30,1978
    [109]Philip S. Hacker; Radar jammer with an antenna array of pseudo-randomly spaced radiating elements. US4,467,328, Aug.21,1984
    [110]Ronald J. Gripshover; Larry F. Rinehart; Frozen wave generator jammer. US4.491,842, Jan.1,1985
    [111]William J. Kitchen; Police radar jammer. US5,673,049, Sep.30,1997
    [112]Saul Janusas; Monopulse radar jammer using millimeter wave techniques. US5,200,753,Apr.6,1993
    [113]Martin R. Richmond; On board jammer. US6,420,992, Jun.16,2002
    [114]Martin R. Richmond; Expendable jammer. US6,429,800 Bl, Aug.6,2002
    [115]张旭东,郑世举,余德瑛.国外无线电引信干扰机的发展状况.制导与引信,2004,25(4):22-25
    [116]张锡熊,陈方林.雷达抗干扰原理.北京:科学出版社,1981
    [117]刘树德.雷达反对抗的基本理论与技术.北京:北京理工大学出版社,1989
    [118]龙德浩,陈志清.抗干扰理论与方法.四川:四川科学技术出版社,1989
    [119]陈静.雷达箔条干扰原理.北京:国防工业出版社,2007
    [120]Skolnick, M.L.; Introduction to radar systems (2nd). New York:McGraw-Hill,1980.
    [121]L. Nengjing and Z. Yi-Ting. A survey of radar ECM-ECCM. IEEE Transactions on Aerospace and Electronic Systems, Volume 31, Issue 3,1995, Page(s):1110-1120
    [122]D. K. Barton. Radar System Analysis and Modeling, Norwood, MA:Artech House, Inc.,2005
    [123]Nicholas J. Willis. Bistatic Radar. Raleigh, NC:SciTech Publishing Inc.,2005
    [124]R. G. Wiley, ELINT:The Interception and Analysis of Radar Signals. Norwood, MA: Artech House, Inc.,2006.
    [125]Alfonso Farina; Chapter 24 Electronic Counter-Countermeasures.//Merrill I. Skolnik (ed.). Radar handbook,3rd Edition. New York:McGraw-Hill,2008
    [126]Phillip E. Pace; Detecting and Classifying Low Probability of Intercept Radar,2nd Edition, Norwood, MA:Artech House, Inc.,2009.
    [126]Blanding, W.R.; Koch, W.; Nickel, U.; Adaptive Phased-Array Tracking in ECM using Negative Information. IEEE Transactions on Aerospace and Electronic Systems, Volume 45, Issues 1,2009 Page(s):152-166
    [127]Madni, A.M.; Endler, H.M.; Solid-state multiple deception jamming system for ECM applications. Aerospace Conference,1998. Proceedings.,IEEE, Volume 1,21-28 March 1998 Page(s):331-343
    [128]Benren, T.; An ECCM model and the technical development trends to the demands of the future EW combat. Aerospace and Electronic Systems Magazine, IEEE, Volume 9, Issue 6, June 1994 Page(s):12-16
    [129]Farina, A.; Langsford, P. A.; Sarno, G. C; etc. ECCM techniques for a rotating, multifunction, phased-array radar. European Microwave Conference,1995.25th, Volume 1, Oct.1995 Page(s):490-495
    [130]George W. Stimson. Introduction to Airborne Radar,2nd Edition. Raleigh, NC: SciTech Publishing Inc.,1998
    [131]G. Richard Curry. Radar System Performance Modeling,2nd Edition. Norwood, MA: Artech House, Inc.,2005
    [132]Jian-ming Guo; Jian-xun Li; Qiang Lv; Survey on Radar ECCM Methods and Trends in its Developments. Radar,2006. CIE'06. International Conference on,16-19 Oct.2006 Page(s):l-4
    [133]Akhtar, J.; An ECCM Scheme for Orthogonal Independent Range-Focusing of Real and False Targets. Radar Conference,2007 IEEE,17-20 April 2007 Page(s):846-849
    [134]Akhtar, Jabran; An ECCM signaling approach for deep fading of jamming reflectors. Radar Systems,2007 IET International Conference on,15-18 Oct.2007 Page(s):l-5
    [135]Foglia, G; Marcantoni, D.; Trotta, F.; etc. ECM counteracting SLB:Analysis and effectiveness evaluation. Radar Conference,2008. RADAR'08. IEEE,26-30 May 2008 Page(s):l-6
    [136]Chong, C.K.; Davis, J.A.; Le Borgne, R.H.; etc. Development of Ka-Band Helix-TWTs for Communications, Radar and ECM Applications. Vacuum Electronics Conference,2007. IVEC'07. IEEE International,15-17 May 2007, Page(s):l-2
    [137]Johnston, S.L.; Formulas for measuring radar ECCM capability. Communications, Radar and Signal Processing, IEE Proceedings F, Volume 132, Issue 3, June 1985 Page(s):198-200
    [138]S. L. Johnston, The ECCM improvement factor (EIF):illustration examples, applications, and considerations in its utilization in radar ECCM performance assessment. Int. Conf. Radar, Nanjing (China), November 4-7,1986, pp.149-154.
    [139]L. Nengjing. Formulas for measuring radar ECCM capability. IEE Proc, vol.131, pt. F. pp.417-423, July 1984.
    [140]Nengjing, Li.; Formulas for measuring radar ECCM capability. Communications, Radar and Signal Processing, IEE Proceedings F, Volume 131, Issue 4, July 1984 Page(s):417-423
    [141]Nengjing, L.I.; Reply:Formulas for measuring radar ECCM capability. Communications, Radar and Signal Processing, IEE Proceedings F, Volume 132, Issue 3, June 1985 Page(s):200-201
    [142]保铮,谢维信,.朱宾.雷达系统抗欺骗型干扰性能的测度.电子学报,1989,17(6):13-20.
    [143]J. Clarke and A. R. Subramanian. A game theory approach to radar ECCM evaluation. Proc. of IEEE 1985 Int. Radar Conf, Arlington (VA), USA, May 6-9,1985, pp.197-203.
    [144]杨志强.何芳.谢虹.基于BP神经网络的雷达网抗干扰性能综合评估.火力与指挥控制,2005,30(2):41-44
    [145]韩木刚.董敏周.于云峰.闰杰.用基于指数标度的层次分析法评估红外导弹导引头抗干扰性能.西北工业大学学报,2008,26(1):69—72.
    [146]Chi Yoon Kyu. Evaluation of radar performance degradation due to standoff jamming. Monterey:Naval Postgraduate School,1992.
    [147]Subramanian, A. K.; An LPI radar model for ECCM evaluation. International Conference on Radar,1st, Nanjing, People's Republic of China, Nov.4-7,1986. Beijing, China Academic Publishers,1986, p.161-166.
    [148]D. H. Cook; ECM/ECCM systems simulation program, electronic and aerospace systems record. IEEE Conv. Rec. EASCON'68, September 9-11,1968, pp.181-186.
    [149]L. Nengjing; ECCM efficacy assessment in surveillance radar analysis and simulation. IRS'98, Int. Radar Symp., Munich, Germany, September 15-17,1998, pp. 1415-1419.
    [150]F. A. Studer; M. Toma; F. Vinelli; Modern software tools for radar performance assessment. Proc. of IRS'98, Int. Radar Symp., Munich, Germany, September 15-17, 1998. pp.1079-1090.
    [151]Garmatyuk, D.S.; Narayanan, R.M.; ECCM capabilities of an ultrawideband bandlimited random noise imaging radar. IEEE Transactions on Aerospace and Electronic Systems, Volume 38, Issue 4, Oct.2002 Page(s):1243-1255
    [152]张伟.电子对抗装备.北京:航空工业出版社,2009
    [153]Bassem R. Mahafza; MATLAB Simulations for Radar Systems Design.2nd Edition. New York:Chapman& Hall/CRC,2005
    [154]Botros, A.; Olver, A. Analysis of target response of FM-CW radar. Antennas and Propagation, IEEE Transactions on, Volume 34, Issue 4, April,1986, pp:575-581.
    [155]Stove, A.G. Linear FMCW radar techniques. IEEE Proceeding F. Vol.139, No.5, Oct 1992,pp:343-350.
    [156]Yamaguchi, Y.; Maruyama, Y.; Kawakami, A.; Sengoko, M.; Abe, T. Detection of objects buried in wet snowpack by an FM-CW radar. Geoscience and Remote Sensing, IEEE Transactions on, Volume 29, Issue 2, March 1991 Page(s):201-208
    [157]Yamaguchi, Y.; Mitsumoto, M.; Sengoku, M.; Abe, T.; Human body detection in wet snowpack by an FM-CW radar. IEEE Transactions on Geoscience and Remote Sensing, Volume 30, Issue 1, Jan.1992 Page(s):186-189
    [158]Jon Holmgren, Matthew Sturm, Norbert E. Yankielun, Gary Koh. Extensive measurements of snow depth using FM-CW radar. Cold Regions Science and Technology, Volume 27, Issue 1, February 1998, Pages 17-30
    [159]Norbert Yankielun, Walter Rosenthal, Robert E. Davis. Alpine snow depth measurements from aerial FMCW radar. Cold Regions Science and Technology, Volume 40, Issues 1-2, November 2004, Pages 123-134
    [160]Hans-Peter Marshall, Gary Koh. FMCW radars for snow research. Cold Regions Science and Technology, Volume 52, Issue 2, April 2008, Pages 118-131
    [161]R. M. Parkin, B. Tao, M. R. Jackson. The use of low cost FM-CW radar sensors innavigation. Microprocessors and Microsystems, Volume 21, Issue 6, March 1998, Pages 377-382
    [162]Arthur Picton Morgan; Phase modulation apparatus. GB 1,432,541, Apr.22,1976
    [163]Damian F. Albanese; Francis J. O'Farrell; David E. Hammers; Henry R. Kennedy. Pseudo-random code (PRC) surveillance radar. US4,042,925, Aug.16,1977
    [164]Francis J. O'Farrell. Pseudo-random coder with improved near range rejection. US4,023,026, May.10,1977
    [165]Damian F. Albanese; Henry R. Kennedy; Frank J. O'farrell; David E. Hammers. Pseudo-random code(PRC) surveillance radar. GB 1,528,859, Oct.18,1978
    [166]Nakamura Masahiro; Hidaka Yoshinori. Testing Apparatus for PN-modulation type radar. JP5,045,446, Feb.23,1993
    [167]Hamano Satoshi; Sueda Takashi. Radar apparatus, random code generation and storage device for the radar apparatus, and storage medium. JP2003279644, Oct.2,2003
    [168]Komaki Masahiko; Furuya Teruo. Radar apparatus using random code. JP2002014158,Jan.18,2002
    [169]Inomata Kenji; Fukae Tadamasa. Code correlation Doppler radar apparatus. JP11352217, Dec.24,1999
    [170]谢武涛.伪码定距信号处理技术研究[硕士论文].南京:南京理工大学电子工程与光电技术学院,2002
    [171]王李军.伪码定距及数字相关技术研究[硕士论文].南京:南京理工大学电子工程与光电技术学院,2002
    [172]周新刚,赵惠昌,涂友超,李军华.基于多普勒效应的伪码调相及其与PAM复合引信的抗噪声性能分析.电子与信息学报,2008,30(8):1874-1877
    [173]周新刚,赵惠昌,邓建平.伪码调相与伪随机PPM复合引信的抗噪声性能分析.南京理工大学学报(自然科学版),2008,32(5):623-627
    [174]G.P. Kefalas; Radar Noise Jamming Calculations Simplified. IEEE Transaction on Aerospace and Electronic Systems,1981,17 (2):297-300
    [175]沈振元,聂志泉,赵雪荷.通信系统原理.第一版.西安:西安电子科技大学出版社,2004
    [176]王永德,王军.随机信号分析基础.第二版.北京:电子工业出版社,2003
    [177]J. B. Johnson. Thermal agitation of electricity in conductors. Physical review, Vol.32, Jul.1928, pp:97-109
    [178]H. Nyquist. Thermal agitation of electric charge in conductors. Physical review, Vol. 32, Jul.1928, pp:110-113
    [179]Zhou Xin-gang; Zhao Hui-chang; Tu You-chao; Performance Analysis of Anti Noise FM Jamming of Pseudo-random Code Binary Phase Modulation Fuze Based on Doppler Effect.2007 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications,16-17 Aug.2007 Page(s):1424-1427
    [180]Charles J. Daly; An analytical and experimental investigation of FM-by-noise jamming. US:Air Force Institute of Technology Air University, Dec.1992
    [181]P. M. Woodward. Probability and Information Theory with Applications to Radar,. New York:McGraw-Hill,1953; Dedham, MA:Artech House,1980.
    [182]林茂庸,柯有安.雷达信号理论.第1版.北京:国防工业出版社,1984
    [183]张直中.雷达信号的选择与处理.第1版.北京:国防工业出版社,1979
    [184]David K. Barton; Sergey A. Leonov; Radar Technology Encyclopedia. Boston, London:Artech House,1998
    [185]Victor C. Chen, Hao Ling..Time-frequency transforms for radar imaging and signal analysis. Boston, London:Artech House,2002
    [186]Fred E. Nathanson; J. Patrick Reilly; Marvin N. Cohen; Radar Design Principles-Signal Processing and the Environment. Second Edition. Mendham, Newjersey:SciTech Publishing, Inc.,1999
    [187]Sinsky, A.I.; Wang, C.P.; Standardization of the Definition of the Radar Ambiguity Function. IEEE Transactions on Aerospace and Electronic Systems, AES-10, Issue 4,1974, Page(s):532-533
    [188]Darmet, C; Gauthier, J.-P.; Gourd, F.; Elliptic and almost hyperbolic symmetries for the Woodward ambiguity function. IEEE Transactions on Information Theory. Vol. 37, Issue 5, Sept.1991 Page(s):1388-1398
    [189]Grunbaum, F.; A remark-on radar ambiguity functions. IEEE Transactions on Information Theory. Volume 30, Issue 1, Jan 1984 Page(s):126-127
    [190]De Maio, A.; De Nicola, S.; Yongwei Huang; Zhi-Quan Luo; Shuzhong Zhang; Design of Phase Codes for Radar Performance Optimization With a Similarity Constraint. IEEE Transactions on Signal Processing. Vol.57, Issue 2, Feb.2009 Page(s):610-621
    [191]Benedetto, J.J.; Konstantinidis, I.; Rangaswamy, M.; Phase-Coded Waveforms and Their Design:The Role of the Ambiguity Function. Signal Processing Magazine, IEEE. Vol 26, Issue 1, Jan.2009 Page(s):22-31
    [192]De Maio, A.; De Nicola, S.; Yongwei Huang; Shuzhong Zhang; Farina, A. Code Design to Optimize Radar Detection Performance Under Accuracy and Similarity Constraints. IEEE Transactions on Signal Processing. Vol 56, Issue 11, Nov.2008 Page(s):5618-5629
    [193]Nadav Levanon; Eli Mozeson; Radar Signals. Hoboken, New Jersey:John Wiley& Sons, Inc.2004
    [194]C. E. Cook, Pulse Compression-Key to More Efficient Radar Transmission. Proceedings of the IRE. Volume 48, Issue 3, March 1960 Page(s):310-316
    [195]Lipman, M.A. A useful property of the generalized chirp signal ambiguity function. Proceedings of the IEEE, Vol 55, Issue 7, July 1967 Page(s):1241-1242
    [196]Cohen, S.A.; Generalized Response of a Linear FM Pulse Compression Matched Filter. IEEE Transactions on Aerospace and Electronic Systems, AES-6, Issue 5, Sept. 1970 Page(s):708-712
    [197]Cohen, S.A.; Cross-Ambiguity Function for a Linear FM Pulse Compression Radar. IEEE Transactions on Electromagnetic Compatibility. EMC-14, Issue 3, Aug.1972 Page(s):85-91
    [198]Kowatsch, M.; Suppression of sidelobes in rectangular linear FM pulse compression radar. Proceedings of the IEEE. Vol.70, Issue 3, March 1982 Page(s):308-309
    [199]Fowle, E.N.; Carey, D.R.; Vander Schuur, R.E.; Yost, R.C.; A pulse compression system employing a linear FM Gaussian signal. Proceedings of the IEEE. Vol.51, Issue 2, Feb.1963 Page(s):304-312
    [200]Levanon, N.; Noncoherent pulse compression. IEEE Transactions on Aerospace and Electronic Systems. Volume 42, Issue 2, April 2006 Page(s):756-765
    [201]Nadav Levanon, Avraham. Freedom. Ambiguity function of quadriphase coded radar pulse. IEEE Transactions on Aerospace and Electronic Systems, Vol.25, Issue 6, Nov.1989 Page(s):848-853
    [202]Poole, A.; On the use of pseudorandom codes for "Chirp" radar. IEEE Transactions on Antennas and Propagation. Vol.27, Issue 4, Jul 1979 Page(s):480-485
    [203]Hamila, R.; Astola, J.; Alaya Cheikh, F.; Gabbouj, M.; Renfors, M.; Teager energy and the ambiguity function. IEEE Transactions on Signal Processing, Vol 47, Issue 1,1999 Page(s):260-262
    [204]Wetzker, G; Jondral, F.; Ambiguity function of periodic pulse shaped sequences. Electronics Letters. Vol 35, Issue 8,1999 Page(s):611-613
    [205]Kaveh, M.; Cooper, G.R.; Average Ambiguity Function for a Randomly Staggered Pulse Sequence. IEEE Transactions on Aerospace and Electronic Systems, AES-12, Issue 3, 1976 Page(s):410-413
    [206]Bhatt, T.D.; Rajan, E.G.; Somasekhar Rao, P.V.D.; Design of frequency-coded waveforms for target detection. Radar, Sonar& Navigation, IET. Volume 2, Issue 5, October 2008 Page(s):388-394
    [207]Bednar, R.A.; Smith, R.M.; Ambiguity Functions for Quadratic Phase-Coded Pulse Trains. IEEE Transactions on Aerospace and Electronic Systems, Vol.20, Issue 2, March 1984 Page(s):141-157
    [208]Nadav Levanon, Avraham Freedom. Periodic Ambiguity Function of CW Signals with Perfect Periodic Autocorrelation. IEEE Transactions on Aerospace and Electronic Systems, AES-28, Issue 2, April 1992,pages:387-395.
    [209]Avraham Freedom, Nadav Levanon. Properties of the periodic ambiguity function. IEEE Transactions on Aerospace and Electronic Systems. Vol.30, Issue 3, July 1994 Page(s):938-941
    [210]Getz, B.; Levanon, N.; Weight effects on the periodic ambiguity function. IEEE Transactions on Aerospace and Electronic Systems, AES-31, Issue 1, Jan.1995,pages: 182-193.
    [211]Qing-Chen Xu; Zi-Jie Yang; Xiong Hu; Phase-Coded Interrupted CW Signals and Processors. IEEE Transactions on Aerospace and Electronic Systems. Vol 45, Issue 1, JAN 2009 Page(s):209-220
    [212]Yi Xian Yang; Xin Xin Niu; Periodic ambiguity functions of EQC-based TFHC. IEEE Transactions on Aerospace and Electronic Systems, Vol-34, Issue 1,1998 Page(s):194-199
    [213]杨建宇.LFMCW雷达信号模糊函数分析.信号处理,2002,18(1):39-42
    [214]张容权,杨建宇,熊金涛等.对称三角线性调频连续波信号模糊函数分析.电子学报,2004,32(3):353-356
    [215]郭磊,杨中海.LFMCW雷达信号多周期模糊函数分析.电子科技大学学报,2004,33(5):543-546
    [216]Lin, C.T.; On the Ambiguity Function of Random Binary-Phase-Coded Waveforms. IEEE Transaction on Aerospace and Electronic Systems, Vol.21, No.3,1985,432-436
    [217]Lin, C.T.; The ambiguity function of random binary-phased-coded waveforms. In Proceedings IEEE 1985 International Radar Conference, Washington, D.C.pp.120-124.
    [218]Cary W. Deley. Waveforms Desgn//Merrill I. Skolnik. Radar Handbook. First Edition. New York:McGraw-Hill.1970
    [219]Merrill I. Skolnik. Introduction to Radar Systems. Third Edition. New York: McGraw-Hill.2001
    [220]Grunbaum, F.; A remark on radar ambiguity functions. IEEE Transactions on Information Theory. Volume 30, Issue. Jan 1984 Page(s):126-127
    [221]Soliman, S.S.; Scholtz, R.A.; Spread ambiguity functions. IEEE Transactions on Information Theory. Vol.34, Issue 2, March 1988 Page(s):343-347
    [222]Saini, R.; Cherniakov, M.; DTV signal ambiguity function analysis for radar application. IEE Proceedings-Radar, Sonar and Navigation. Vol.152, Issue 3,3 June 2005 Page(s):133-142
    [223]Couch, L. W.; Effects of Modulation on nonlinearity on the range response of FM radar. IEEE Transactions on Aerospace and Electronic Systems, AES-9,4, July 1973, pages:598-606.
    [224]周新刚,赵惠昌,张淑宁,陈森.典型近炸引信固有抗干扰性能测度理论和仿真.系统仿真学报,2010,22(6):1454-1456
    [225]郑君里,应启珩,杨为理.信号与系统.第二版.北京:高等教育出版社,2003
    [226]周新刚,赵惠昌,涂友超.脉冲多普勒引信抗干扰性能评判方法和仿真.系统仿真学报(已录用)
    [227]周新刚,赵惠昌,徐元银.伪码调相PD引信抗干扰性能测度理论和方法.南京理工大学学报(自然科学版),2010,34(2):176-181
    [228]赵惠昌,周新刚.基于模糊函数切割法的线性调频连续波引信抗干扰性能测度.兵工学报,2009,30(12):1591-1595

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700