菜籽多糖的制备、表征及体外活性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
菜籽粕是菜籽榨油后的副产物。菜籽多糖的研究与开发有利于菜籽粕的综合利用。对于菜籽多糖的结构国外已有一些研究,而对于其功能活性则未见有文献报道。本文以华杂4号“双低”菜籽粕为原料,利用傅里叶变换红外光谱学(FT-IR)、气相色谱(GC)、高效液相色谱(HPLC)、气相色谱质谱联用(GC-MS)、核磁共振(NMR)对分离纯化得到的菜籽多糖进行组成和结构表征,并采用化学发光分析评价其体外清除自由基能力,MTT法、逆转录聚合酶链反应(RT-PCR)等细胞生物学和分子生物学方法研究了菜籽多糖对脾淋巴细胞、腹腔巨噬细胞的免疫调节作用。主要研究结果如下:
     1菜籽多糖的制备及表征。菜籽多糖的制备及表征国外已有较多研究。本文重点研究了华杂4号菜籽粕中多糖的提取优化条件、绿色环保的纯化工艺以及表征方法。
     1.1经过前处理的脱脂菜籽粕,按照中心组合实验(CCD)得到的水溶性多糖提取优化工艺条件,即以水按液料比为28:1(mL/g)在94℃浸提2.9 h,一次提取菜籽多糖得率为2.18%,连续提取三次将水溶性多糖提取殆尽。剩余的残渣料再以5%NaOH溶液作提取剂,按料液比1:20,60℃提取2 h,得到的提取液以4 M HCl溶液中和至pH=5。得到的水溶性多糖和碱溶性多糖两部分提取液分别经筛选出的特1号大孔吸附树脂柱层析、分步醇沉、DE-52纤维素离子交换柱层析等方法纯化,分别得到各自的主要级分WPS-1和APS-2。WPS-1和APS-2再通过葡聚糖凝胶G-200柱层析和凝胶渗透色谱(GPC)进行纯度鉴定,结果表明WPS-1和APS-2都是相对均一多糖。
     1.2 WPS-1和APS-2均为白色絮状的非淀粉多糖;中性糖含量分别为83.2%和66.8%;糖醛酸含量分别为6.1%和9.3%;蛋白质含量分别为3.78%和8.65%。WPS-1和APS-2中蛋白质部分都由天门冬氨酸、谷氨酸、丝氨酸、甘氨酸、精氨酸、苏氨酸、丙氨酸、酪氨酸、缬氨酸、胱氨酸、异亮氨酸、亮氨酸、苯丙氨酸等9种氨基酸组成。GPC法测定WPS-1和APS-2的重均分子量(M_w)分别为7.20×10~5和1.61×10~5,数均分子量(M_n)分别为2.45×10~5和6.79×10~5。FT-IR、GC、HPLC初步分析WPS-1和APS-2的官能团特征及单糖组成,确定WPS-1单糖主要由阿拉伯糖(Ara)、半乳糖(Gal)、葡萄糖(Glc)、葡萄糖醛酸(GlcA)组成,其摩尔百分含量分别为66.6%、18.3%、12.6%、2.51%;APS-2单糖组成包括Ara、Gal、Glc、甘露糖(Man)、半乳糖醛酸(GalA)、GlcA、Rha摩尔百分含量分别为52.8%、21.7%、10.6%、5.0%、4.8%、3.6%、1.4%。通过甲基化分析以及一维NMR(包括~(13)C NMR和~1H NMR)对WPS-1的结构表征进行了研究,结合前人的相关研究成果,得出WPS-1的主体部分是主要是由(1→5)键和(1→2)键连接的Ara残基组成的多支链α-阿拉伯聚糖。
     2菜籽多糖的体外活性。菜籽多糖的生物活性本实验室曾作初步研究,国内外未见有菜籽多糖生物活性的报道。本文重点从细胞、分子水平上研究了菜籽多糖的生理活性。
     2.1分别采用邻苯三酚-鲁米诺、硫酸铜-邻菲哕啉-抗坏血酸-双氧水、鲁米诺-双氧水三种化学发光体系,通过微弱发光测量仪测定了WPS-1和APS-2对超氧阴离子(O_2~(·-))、羟基自由基(HO~·)和双氧水(H_2O_2)三种ROS的体外清除作用。结果表明WPS-1和APS-2对各ROS都有良好的体外清除作用,且都呈剂量-效果关系。WPS-1和APS-2在实验最高浓度2000μg/mL时,对O_2~(·-)的极大抑制率分别为90.4%和89.6%。WPS-1和APS-2对O_2~(·-)的半数抑制浓度(IC_(50))分别为400±44μg/mL和450±64μg/mL。WPS-1比APS-2具有更好的清除O_2~(·-)能力。WPS-1和APS-2在实验最高浓度1000μg/mL时,其对HO~·的极大抑制率分别为93.8%和86.7%。WPS-1和APS-2对HO~·的IC_(50)分别为240±18μg/mL和293±24μg/mL。WPS-1比APS-2具有更好的清除HO~·的能力。WPS-1和APS-2在实验最高浓度50μg/mL时,其对H_2O_2的极大抑制率分别为84.2%和85.2%。WPS-1和APS-2对H_2O_2的IC_(50)分别为10.0±0.8μg/mL和6.1±0.5μg/mL。APS-2清除H_2O_2的能力略强于WPS-1。比较IC_(50)值,WPS-1和APS-2对各自由基的清除能力都表现为:H_2O_2>HO~·>O_2~(·-)。
     2.2采用尼龙毛柱法从脾淋巴细胞分离T、B淋巴细胞。通过MTT法检测,菜籽多糖对总脾淋巴细胞和T淋巴细胞具有明显的增殖活性,并表现出明显的剂量-效果关系,增殖的最佳浓度为40μg/mL,并且WPS-1比APS-2作用效果更好。采用半定量RT-PCR进一步研究菜籽多糖WPS-1对T淋巴细胞分泌的细胞因子白细胞介素2(IL-2)、IL-4、IL-6、干扰素γ(IFN-γ)mRNA表达的影响。首先研究了各细胞因子mRNA随WPS-1作用时间的变化,WPS-1促进IL-2、IL-4、IL-6 mRNA表达最佳作用时间都为24 h,而促进IFN-γmRNA表达的最佳作用时间为12 h。采用各细胞因子mRNA表达的最佳作用时间,进一步考察WPS-1浓度的影响,得到其对促进IL-2、IL-6、IFN-γmRNA表达的最佳浓度都为40μg/mL,而对IL-4则为20μg/mL。菜籽多糖可能对淋巴细胞的免疫功能具有调节作用。
     2.3采用MTT法检测细胞的活性,菜籽多糖能促进巨噬细胞增殖,并表现出明显的剂量-效果关系,菜籽多糖促进巨噬细胞增殖的最佳浓度为40μg/mL,WPS-1比APS-2对巨噬细胞增殖活性的促进作用略大。菜籽多糖对巨噬细胞的影响与对T淋巴细胞的检测结果相类似,。采用半定量RT-PCR进一步研究不同作用时间下40μg/mL菜籽多糖WPS-1对腹腔巨噬细胞IL-6、肿瘤坏死因子α(TNF-α)这两种细胞因子以及诱生型一氧化氮合酶(iNOS)mRNA表达的影响。WPS-1对腹腔巨噬细胞IL-6、TNF-α和iNOS mRNA的表达量最大的时间为24 h。菜籽多糖可能对巨噬细胞的免疫功能具有调节作用。
Rapeseed meal is the byproduct of rapeseed after oil extraction.The study and exploitation of rapeseed polysaccharides is beneficial to the comprehensive utilization of rapeseed meal.There have been several research results on the structure of rapeseed polysaccharides,but their bioactivity has not been reported up to now.In this paper,the components stuctural characterization of rapeseed polysaccharides isolated and purified from Huaza No.4 rapeseed meal was identified by Fourier transform infrared spectrometry(FT-IR),gas chromatography(GC),Gas chromatography-mass spectrometry(GC-MS),high performance liquid chromatography(HPLC),and nuclear magnetic resonance(NMR).The chemiluminescence(CL) method was used to investigate the free radical scavenging activity of rapeseed polysaccharides.The immunomodulatory activity was investigated by MTT colorimetric assay and semi-quantitative reverse transcription-polymerase chain reaction(RT-PCR).The major content and results are as follows:
     1 Preparation and characterization of rapeseed polysaccharides.There are some reports on pareparation and characterization of rapeseed polysaccharide abroad.The emphasis of this research is on optimization of extraction technology,environmentally friendly purification process,and characterization methods of polysaccharides from Huaza No.4 rapeseed Meal.
     1.1 The optimized extraction technology,of water-soluble polysaccharides derived from the pretreated rapeseed meal was performed by the central combinational design(CCD). the extraction technology of water-soluble polysaccharides composed of 94℃,2.9 h,and 28:1(mL/g) ratio of water to rapeseed meal.After extraction of three times,The insoluble residue on the filter paper was then resuspended and further treated(1 g/20 mL) with 5%NaOH and heated at 60℃for 2 h.Alkali-insoluble material was removed by filtration,and the filtrate was acidified to pH=5 with 4 mol/L HCl to yield an alkali-soluble polysaccharide fraction.Two major polysaccharide fractions,WPS-1 and APS-2,were isolated from water-soluble and alkali-soluble extracts of Huaza No.4 rapeseed meal with a stepwise procedure of Special No.1 macroporous adsorption resin column chromatography,ethanol precipitation and DE-52 cellulose column chromatography.WPS-1 and APS-2 were both relative homogeneous fractions,which were identified by Sephadex G-200 chromatography and gel permeation chromatography (GPC).
     1.2 Both WPS-1 and APS-2 were non-starch polysaccharides with white and flocculent appearance.UV,FT-IR,GC and HPLC were used to analyze the components of WPS-1 and APS-2.It was found that the weight-average molecular weight(Mw) of WPS-1 and APS-2 were 7.20×10~5 and 1.61×10~5,respectively.The number-average molecular weight(Mn) of WPS-1 and APS-2 were 2.45×10~5 and 6.79×10~5,respectively. It was found that WPS-1 and APS-2 were 2 kinds of polysaccharides containing proteins and uronic acids.The contents of neutral sugar,uronic acid,and protein of them were 83.2%and 66.8%;6.1%and 9.3%;3.8%and 8.7%,respectively.The associated protein portions in both polysaccharide fractions consisted of 13 different amino acids,including aspartic acid,glutamic acid,serine,glycine,arginine,threonine,alanine,tyrosine,valine, cystine,isoleucine,leucine and phenylalanine.To their monosaccharide composition, WPS-1 consisted primarily of Ara(66.6 mol%) and Gal(18.3 mol%) accompanied by some Glc(12.6 mol%) and GlcA(2.5 mol%);APS-2 consisted primarily of Ara(52.9 mol%) and Gal(21.7 mol%) accompanied by some Glc(10.6 mol%),Man(5.0 mol%), GalA(4.8 mol%),GlcA(3.6 mol%),and Rha(1.4 mol%).The structural characterization of WPS-1 was further investigated by methylation linkage analysis and 1-dimensional NMR(including ~(13)C NMR and ~1H NMR).On the basis of these study results and considering other relevant studies,it was concluded that WPS-1 consisted manily of arabinan fragment,which was mainly(1→5) and(1→2) linked.
     2 In vitro activity of rapeseed polysaccharides.The bioactivity of rapeseed polysaccharides has been investigated preliminary by our lab.However,research on the bioactivity of rapeseed polysaccharides has received little attention up to now.The emphasis of this research is on the in vitro activity of polysaccharides at the cellular and molecular levels
     2.1 The chemiluminescence(CL) method was used to investigate the free radical scavenging activity of rapeseed polysaccharides.The scavenging ability of WPS-1 and APS-2 for O_2~(·-),HO~·,and H_2O_2 were determined by a pyrogallol-luminol system, CuSO_4-phenanthroline-ascorbate-H_2O_2 system,and luminol-H_2O_2 system,respectively, on a BPCL Ultra-weak luminescence analyzer.The results indicated both WPS-1 and APS-2 have prominent ability of scavenging free radical in a concentration-dependent manner.The maximum inhibition rates of WPS-1 and APS-2 were 90.4%and 89.6%at the 2000μg/mL concentration,respectively.Their half-maximal inhibitory concentration (IC_(50)) values were 400±44μg/mL for WPS-1 and 450±64μg/mL for APS-2.WPS-1 was slightly more effective than APS-2 at scavenging O_2~(·-).Both WPS-1 and APS-2 could scavenge HO~·and the maximum inhibition of CL by WPS-1 and APS-2 were 93.8%and 86.7%,respectively.The IC_(50) value of WPS-1 was 240±18μg/mL,while that of APS-2 was 293±24μg/mL.WPS-1 was more effective than APS-2 at scavenging HO~·.The maximum inhibition by WPS-1 was 84.2%and by APS-2 was 85.2%.The IC_(50) value of WPS-1 was 10.0±0.8μg/mL,while that of APS-2 was 6.1±0.5μg/mL.It was concluded that APS-2 was more effective than WPS-1 at scavenging H_2O_2.Compared with APS-2,WPS-1 was more effective at scavenging superoxide radical(O_2~(·-)) and hydroxyl radical(HO~·),but less effective at scavenging hydrogen peroxide(H_2O_2).In decreasing order,free radical scavenging activity of WPS-1 and APS-2 towards reactive oxygen species(ROS) was:H2O2>HO~·>O_2~(·-).
     2.2 A nylon wool column was used to separate of spleen T and B lymphocytes. Through the MTT assay,rapeseed polysaccharides were found to significantly enhance proliferation of totol spleen lymphocytes and T lymphocytes.The optimal concentration of both WPS-1 and APS-2 to promote proliferation were 40μg/mL,but WPS-1 was more effective than APS-2 at promoting cell proliferation.Semi-quantitative RT-PCR was performed to determine changes in cytokine mRNA expression.The influence of WPS-1 to cytokine interleukin-2(IL-2),IL-4,IL-6,and interferonγ(IFN-γ) mRNA expression in T lymphocytes were investigated.First,the relation between time of T lymphocytes cells incubated with WPS-1 and the cytokine mRNA expression was studied.The best time of WPS-1 to promote IL-2,IL-4,IL-6 mRNA of expression were all 24 h.The best time to that of IFN-γwas 12 h.The best time of the cytokines mRNA expression were adopted,to further investigate the effect of the concentration of WPS-1 to cytokine mRNA expression.The results showed the best concentration of WPS-1 to promote IL-2,IL-6, and IFN-γmRNA expression were all 40μg/mL,to that of IL-4 was 20μg/mL.The results indicates that rapeseed polysaccharide can enhance the immune regulation of spleen T lymphocyte.
     2.3 Rapeseed polysaccharides promote proliferation macrophage cells,in a dose-dependent manner.The optimal concentration of both WPS-1 and APS-2 to promote proliferation were 40μg/mL,but WPS-1 was more effective than APS-2 at promoting cell proliferation,which similar to lymphocytes proliferation.Semi-quantitative RT-PCR was performed to determine changes in cytokine mRNA expression.The influence of WPS-1 to IL-6,tumor necrosis factor-α(TNF-α),and inducible nitric oxide synthase(iNOS) mRNA expression were all 40μg/mL.The results indicates that rapeseed polysaccharide can enhance the immune regulation of peritoneal macrophages.
引文
1.安彩泰,马静芳.油菜生物化学.兰州:兰肃民族出版社,1993,213
    2.傅寿仲,张洁夫,戚存扣,浦惠明,高建芹,陈新军.工业专用型高芥酸油菜新品种选育.作物学报,2004,30(5):409-412
    3.高贵琴,熊邦喜,赵振山.菜籽粕在水产养殖中应用研究综述.水利渔业,2001(5):1-3
    4.黄凤洪.双低油菜籽高效加工与多层次增值技术.中国油脂,2002,27(6):9-11
    5.何国菊,李学刚,赵海伶.菜籽饼粕脱毒工艺参数的研究.中国油脂,2003,28(12):23-26
    6.何国菊,李学刚,赵海伶.菜籽饼粕中植酸新提取方法研究.中国粮油学报,2004,19(1):57-60
    7.胡健华,韦一良.优质资源双低油菜籽.武汉工业学院学报,2002,3:1-3
    8.江洪,马敬中,吴谋成.微波水解植酸制备三磷酸肌醇.化学研究与应用,2005,17(3):424-426
    9.江洪.三磷酸肌醇的制备及其生物活性的研究.[博士学位论文].武汉:华中 农业大学图书馆,2005
    10.刘大川,张寒俊,张麟.双低油菜籽资源综合开发产业化.中国油脂,2003,28(8):8-12
    11.厉秋岳.油菜籽综合利用.北京:中国农业出版社,1987,235-238
    12.李文林,黄凤洪,彭健.脱皮双低菜籽粕的开发和饲用研究.中国油脂,2006,31(3):51-54
    13.梁红野,陈彦泽.金属表面植酸钝化处理试验研究.石油化工腐蚀与防护,2004,21(6):4-8
    14.刘军,朱文优.菜籽粕发酵饲料的研制.食品与发酵工业,2007,33(1):69-71
    15.刘文斌,王爱民,王恬.菜籽粕中芥子酸和硫甙对异育银鲫生长和生理机能的影响.南京农业大学学报,2007,27(1):78-80
    16.彭健,Slominski B A,Guenter W,Campbell L D,熊远著.不同加工方式对双低菜籽粕品质的影响.中国畜牧杂志,2000,36(5):23-28
    17.彭健,Slominski B A,Guenter W,Campbell L D,熊远著.中国双低菜籽粕抗营养因子研究.中国粮油学报,2001,16(5):6-10
    18.蒲定福,袁代斌,蒙大庆,胥岚,李芝凡,郭子荣.工业专用高芥酸油菜新品种绵油15号选育.中国油料作物学报,2005,27(4):38-40
    19.唐传核.低过敏以及抗过敏食品研究进展.食品发酵工业,2000,(4):44-49
    20.唐春艳,齐德生.双低菜粕在饲料中的研究进展.畜牧与兽医,2006,38(5):49-51
    21.王车礼,史美仁.菜籽粕脱毒提取菜籽蛋白研究进展Ⅰ:菜籽粕脱毒与菜籽浓缩蛋白制取.中国油脂,1997,22(2):56-58
    22.王车礼,钱仁渊,包宗宏,史美仁.菜籽双液相萃取液选脱皮制取菜籽浓缩蛋白.粮食与饲料工业,1997,6:25-27
    23.王汉中.我国油菜产需形势分析及产业发展对策.中国油料作物学报,2007,29(1):101-105
    24.王宏平.双低菜籽的特点与加工实践.中国油脂,2000,25(1):33-34
    25.王立峰,袁建,鞠兴荣,顾振新.双低油菜籽油脂加工副产品的研究现状与发展趋势.中国油脂,2005,30(9):11-14
    26.吴关庭,郎春秀,陈锦清.工业用高芥酸油菜育种与应用.核农学报,2007,21(4):374-377
    27.吴谋成,袁俊华.加快我国油菜籽加工及综合利用的研究与产业化.粮食与油脂,2001,1:11-13
    28.吴谋成,袁俊华.加快我国油菜籽加工及综合利用的研究与产业化.粮食与油脂,2001,1:11-13
    29.吴卫华.“双低”油菜的种植与加工.农产品加工,2003,10:10-11
    30.严奉伟,罗祖友,吴季勤.菜籽多糖的抗氧化作用与机理研究.中国农业科学,2005,38(1):157-162
    31.严奉伟,吴谋成,吴季勤.大孔树脂初步纯化菜籽多酚.中国粮油学报,2005,20(2):57-60
    32.严奉伟,罗祖友,薛照辉,吴谋成.菜籽多酚级分-1的体外抗氧化作用及其机制.中国粮油学报,2005,20(5):115-119
    33.严奉伟,罗祖友,薛照辉,吴谋成.菜籽多酚的抗氧化作用.中国油脂,2005,30(7):54-57
    34.严奉伟.菜籽多酚的提取、纯化、结构鉴定与功能活性评价.[博士学位论文].武汉:华中农业大学图书馆,2005
    35.严奉伟,严赞开,王辰,吴谋成.菜籽多酚在四氧嘧啶致糖尿病小鼠体内的降血糖作用.食品科技,2006,12:198-201
    36.严奉伟,王辰,严赞开,吴谋成.菜籽多酚对S180小鼠肉瘤及其免疫功能的影响.中国粮油学报,2007,22(5):81-85
    37.严奉伟,王辰,严赞开.菜籽多糖对S180小鼠肉瘤及其免疫能力的影响.食品科学,2007,28(4):309-313
    38.曾晓波,吴谋成,王海英.丙酮浸提法制取菜籽浓缩蛋白.中国粮油学报,2001,16(4):10-13
    39.周锦兰,俞开潮.油菜籽中主要硫甙的提纯与抗肿瘤活性.应用化学,2005,22(10):1075-1078
    40.周锦兰,胡健华,裘爱泳.菜籽饼乙醇脱毒脱油工艺研究.中国油脂,2001,29(6):40-44
    41.周瑞宝,周兵.蛋白质的生物和化学改性.中国油脂,2000,5(6):181-185
    42.祝群英,刘捷.多功能绿色食品添加剂一植酸.粮食加工,2004,(6):57-61
    43.祖岫杰,刘艳辉.菜籽饼在鱼饲料中的应用.饲料工业,1994,15(7):34-35
    44.Aspinall G O,Jiang K S.Rapeseed hull pectin.Carbohyd Res,1974,38:247-255
    45.Aspinall G O,Krishnamurthy T N,Rosell K.A flucogalactoxyloglucan from rapeseed hulls.Carbohyd Res,1977,55:11-19
    46.Bell J M.Nutrients and toxicants in rapeeed meal:a review.J Animal Sci,1984,58:996-1010
    47.Bell J M.Factors affecting the nutrition value of canola meal:a reviw.Can J Anita Sci,2003,28:21-23
    48.Burel C,Boujard T,Kaushik S J,Boeuf G,Mol A,Van der Geyten S,Darras V M,Kuhn E R,Pradet-Balade B,Quinsac A,Krouti M,Ribaillier D.Effect of rapeseed meal-glucosinolates on thyroid metabolism and feed utilization in Rainbow Trout. Gen Comp Endocr, 2001, 124: 343-358
    49. Carl D W, Laura G T, James H. Growth and body composition of channel catfish (Ictalurus punctatus) fed diets containing various percentages of canola meal. Aquaculture, 1996,103: 141-152
    50. Carrington A L, Calcutt N A, Ettlinger C B, Gustafsson T, Tomlinson D R. Effects of treatment with myo-nositol or it 1, 2, 6-triphodphate (PP56) on nerve conduction instreptozocin-diabetes. Eur J of Pharm, 1993,237: 257-263
    51. Davies S J, McConnel S, Bateson R L. Potential of rapeseed meal as an alternative protein source in complete diets for tilapia (Oreochromis mossambicus, Peters). Aquaculture, 1990, 87: 145-154
    52. Diosady L L, Tar C G, Rubin L J. The use of liquid cyclones in extraction of oil from ground canola seed. Transaction of the ASAE, 1989,32: 1754-1758
    53. El-Batal A I, Abdel K H. Phytase production and phytic acid reduction in rapeseed meal by Aspergillus niger during solid state fermentation. Food Research International, 2001, 34: 715-720
    54. Eriksson I, Westerlund E, Aman P, J. Chemical composition in varieties of rapeseed and turnip rapeseed, including several samples of hull and dehulled seed. Sci Food Agric, 1994, 66: 233-240
    55. Eriksson I, Andersson R, Westerlund E, Andersson, R, Aman P. Structural features of an arabinan fragment isolated from the water-soluble fraction of dehulled rapeseed. Carbohydr Res, 1996,281: 161-172
    56. Eriksson I; Andersson R; Aman P. Extration of pectic subtances from dehulled rapeseed. Carbohyd Res, 1997, 301: 177-185
    57. Fauduet H, Coic J P, Lessire M, Quinsac A, Ribaillier D, Rollin P. Rapeseed meal upgrading-pilot scale preparation of rapeseed meal materials with high or low glucosinolate contents. Anim Feed Sci Technol, 1995, 56: 99-109
    58. Fenwick G R, Spinks E A, Wilkinson A P. Effects of processing on the antinutrient content of rapeseed. J Sci Food Agr, 1986, 37: 735-741
    59. Hardy R W, Sullivan C V. Canola meal in rainbow trout (Salmo gaindneri) production diets. Can J Fish Aquat Sci, 1983, 40: 281-286
    60. Haykiri-Acma H, Yaman S. Thermal reactivity of rapeseed (Brassica napus L.) under different gas atmospheres. Bioresource Technol, 2008, 99: 237-242
    61. Hickling D. Canola Meal Feed Industry Guide. Canadian International Grains Institute, Winnipeg, Manitoba, Canada, 2001, 3: 16-21
    62. Higgs D A, McBride J R, Markert J R. Evaluation of Tower and Candle rapeseed (canola) meal and Bronowski rapeseed protein concertrate as protein supplements in practical dry diets forjuvenile Chinook salmon (Oncorhynchus tshawytscha). Aquaculture, 1982,29: 1-31
    63. Huang S, Liang M, Lardy G., Huff H E, Kerley M S, Hsieh F. Extrusion processing of rapeseed meal for reducing glucosinolates. Anim Feed Sci Technol, 1995, 56:1-9
    64. Jung M Y, Jeon B S, Bock J Y. Free, esterified, and insoluble-bound phenolic acids in white and red Korean ginsengs (Panax ginseng C A Meyer). Food Chem, 2002, 79: 105-111
    65. Mahajan A, Dua S. Improvement of functional properties of rapeseed (Brassica campestris var toria) meal by reducing antinutritional factors employing enzymatic modification. Food hydrocolloid, 1998, 12: 349-355
    66. Nardini M, Cirillo E, Natella F, Mencarelli D, Comisso A, Scaccini C. Detection of bound phenolic acids: prevention by ascorbic acid and ethylenediamine tetra acetic acid of degradation of phenolic acids during alkaline hydrolysis. Food Chem, 2002, 79:119-124
    67. Nardini M, Ghiselli A. Determination of free and bound phenolic acids in beer. Food Chem, 2004, 84 :137-143
    68. Opalka M, Dusza L, Koziorowski M, Staszkiewicz J, Lipinski K, Tywonczuk J. Effect of long-term feeding with graded levels of low glucosinolate rapeseed meal on endocrine status of gilts and their piglets. Livest Prod Sci, 2001, 69: 233-243
    69. Ozcimen D, Karaosmanoglu F. Production and characterization of bio-oil and Biochar from rapeseed cake. Renew Energ, 2004, 29: 779-787
    70. Partha G, Prodyot G, Swapnadip T, Patrice L, Corinne L B, Azeddine D, Bimalendu R. Cell wall polysaccharides of Brassica campestris seed cake: isolation and structural features. Carbohyd Polym, 2004, 57: 7-13
    71. Pastuszewska B, Jablecki G, Buraczewska L, Dakowski P, Taciak M, Matyjek R, Ochtabinska A. The protein value of differently processed rapeseed solvent meal and cake assessed by in vitro methods and in tests with rats . Anim Feed Sci Technol, 2003, 106: 175-188
    72. Qiao H Y, Classen H L. Nutritional and physiological effects of rapeseed meal sinapine in broiler chickens and its metabolism in the digestive tract. J Sci Food Agric, 2003, 84: 1430-1438
    73. Ritov V, Goldman R. Antioxidant paradox of phenolic compounds peroxyl radical scavenger and lipid antioxidants. Arch. Biochem. Biophys, 1995, (1): 321
    74. Saiwar G. Inter- and intra- laboratory variability in rat growth assays for estimating protein quality of foods. J Assoc Official Anal Chem, 1987, 67: 231-239
    75. Saka S, Kusdiana D. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel, 2001, 80: 225-231
    76. Salmon R E. Rapeseed gums in poultry diets. Can J Anim Sci, 1970, 50: 211-212
    77. Schone F, Kirchheim U, Schumann W, Ludke H. Apparent digestibility of high-fat rapeseed press cake in growing pigs and effects on feed intake, growth and weight of thyroid and liver. Anim Feed Sci Technol, 1996,62: 97-110
    78. Sharma H R, Ingalls J R, Devlin T J. Apparent digestibility of tower and candle rapeseed meals by Holstein bull calves. Can J Anim Sci, 1980, 60: 915-918
    79. Siddiqui I R, Wood P J. Structural Investigation of water-soluble, rapeseed {Brassica campestris) polysaccharides (Part I). Carbohyd Res, 1971,17: 97-108
    80. Siddiqui I R, Wood P J. Structural Investigation of water-soluble, rapeseed {Brassica campestris) polysaccharides (Part II). Carbohyd Res, 1972, 24: 1-9
    81. Siddiqui I. R., Wood PJ. Srructural inverstigation of oxalate-soluble rapeseed {Brassica campestris) polysaccharides (Part III). Carbohyd Res, 1974, 36: 35-44
    82. Siddiqui I R, Wood P J. Carbohydtates of rapeseed-review. Journal Sci Food Agri, 1977,28:530-538
    83. Siddiqui I R, Wood P J. Structural Investigation of water-soluble rapeseed {Brassica campestris) polysaccharides (Part V). Carbohyd Res, 1977, 53: 85-94
    84. Slominski B A, Campbell L D. Non-starch polysaccharides of canola meal: quantification, digestibility in poultey and potential benefit of dietary enzyme supplementation. J Sci Fool Agric, 1990, 53: 175-184
    85. Sturaro A, Rella R, Parvoli G, Ferrara D, Doretti L. Chemical evidence and risks associated with soybean and rapeseed meal fermentation. Chemosphere, 2003, 52: 1259-1262
    86. Wanasundara U N, Amarowicz R, Shahidi F. Partial characterization of natural antioxidants in canola meal. Food Res Int, 1996, 28: 525-530
    87. Villeneuve P, Turon F, Caro Y, Escoffier R, Barea B, Barouh B, Lago R, Piombo G, Pina M. Lipase-catalyzed synthesis of canola phytosterols oleate esters as cholesterol lowering agents. Enzyme Microb Tech, 2005, 37: 150-155
    88. Walker J T. Crambe and rapeseed meal as soil amendments: nematicidal potential and phytotoxic effects. Crop Prot, 1996, 15: 433-437
    89. Wanasundara U, Amarozwicz R, Shahidi F. Isolation and identifaction of an antioxidative components in canola. J Agric Food Chem, 1994, 42: 1285-1290
    90. Wanasundara U, Amarowicz R, Shahidi F. Partial characterization of natural antioxidants in canola meal. Food Res Int, 1996, 28: 525-530
    91. Wen A, Delaquis P, Stanich K, Toivonen P. Antilisterial activity of selected phenolic acids. Food Microbiol, 2003, 20: 305-311
    92. Xu L, Diosady L L. Rapid method for total phendic acid determination in rapeseed/canola meals. Food Res Int, 1997, 31: 571-574
    93. Zabaniotou A, Ioannidou O, Skoulou V. Rapeseed residues utilization for energy and 2nd generation biofuels. Fuel, 2008, 87: 1492-1502
    1.陈宏伟,韦会方,李世平,张山.菜籽磷脂生产工艺及其在水产养殖上的应用.中国油脂,2003,28(12):80-81
    2.董群,郑丽伊,方积年.改良的苯酚-硫酸法测定多糖和寡糖含量的研究.中国药学杂志,1996,31(9):550-553
    3.费荣昌.实验设计与数据处理.江南大学出版社,2001:59-63
    4.黄燕,吴平.SAS统计分析及应用.机械工业出版社,2006:252-253
    5.罗祖友,杨晓萍,吴谋成.菜籽水溶性多糖及总黄酮的提取工艺研究.食品科学,2005,26(5):156-160
    6.王黎明,夏文水.水法提取茶多糖工艺条件优化.食品科学,2005,26(5):171-174
    7.周存山,马海乐,胡文彬.条斑紫菜多糖提取工艺的优化.农业工程学报,2006,22(6):194-197
    8.EI-Batal A I,Abdel K H.Phytase production and phytic acid reduction in rapeseed meal by APSergillus niger during solid state fermentation.Food Res Int,2001,34,715-720
    9.Pastuszewska B,Jablecki G,Buraczewska L,Dakowski P,Taciak M,Matyjek R,Ochtabinska A.The protein value of differently processed rapeseed solvent meal and cake assessed by in vitro methods and in tests with rats.Anim Feed Sci Technol,2003,106:175-188
    10.Xu L,Diosady L L.Rapid method for total phenolic acid determination in rapeseed /canola meals.Food research international,1997,30:571-574
    1.何传波,陈玲,李琳,郭祀远,李冰.巴戟天多糖的分级纯化及结构分析.华南理工大学学报(自然科学版),2005,33(12):100-104
    2.李如亮.生物化学实验.武汉:武汉大学出版社,1998
    3.李文芳,向昌固,罗庆华,杨世俊,黄维.南瓜藤蔓中多糖的研究及其含量变化.食品科学,2006,27(12):442-445
    4.刘成梅,万茵,涂家财,付桂明.百合多糖脱蛋白方法的研究.食品科学,2002,23(1):89-90
    5.刘桂敏,赵秀梅,陈菊娣,胡人杰.刺参酸性粘多糖质控分析方法的研究.解放军预防医学杂志,2004,22(2):107-109
    6.石碧,狄莹.植物多酚北京:科学出版社,2000
    7.谭周进,谢达平,王征,肖启明,李立恒.蜜环菌多糖分离纯化及性质的研究.食品科学,2002,23(9):49-53
    8.王跃生,王洋.大孔吸附树脂研究进展.中国中药杂志,2006,31(12):961-965
    9.杨云,冯卫生,雷高明.大枣渣多糖精制纯化工艺的研究.中药材,2006,29(1):78-80
    10.张惟杰.复合多糖生化研究技术.上海:上海科技出版社,1987
    11.Bitter T,Muir H M.A modified uronic acid carbazole reaction.Anal Biochem,1962,4(4):330
    12.Silva E M,Pompeu D R,Larondelle Y,Rogez H.Optimisation of the adsorption of polyphenols from Inga edulis leaves on macroporous resins using an experimental design methodology.Sep Purif Technol,2007,53:274-280
    13.Xu L,Diosady L L.Rapid method for total phenolic acid determination in rapeseed/canola meals.Food Res Int,1997,30:571-574
    1.陈海华,许时婴,王璋.亚麻籽胶中酸性多糖和中性多糖的分离纯化.食品与发酵工业,2004,30(1):96-101
    2.陈石良,马青,谷文英,陶文沂.灰树花胞外多糖的性质与结构.无锡轻工大学学报,2002,21(3):244-248
    3.韩雅珊.食品化学实验指导.北京:中国农业大学出版社,1992,57-58
    4.何进,张声华.枸杞多糖的分离纯化及组成研究.中国药学杂志,1996,31(12):716-720
    5.李波,许时婴.难溶于二甲亚砜多糖的甲基化方法研究.天然产物研究与开发,2004,16(3):207-209
    6.李波,许时婴.气相色谱法测定多糖中的糖醛酸.色谱,2004,22(5):560
    7.李如亮.生物化学实验.武汉大学出版社,1998
    8.李铁林,吴昌贤,张燕霞.糖和糖醇的气相色谱分析研究Ⅱ-糖腈乙酰酯衍生物气相色谱分析的改进.分析化学,1982,10(5):272-276
    9.李小定.灰树花多糖的结构及其生物活性.[博士学位论文].武汉:华中农业大学,2002
    10.林启.中草药成分化学.北京:科学出版社,1977,113-140
    11.刘成梅,万茵,涂宗财,付桂明.百合多糖脱蛋白方法的研究.食品科学,2002,23(1):89-90
    12.刘翠平,董群,方积年.一种判定多糖中有无糖醛酸残基的简易新方法.中草药,2001,32(5):404-407
    13.刘桂敏,赵秀梅,陈菊娣,胡人杰.刺参酸性粘多糖质控分析方法的研究.解放军预防医学杂志,2004,22(2):107-109
    14.谭周进,谢达平,王征,肖启明,李立恒.蜜环菌多糖分离纯化及性质的研究.食品科学,2002,23(9):49-53
    15.王展,方积年.高场核磁共振波谱在多糖结构研究中的应用.分析化学,2000,28(2):240-247
    16.王习达,吴国荣,陈景耀,王建安.铜绿微囊藻酸性多糖的分离、纯化与结构研究.中药材,2003,26(12):865-867
    17.于德泉,杨俊山.分析化学手册.北京:化学工业出版社,1999,74-75
    18.张庆林,张慧娟,王秉及.蜜环菌多糖的分离纯化及组成分析.中国药学杂志,1995,30(7):401-403
    19.张惟杰.糖复合物生化研究技术.杭州:浙江大学出版社,1999
    20.赵瑶兴.光谱分析与有机结构鉴定.合肥:中国科学技术大学出版社,1992
    21.赵永芳.生物化学技术原理及其应用.武汉:武汉大学出版社,1994,100-115
    22. Bitter T, Muir H M. A modified uronic acid carbazole reaction. Anal Biochem, 1962, 4:330
    23. Fu D T, O'Neill R A. Monosaccharide composition of oligosaccharides and glycoproteins by high-performance liguid chromatography. Anal Biochem, 1995, 227: 377-384
    24. Gonzaga M L, Ricardo N M, Heatley F, Soares S. Isolation and characterization of polysaccharides from Agaricus blazei Murill. Carbohyd Polym, 2007, 60, 43-49
    25. Jecob L. Differential gas-liquid chromatography method for determination of uronic acid in carbohydrate mixture. Anal Biochem, 1981, 115: 410
    26. Kim J S, Reuhs B L, Michon F, Kaiser R E, Arumughama R G. Addition of glycerol for improved methylation linkage analysis of polysaccharides. Carbohyd Res, 2006, 341: 1061-1064
    27. Michael E Q, Hans N E. Differential gas-liquid chromatography method for determination of uronic acid in carbohydrate. Analyst, 1994, 119: 1511
    28. Nishide E, Anzai H, Uchida N, Nisizawa K. Uronic acid carbazole reaction. Hydrobiologia, 1990, 204/205: 573
    29. Sweet D P, Shapiro R H, Alersheim P. Quantitative analysis by varouis GLC response-factor theories for partially methylated and partially ethylated alditol acetates, Carbohydr Res, 1975, 40: 217-225
    30. Yang X P, Guo D Y, Zhang J M, Wu M C. Characterization and antitumor activity of pollen polysaccharide. Int Immunopharmacol, 2007, 7: 427-434
    1.陈季武,胡斌,赵实,邓玉,秦海燕.天然黄酮类化合物清除DPPH的构效关系.发光学报,2005,26(5):664-668
    2.陈季武,胡天喜.测定HO"产生与清除的化学发光体系.生物化学与生物物理进展.1992,19(2):136-140
    3.邓乾春,陈春艳,田斌强,谢笔钧.化学发光法测定白果白蛋白的体外抗氧化活性.中草药,2007,38(5):685-690
    4.范小兵,李慈娟,沙大年,胡卫乐,胡天喜.邻菲罗啉化学发光体系测定羟自由基的建立.基础医学与临床,1998,18(6):68-71
    5.方允中,李文杰.自由基与酶:基础理论及其在生物学和医学中的应用.科学出版社,1989
    6.郭蔼光,王振镒.邻苯三酚自氧化-化学发光法测定SOD活性.植物生理学通讯,1989,3:54-57
    7.海春旭.自由基医学.第四军医大学出版社,2006.
    8.何小解,易著文,田云,卢向阳,党西强,莫双红,杨华彬.儿茶素清除O_2~(·-)与HO~·的能力.中南大学学报(医学版),2006,31(1):138-140
    9.胡春,丁霄霖.用化学发光法研究黄酮化合物对O_2~(·-)和~·OH的清除.无锡轻工大学学报,1996,15(3):194-198
    10.季宇彬,邹翔,汲晨锋,高世勇.芦荟多糖对S180小鼠红细胞膜功能的影响.中草药,2004,35(8):898-901
    11.李志孝,黄成钢,蔡育军,陈晓明,王飞,陈耀祖.天门冬多糖的化学结构及体外抗氧化活性.药学学报,2005,35(5):358-362
    12.李宗楷,李电东.牛膝的化学成分与药理作用研究进展.中国中西医药结合杂志,1998,18(12):756-758
    13.林金明,屈锋,单孝全.活性氧测定的基本原理与方法.分析化学,2002,30(12):1507-1514
    14.林金明.活性氧的化学发光测定法.环境科学学报,2003,23(2):230-238
    15.龙盛京,钱莹.几种赤色与淡色食物抗活性氧效能的比较研究.营养学报,1997,19(4):470-473
    16.龙盛京,石建庆,谢云峰.流动注射邻菲哕啉化学发光体系测定羟自由基.分 析实验室,2006,25(7):35-38
    17.彭兴,龙盛京.老鼠簕提取成分的抗氧化活性.华西药学杂志,2006,21(1):14-17
    18.钦传光,周军,赵文,黄开勋,徐辉碧.泥鳅多糖清除活性氧和保护DNA链的作用.生物化学与生物物理学报,2001,33(2):215-218
    19.宋爱新,李明静,刘绣华.化学发光法测定几种怀山药的抗自由基活性.化学研究,2000,11(4):17-19
    20.王雁,杨祥良,邓成华,顾小曼,周井炎,徐辉碧.羧甲基化虎奶多糖的制备及抗氧化性研究.生物化学与生物物理进展,2000,27(4):41-44
    21.王丽萍,王轶.自由基对骨关节炎的影响.中华风湿病学杂志,2006,10(2):116-118
    22.王庆利,林茂,刘耕陶.异丹叶大黄素的体外抗氧化作用.中国药学杂志,2001,36(12):810-814
    23.王义华,徐梅珍,江萍,何照范,熊绿芸.啤酒酵母多糖的提纯、化学组成及抗氧化性质鉴定.微生物学通报,2003,30(4):51-54
    24.颜军,徐光域,郭晓强,刘嵬,李晓光,苟小军.银耳粗多糖的纯化及抗氧化活性研究.食品科学,2005,26(9):169-172
    25.姚尧,杜俊蓉,钱忠明.番茄红素抗氧化及肿瘤预防作用的研究进展.国外医学:药学分册,2005,32(5):308-311
    26.袁春莲,王芬,叶凤阁,温占华.化学发光法研究培植牛黄清除O_2~(·-)的作用.中草药,1998,29(5):328-329
    27.张泽生,李博轩,王冀.葡萄皮中花色苷的体外抗氧化研究.食品研究与开发,2007,28(2):148-151
    28.周淑英,卢振初,王俏先,元寿海,陈惠英,刘文虎.黄芪多糖(APS)抗肿瘤实验研究.药物生物技术,1995,2(2):22-25
    29.朱晓燕,邬建敏,贾之慎.佛手多糖的化学组成及体外抗氧化活性研究.高等学校化学学报,2005,26(7):1264-1267
    30.Anagnostopoulou M A,Kefalas P,Papageorgiou V P,Assimopoulou A N,Boskou D.Radical scavenging activity of various extracts and fractions of sweet orange peel(Citrus sinensis).Food Chem,2006,94:19-25
    31.Arnous A,Petrakis C,Makris D P,Kefalas P.A peroxyoxalate chemiluminescence-based assay for the evaluation of hydrogen peroxide scavenging activity employing 9,10-diphenylanthracene as the fluorophore.J Pharmacol Toxicol,2002,48:171-177
    32.Casado M F,Cecchini A L,Simao A N,Oliveira R D,Cecchini R.Free radical-mediated pre-hemolytic injury in human red blood cells subjected to lead acetate as evaluated by chemiluminescence. Food Chem Toxicol, 2007, 45: 945-952
    33. Chen F A, Wu A B, Shieh P, Kuo D H, Hsieh C Y. Evaluation of the antioxidant activity of Ruellia tuberosa. Food Chem, 2006, 94: 14-18
    34. Chen H X, Zhang M, Xie B J. Components and antioxidant activity of polysaccharide conjugate from green tea. Food Chem, 2005, 90: 17-21
    35. Costin J W, Barnett N W, Lewis S W, McGillivery D J. Monitoring the total phenolic/antioxidant levels in wine using flow injection analysis with acidic potassium permanganate chemiluminescence detection. Anal Chim Acta, 2003, 499: 47-56
    36. Crestanello J A, Lingle D M, Kamelgard J, Millili J, Whitman G J. Ischemic preconditioning decreases oxidative stress during reperfusion: a chemiluminescence study. J Surg Res, 1996, 65: 53-58
    37. Cuzzocreal S, Riley D P, Caputi A P, Salvemini D. Antioxidant therapy: A new pharmacological approach in shock, infammation, and ischemia/reperfusion injury. Pharmacol Rev, 2001, 53 (1): 135-159
    38. Evelson P, Ordonez C P, Llesuy S, Boveris A. Oxidative stress and in vivo chemiluminescence in mouse skin exposed to UVA radiation. J Photoch Photobio B, 1997,38:215-219
    39. Fang Y Z, Yang S, Wu G Y. Free radicals, antioxidants, and nutrition. J Nutr, 2002, 18: 872-879
    40. Garcia-Ruiz C, Colell A, Morales A, Kaplowitz N, Fernandez-Checa J C. Role of oxidative stress generated from the mitochondrial electron transport chain and mitochondrial glutathione status in loss of mitochondrial function and activation of transcription factor nuclear factor-kappa B: studies with isolated mitochondria and rat hepatocytes. Mol Pharmacol, 1995, 48: 825-834
    41. Giokas D L, Vlessidis A G, Evmiridis N P. On-line selective detection of antioxidants free-radical scavenging activity based on Co (II)/EDTA-induced luminal chemiluminescence by flow injection analysis. Anal Chim Acta, 2007, 589: 59-65
    42. Girotti S, Ferri E, Maccagnani L , Budini R, Bianchi G. Plasma antioxidant capacity determination: comparative evaluation of chemiluminescent and spectrophotometric assays. Talanta, 2002, 56: 407-414
    43. Hirayama O, Takagi M, Hukumoto K, Katoh S. Evaluation of antioxidant activity by chemiluminescence. Anal Biochem, 1997, 247: 237-241
    44. Jipa S, Osawa Z, Otsuki H, Nishimoto M. Chemiluminescence assessment of the effectiveness of some phenolic antioxidants for heat stabilization of irradiated LDPE. Polym Degrad Stabil, 1997, 56: 45-53
    45. Kalitchin Z D, Boneva M I, Milkova T, Todorova D. Study on the antioxidant activity of choiesteryl esters of some phenolic acids by chemiluminescence. J Photoch Photobio B, 1997, 41: 109-113
    46. Kardosová A, Machová E. Antioxidant activity of medicinal plant polysaccharides. Fitoterapia, 2006, 77: 367-373
    47. Kawagoe M, Nakagawa K. Attenuation of luminol-amplified chemiluminescent intensity and lipid peroxidation in the livers of quercetin-fed mice. Toxicol Lett, 2000,114: 189-196
    48. Kohler D R, Krohnke C. Chemiluminescence as an industrial test method for antioxidant effectiveness in polylefins: I. Fundamental considerations. Polym Degrad Stabil, 1998, 62: 385-393
    49. Kohler D R, Krohnke C. Chemiluminescence as an industrial test method for antioxidant effectiveness in polylefins: IL Versatile application aspects. Polym Degrad Stabil, 1999, 63: 165-173
    50. Li X M, Li X L, Zhou A G.. Evaluation of antioxidant activity of the polysaccharides extracted from Lycium barbarum fruits in vitro. Eur Polym J, 2007,43:488-497
    51. Liu C H, Wang C H, Xu Z L, Wang Y. Isolation, chemical characterization and antioxidant activities of two polysaccharides from the gel and the skin of Aloe barbadensis Miller irrigated with sea water. Process Biochem, 2007, 42: 961-970
    52. Ma W J, Cao E H, Zhang J, Qin J F. Phenanthroline-Cu complex-mediated chemiluminescence of DNA and its potential use in antioxidation evaluation. J Photoch Photobio B, 1998, 44: 63-68
    53. Mau J L, Lin H C, Song S F. Antioxidant properties of several specialty mushroom. Food Res Int, 2002, 5, 519-526
    54. Nandita S, Rajini P S. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem. 2004, 85: 611-616
    55. Osseni R A, Rat P, Bogdan A, Warnet J, Touitou Y. Evidence of prooxidant and antioxidant action of melatonin on human liver cell line HepG2. Life Sci, 2000, 68: 387-399
    56. Papadopoulos K, Triantis T, Dimotikali D, Nikokavouras J. Evaluation of food antioxidant activity by photostorage chemiluminescence. Anal Chim Acta, 2001, 433: 263-268
    57. Papadopoulos K, Triantis T, Yannakopoulou E, Nikokavoura A, Dimotikali D. Comparative studies on the antioxidant activity of aqueous extracts of olive oils and seed oils using chemiluminescence. Anal Chim Acta, 2003,494: 41-47
    58. Parejo I, Codina C, Petrakis C, Kefalas P. Evaluation of scavenging activity assessed by Co (II)/EDTA-induced luminal chemiluminescence and DPPH. (2, 2-diphenyl-1-picrylhydrazyl) free radical assay. J Pharmacol Toxicol, 2000, 44: 507-512
    59. Qi H M, Zhao T T, Zhang Q B, Li Z N, Zhao Z Q, Xing R G. Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa Kjellm (Chlorophyta). J Appl Phycol, 2005,17: 527-534
    60. Qi H M, Zhang Q B, Zhao T T, Chen R, Zhang H, Niu X Z, Li Z E. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) in vitro. Int J Biol Macromol, 2005, 37: 195-199
    61. Rao R S, Muralikrishna G. Water soluble feruloyl arabinoxylans from rice and ragi: Changes upon malting and their consequence on antioxidant activity. Phytochemistry, 2006, 67: 91-99
    62. Sen C K, Roy S, Han D, Packer L. Regulation of cellular thiols in human lymphocytes by alpha-lipoic acid: a flow cytometry analysis. Free Radical Bio Med, 1997,22:1241-1257
    63. Sun J S, Tsuanga Y H, Chen I J, Huang W C, Hang Y S, Lu F J. An ultra-weak chemiluminescence study on oxidative stress in rabbits following acute thermal injury. Burns, 1998, 24: 225-231
    64. Toyo'oka T, Kashiwazaki T, Kato M. On-line screening methods for antioxidants scavenging superoxide anion radical and hydrogen peroxide by liquid chromatography with indirect chemiluminescence detection. Talanta, 2003, 60: 467-475
    65. Triantis T M, Yannakopoulou E, Nikokavoura A, Dimotikali D, Papadopoulos K. Chemiluminescent studies on the antioxidant activity of amino acids. Anal Chim Acta, 2007, 591: 106-111
    66. Triantis T, Stelakis A, Dimotikali D, Papadopoulos K. Investigations on the antioxidant activity of fruit and vegetable aqueous extracts on superoxide radical anion using chemiluminescence techniques. Anal Chim Acta, 2005, 536: 101-105
    67. Valentao P, Fernandes E, Carvalho F, Andrade P B, Seabra R M, Bastos M L. Antioxidative properties of Cardoon (Cynara cardunculus L.) infusion against superoxide radical, hydroxyl radical, and hypochlorous acid. J Agr food chem, 2002, 50: 4989-4993
    68. Wada M, Kido H, Ohyama K, Kishikawa N, Ohba Y, Kuroda N, Nakashima K. Evaluation of quenching effects of non-water-soluble and water-soluble rosemary extracts against active oxygen species by chemiluminescent assay. Food Chem, 2004, 87: 261-267
    69. Wang Z J, Luo D H. Antioxidant activities of different fractions of polysaccharide purified from Gynostemma Pentaphyllum Makino. Carbohyd Polym, 2007, 68 54-58
    70. Waring W S, Mishra V, Maxwell S R. Comparison of spectrophotometric and enhanced chemiluminescent assays of serum antioxidant capacity. Clin Chim Acta 2003, 338: 67-71
    71. Wu J H, Xu C, Shan C Y, Tan R X. Antioxidant properties and PC12 cell protective effects of APS-1, a polysaccharide from Aloe vera var. chinensis. Life Sci, 2006, 78: 622-630
    72. Yang B, Wang J S, Zhao M M, Liu Y, Wang W, Jiang Y M. Identification of polysaccharides from pericarp tissues of litchi {Litchi chinensis Sonn.) fruit in relation to their antioxidant activities. Carbohyd Res, 2006, 341: 634-638
    73. Yao D C, Vlessidis A G, Evmiridis N P. Monitoring reactive oxygen species in vivo using microdialysis sampling and chemiluminescence detection as an alternative global method for determination of total antioxidant capacity. Anal Chim Acta, 2002,467: 133-144
    74. Yu F, Sheng J C, Xu J, An X X. Antioxidant activities of crude tea polyphenols, polysaccharides and proteins of selenium-enriched tea and regular green tea. Eur Food Res Technol, 2007, 225: 843-848
    75. Yu W L, Zhao Y P. Chemiluminescence evaluation of oxidative damage to biomolecules induced by singlet oxygen and the protective effects of antioxidants. BBA-Gen Subjects, 2005, 1725: 30-34
    76. Zhang Q B, Li N, Zhou G F, Lu X L, Xu Z H, Li Z E. In vivo antioxidant activity of polysaccharide fraction from Porphyra haitanesis (Rhodephyta) in aging mice. Pharmacol Res, 2003, 48: 151-155
    77. Zhang Q B, Yu P Z, Li Z E, Zhang H, Xu Z H, Li P C. Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis. J Appl Phycol, 2003 15:305-310
    1.蔡文娥.玉郎伞多糖对小鼠免疫细胞功能的影响.[博士学位论文].南宁:广西医科大学图书馆,2008
    2.龚非力.医学免疫学.北京科学出版社,2003:68-69
    3.贺新怀.中医药免疫学.北京:人民军医出版社,2002
    4.侯粉霞,杨慧芳,鱼涛.脂多糖及伴刀豆球蛋白A诱导脾淋巴细胞增殖实验方法用于免疫毒性评价的可行性研究.工业卫生与职业病,2007,33(6):336-339.
    5.江汉湖.食品免疫学导论.北京:化学工业出版社,2006
    6.梁国栋.最新分子生物学实验技术.科学出版社,2003,133-135
    7.刘祥胜,刘开俊,杨业金。华蟾素对Hela细胞生长和小鼠脾淋巴细胞分泌IL-2的影响.免疫学杂志,2005,21(3):132-135
    8.马莉,冯少华,唐健元,赵艳玲,肖小河.不同制备工艺板蓝根多糖对小鼠脾淋巴细胞增殖作用的影响.中国药房,2007,18(3):169-171
    9.邱妍.四种中药多糖增强免疫和抗病毒作用及机理研究.[博士学位论文].南京:南京农业大学图书馆,2007
    10.孙卫民,王惠琴.细胞因子研究方法学,人民卫生出版社,1999:389.
    11.徐红丽,郭婷婷,傅莉,张建鹏,冯伟华,焦炳华.5种海洋动物多糖对体外小鼠脾淋巴细胞及大鼠睾丸支持细胞增殖作用的比较.中国药学杂志,2006,41(11):839-841
    12.杨铁虹.当归多糖的分离纯化与免疫调节作用及其机理研究.[博士学位论文].西安:第四军医大学图书馆,2003
    13.于海荣,王济兴,陈建双,周小春,宋鸿儒.穿山龙总皂苷含药血清对小鼠脾淋巴细胞增殖及IL-6产生影响的实验研究.江苏中医药,2007,39(1):57-58.
    14.张晨晓.泥鳅多糖的免疫调节和抗肿瘤作用机理.[博士学位论文].武汉:华中科技大学图书馆,2005
    15.张建峰,昌友权,陈光,张田勇.红曲多糖的免疫活性研究.食品科学,2008,29(2):391-393
    16.张陆曦,徐红丽,顾佳雯,郭婷婷,何培民.条斑紫菜多糖PY-D2对小鼠脾淋巴细胞生长的影响.中国免疫学杂志,2007,23(12):1093-1096
    17.赵现敏,崔保安,张红英,胡梅,王远阁,李改英,刘炜.4种中药多糖对猪脾淋巴细胞增殖的影响.河北农业大学学报,2007,30(3):82-85
    18.Brad H,Nelson C E.IL-2,regulatory T cells,and tolerance.J Immunol,2004,172:3983-3988
    19.Brajac I,Gruber F,Petrovecki M,Malnar-Dragojevic D.Interleukin-2 Receptor alpha-chain expression in patients with alopecia areata.Acta Dermatovenerol Croat,2004,12:154-156
    20.Carmichael J,Degraff W G,Gazdar A F,Minna J D,Michell J B.Evaluation of a tetrazolium-based semiautomated colorimetric assay:assessment of chemosensitivity testing. Cancer Res, 1987, 47: 936
    21. Cottrez F, Auriault C, Capron A, Groux H. Quantitative PCR: validation of the use of multispecific internal control. Nucleic Acids Res, 1994, 22: 2712-2713
    22. Hirota H, Kishimoto T, Kishimoto T, Taga T. Accelerated nerve regeneration in mice by regulated expression of interleukin (IL)-6 and IL-6 receptor after trauma. J Exp Med, 1996,183: 2627-2634
    23. Kuddus R H, Lee T H, Valdivea L A. A semi-quantitative PCR technique for detecting chimerism in hamster-to-rat bone marrow xenotransplantation. J Immunol Methods, 2004,285: 245-251
    24. Li Y S, Hayakawa K, Hardy R R. The regulated expression of B lineage associated genes during B cell differentiation in bone marrow and fetal liver. J Exp Med, 1993 178:951-960
    25. Liu F, Ooi V E, Fung M C. Analysis of immunomodulating cytokine mRNAs in the mouse induced by mushroom polysaccharides. Life Sci, 1999, 64: 1005-1011
    26. Omarsdottir S, Olafsdottir E S, Freysdottir J. Immunomodulating effects of lichen-derived polysaccharides on monocyte-derived dendritic cells. Int Immunopharmaco, 2006, 6: 1642-1650
    27. Mathias C, Martine B, Anne V C. A semi-quantitative RT-PCR method to readily compare expression levels within Botrytis cinerea multigenic families in vitro and in planta. Curr Genet, 2003,43: 303-309
    28. Rolland V G. Semi-quantitative analysis of gene expression in cultured chondrocytes by RT- PCR. Methods Mol Med, 2004, 100: 69-78
    29. Sang B H, Yong H K, Chang W L, Sun M P, Hae Y L, Kyung S A. Characteristic immunostimulation by angelan isolated from Angelica gigs Nakai. Int Immunopharmaco, 1998, 40: 39-48
    30. Smith K A. Interleukin-2: inception, impact, and implications. Sci, 1988, 240: 1169-1176
    31. Svetic A, Finkelman F D, Jian Y C, Dieffenbach C W, Scott D E, McCarthy K F, Steinberg A D, Gause W C. Cytokine gene expression after in vivo primary immunization with goat antibody to mouse IgD antibody. J Immunol, 1991, 147: 2391-2397
    32. Taniguchi T, Minami Y. The IL-2/IL-2R system: a current overview. Cell, 1993, 73: 5-8
    33. Theze J, Alzari P M, Bertoglio J L. Interleukin 2 and its receptors: recent advances and new immunological functions. Immunol today, 1996, 17: 481-486
    34.Varki A.Biological roles ofoligosaccharides.Glycobiology,1993,3:97-130
    35.Verheyen J,Bonig H,Banning U,Shin D D,Mauz-k(o|¨)rholz C.Co-operation of IL-1and IL-2 on T-cell activation in mononuclear cell cultures.Immunol Invest,2001,30:289-302
    36.Wang J,Gong X G.Advances in the studies on the antitumor activity and immunomo-dulating action of polysaccharides.Chinese J Biochem Pharm,2001,22:52-54
    1.江汉湖.食品免疫学导论.北京:化学工业出版社,2006
    2.薛庆善.体外培养的原理和技术.北京:科学出版社,2001
    3.Bogdan C,Rollinghhoff M,Diefenbach A.The role of nitric oxide in innate immunity.Immunol Rev,2000,173:17-26
    4.Fidler I J,Kleinerman E S.Therapy of cancer metastasis by systemic activation of macrophages:from bench to the clinic.Res Immunol,1993,144:274-276
    5.Han S B,Yoon Y D,Ahn H J,Lee H S,Lee C W,Yoon W K,Park S K,Kim H M.Toll-like receptor-mediated activation of B cells and macrophages by polysaccharide isolated from cell culture of Acanthopanax senticosus.Int Immunopharmacol,2003,3:1301-1312
    6. Im S A, Oh S T, Song S, Kim M R, Kim D S, Woo S S, Jo T H, Park Y I, Lee C K. Identification of optimal molecular size of modified Aloe polysaccharides with maximum immunomodulatory activity. Int Immunopharmacol, 2005, 5: 271-279
    7. Im S A, Lee Y R , Lee Y H, Oh S T, Gerelchuluun T, Kim B H, Kim Y, Yun Y P, Song S, Lee C K. Synergistic activation of monocytes by polysaccharides isolated from Salicornia herbacea and interferon-γ. J Ethnopharmacol, 2007, 111: 365-370
    8. Izuru A, Yoshinori T, Tetsuya W, Sachiko A, Kensuke M, Takao K, Kazuo N . Safflower polysaccharides activate the transcription factor NF-κB via Toll-like receptor 4 and induce cytokine production by macrophages. Int Immunopharmacol, 2002,2: 1155-1162
    9. Jeon Y J, Han S B, Ahn K S, Kim H M. Activation of NF-κB/Rel in angelan-stimulated macrophages. Immunopharmacology, 1999,43: 1-9
    10. Klostergaard J. Macrophages tumoricial mechanism. Res Immunol, 1993, 87: 581-586
    11. Lacchini A H, Davies A J, Machintosh D, Walker A J. β-1, 3-glucan modulates PKC signalling in Lymnaea stagnalis defence cells: a role for PKC in H_2O_2 production and downstream ERK activation. Exp Biol, 2006, 209: 4829-4840
    12. Lee K Y, Lee M H, Chang I Y, Yoon S P, Lim D Y, Jeon Y J. Macrophage activation by polysaccharide fraction isolated from Salicornia herbacea. J Ethnopharmacol, 2006,103:372-378
    13. Liu S F, Malik A B. NF-kB activation as a pathological mechanism of septic shock and inflammation. Am J Physiol Lung Cell Mol Physiol, 2006,290: 622-645
    14. Lucia M, Sandra D, Marina Z. Role of nitric oxide in the modulation of angiogenesis. Curr Pharm Design, 2003, 9: 521-530
    15. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods, 1983, 65: 55-63
    16. Paulnock D M. Macrophage activation by T cells. Curr Opin Immunol, 1992, 4: 344-349
    17. Popov S V, Popova G Y, Ovodova R G, Bushneva O A, Ovodov Y S. Effects of polysaccharides from Silenvelgarison phagocytes. Int J Immunopharamaco, 1999, 21:617-624
    18. Schepetkin I A, Quinn M T. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential. Int Immunopharmacol, 2006, 6: 317-333
    19. Sim K S, Sim W S, Kim H M, Han S B, Kim I H. Immunostimulating polysaccharide from cell culture of Angelica gigas Nakai. Biotechnol Lett, 1998, 20: 5-7
    20. Song J Y, Han S K, Son E H, Pyo S N, Yun Y S, Yi S Y. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. Int Immunopharmacol, 2002, 2: 857-865
    21. Wu M J, Weng C Y, Wang L, Lian T W. Immunomodulatory mechanism of the aqueous extract of sword brake fern {Pteris ensiformis Burm.). J Ethnopharmacol, 2005,98:73-81
    22. Yoon Y D, Kang J S, Han S B, Park S K, Lee H S, Kang J S, Kim H M. Activation of mitogen-activated protein kinases and AP-1 by polysaccharide isolated from the radix of Platycodon grandiflorum in RAW 264.7 cells. Int Immunopharmacol, 2004,4: 1477-1487
    23. Yoon Y D, Han S B, Kang J S, Lee C W, Park S K, Lee H S, Kang J S, Kim H M. Toll-like receptor 4-dependent activation of macrophages by polysaccharide isolated from the radix of Platycodon grandiflorum. Int Immunopharmacol, 2003, 3: 1873-1882
    24. Zhang C X, Huang K X, Characteristic immunostimulation by MAP, a polysaccharide isolated from the mucus of the loach, Misgurnus anguillicaudatus. Carbohyd Polym, 2005, 59: 75-82

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700