地铁车站结构健康监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地铁车站结构在长期服役过程中,由于环境腐蚀、材料老化、荷载的长期效应、疲劳效应与突变效应等灾害因素的耦合作用,将不可避免地导致结构产生损伤积累、抗力减小,甚至在极端情况下导致结构失效。如果能够对地铁车站结构进行健康监测,将会大大降低事故发生的可能性并减少事故损失。因此地铁车站结构健康监测技术将成为确保结构安全的重要技术。本文以北京地铁10号线地铁车站国贸站为工程背景,对地铁车站结构健康监测理论进行了研究,首次建立了地铁车站结构健康监测系统,并进行2年的结构监测。
     地铁车站底板大多属于大体积混凝土结构,水泥水化产生大量水化热,容易产生温度裂缝。本文基于等效时间的水化热理论,求解结构温度场,并将该理论应用于地铁车站结构底板温度场的仿真计算中。计算模拟温度场与光纤光栅传感器和振弦传感器测试结果吻合良好。对影响混凝土内部与外部温差的环境温度和板厚进行参数分析,表明温度升高底板中部与上部温差减小,底板中部与下部温差增大;底板厚度增加底板中部与上部温差以及底板中部与下部温差都增大。
     开展了基于混凝土徐变理论的健康监测分析。基于混凝土双参数徐变模型分析了地铁车站中隔板应变。考虑早龄期徐变计算结果与测试结果总体上更接近,不考虑早龄期徐变计算结果存在较大误差。计算表明早龄期混凝土徐变增大了结构拉应变,对结构早龄期开裂有着重要影响,结构设计和裂缝控制需要考虑早龄期混凝土徐变的影响。基于混凝土徐变B3计算模型和继效流动理论计算模型,分析了北京地铁新型抗渗混凝土结构长期徐变性能,并且基于混凝土B3徐变计算模型对影响混凝土长期徐变的环境湿度、水灰比和骨料水泥比进行了参数分析。
     由于地下结构的动力响应受周围地基土壤的约束作用显著,其动力响应不如地面结构显著,其研究尚未引起足够重视。本文对地铁车站通过实际监测和理论研究,分析了地铁列车荷载对车站结构动力响应的影响。结果显示车振对地铁车站结构应力影响较小。
     温度对结构动力行为的影响是结构动力学研究的新方向。本文在理论上推导了在特定边界条件下,温度变化对梁和板结构固有频率影响的方程。基于Kanai-Tajimi模型和三角级数迭加法人工模拟了地震波,在人工模拟地震作用下分析了地铁车站抗震性能。计算表明水平方向地震作用对拱脚和墙脚应力影响较大,拱脚水平方向应力和墙脚水平方向应力分别为初始应力的1.46倍和1.61倍,拱脚竖直方向应力和墙脚竖直方向应力分别为初始应力的1.34倍和1.59倍;竖直方向地震作用对拱顶、拱脚、中隔板跨中、底板跨中、墙脚水平方向应力均有较大影响,对底板跨中水平方向应力影响最大,达到初始应力的3.30倍;对拱脚和墙脚竖直方向应力有较大影响,最大应力分别为初始应力的2.78和2.72倍。同时考虑温度因素的影响,20℃的温度变化对地铁车站结构地震作用应力影响最大达到9.6%,但应力幅值只0.24MPa。
     首次提出了地铁车站结构健康监测设计方法,并结合北京地铁10号线国贸站建立国贸站健康监测系统。主要监测结构温度、应变、裂缝、徐变等。采集到大量监测数据,并对数据进行了分析。光纤光栅传感器和振弦传感器监测到的同一部位温度和应变数据吻合良好,获得结构受力体系变化时结构应变的变化,以及监测到异常荷载。表明监测系统中布设传感器性能可靠,监测数据可信。
     开发了基于OpenGL和GIS技术开发的国贸站结构健康监测系统。该系统能采集、分析、管理数据;能实现危险状况预警。
Subway station structures which have a long service period are inevitable to suffer from environmental corrosion, long term loading, fatigue effects, material aging and their coupling effects. In the wake of the damage accumulation, performance of the structures will degenerate, and even leading to structure failures under extreme loadings. If health monitoring for subway station is carried out, the possibility of accident will greatly decrease and the losses of accident also reduce. Therefore, the structural health monitoring technology for subway station will become an important technology to ensure structural safety.In this paper taking Guomao Station on No.10 subway line in Beijing as a case, structural health monitoring theories have been studied. The structural health monitoring system for Guomao Station has been installed firstly and the structural monitoring has been carried out for two years.
     Most of subway station soleplate structures are mass concrete. Cement hydration produces heat, which may provoke important temperature rises in massive structures. Such a high temperature may be a factor for cracking during a cooling phase. A simulation of the evolving temperature field for subway station soleplate is conducted by using the adiabatic temperature rise theory of concrete based on equivalent time. Temperature field simulated agrees very well with experiment data measured by fiber Bragg grating sensors and vibrating wire sensors. Parameters analysis of ambient humidity and thickness of slab which affect the difference of temperature between interior and exterior of concrete are carried out. It is shown that temperature increasesing leads to the difference of temperature between middle and upside of concrete increases, while the difference of temperature between middle and bottom of concrete decreases. Both the difference of temperature between middle and upside and the difference of temperature between middle and bottom of concrete increases.
     Based on creep theory of concrete, a structural health monitoring analysis is carried out in the paper. Using the double-power law for concrete creep, the strain of septi-slab is calculated. Experiment data measured by fiber Bragg grating sensors agree well with the calculated results, and the calculated results taking into account the earlyage creep are better in agreement with the measured data. Creep has very important effects on earlyage concrete, and the creep of earlyage concrete should be considered in the structural design and crack control. Based on the B3 model and the elastic continuation and plastic flow theory model for concrete creep, the long term creep of new impervious concrete structures is analyzed. The influence of ambient humidity, water-to-cement ratio and aggregate-to-cement ratio are studied with the B3 model.
     As restrained by earth, dynamic response of underground structures may not significant change from most surface structures. Its study has been ignored for a long time. Through monitoring and theoretical study for subway station, dynamic responses of a subway station are calculated under railway loads. Results show that railway loads have little influence on the stress of subway station structures.
     Temperature effects on the dynamic performance is a new study direction in structural dynamics. The paper deduces formulae for temperature effects on the natural frequencies of the beam and slab of specific boundary conditions. An artificial earthquake record with the Kanai-Tajimi model and trigonometric series superprosition method is generated. The artificial earthquake record is used to analyze seismic performance of the subway station structure. It is shown that the influences of the stresses of arch springing and basement are significant under horizontal direction earthquake. Under horizontal direction earthquake, the horizontal stresses of arch springing and basement are 1.46 and 1.61 times than the original stresses and their vertical stresses are 1.34 and 1.59 times than the original stresses. It is shown that the influences of the horizontal stress of soleplate and the vertical stresses of arch springing and basement are significant under vertical direction earthquake. Under vertical direction earthquake, the horizontal stresse of soleplate is 3.30 times than the original stress, while vertical stresses of arch springing and basement are 2.78 and 2.72 times than the original stresses. When temperature changes 20℃, the stress of structure changes about 9.6%, while stress amplitude reach 0.24MPa.
     Design methodology of health monitoring for subway stations is proposed firstly. According to the design methodology, the structural health monitoring system for Guomao Station has been installed to monitor temperature, strains, creep and cracks of the structure, obtaining a great deal of data, the data measured by fiber Bragg grating sensors and vibrating wire sensors of the system agree very well with each other. The change of structure strains at some special cases in the course of construction were obtained. It is demonstrated that the performance of the sensors are reliable and monitoring data are credible.
     A structural health monitoring system based on OpenGL and GIS which can collect, analyze, manage data and provide an alarm has been developed.
引文
[1]Housner GW,Bergman LA,Caughey TK,et al.Structural Control:Past,Present,and Future[J].ASCE,Journal of Engineering Mechanics,1997,123(9):897-971.
    [2]孙鸿敏,李宏男.土木工程结构健康监测研究进展[J].防灾减灾工程学报,2003,23(3):92-98.
    [3]张启伟.大型桥梁健康监测概念与监测系统设计[J].同济大学学报,2001,29(1):65-69.
    [4]周智.土木工程结构光纤光栅智能传感元件及其监测系统[D],哈尔滨工业大学,2004.
    [5]Schwesinger Peter,Thor Bianca,Schwesinger Frank M,et al.One Year Experiences in Bridge Testing Using the Loading Truck BELFA[A].SPIE,Smart Structures and Materials[C],San Diego,2002,4696:74-81.
    [6]袁万城,崔飞,张启伟.桥梁健康监测与状态评估的研究现状与发展[J].同济大学学报,1999,27(2):184-188.
    [7]Udd E,Kunzler M,Laylor MH,et al.Fiber grating systems for traffic monitoring[A].SPIE:Health Monitoring and Management of Civil Infrastructure Systems[C],2001,4337:510-514.
    [8]何旭辉.南京长江大桥结构健康监测及其关键技术研究[D].中南大学,2004.
    [9]Chung Bang Yun,Jong-Jae Lee,Sung-Kon Kim,et al.Recent R&D Activities on Structural Health Monitoring for Civil Infrastructures in Korea[J].KSCE Journal of Civil Engineering,2003,7(6):637-651.
    [10]Davis MA,Kersey AD.Dynamic strain monitoring of an in-use interstate bridge using Fiber Bragg Grating Sensors[A].SPIE[C],1997,3043:87-95.
    [11]Sunaryo Sumitoro,Yoshimasa Matsui,Masaru Kono,et al.Long span bridge health monitoring system in Japan[A].SPIE[C],2001,4337:517-524.
    [12]Yozo Fujino,Masanobu Murata,Satoshi Okano,et al.Monitoring system of the Akashi Kaikyo Bridge and displacement measurement using GPS[A].SPIE[C],2000,3995:229-236.
    [13]Andrea Del Grosso,Daniele Inaudi,Livia Pardi.Overview of European Activities in the Health Monitoring of Bridges[A].First International Conference on Bridge,Maintenance,Safety and Management,IABMAS[C],CIMNE,Barcellona,2002:1-8.
    [14]Cheung MS.Instrumentation and Field Monitoring of the Confederation Bridge[A].Proceedings of Workshop on Research and Monitoring of Long Span Bridge[C],Hong Kong,PRC,2000:109-118.
    [15]Curran Peter,Tilly Graham.Design and Monitoring of the Flintshire Bridge,UK[J].Structural Engineering International,1999,9(3):225-228.
    [16]Josh Olund,John DeWolf.Passive Structural Health Monitoring of Connecticut's Bridge Infrastructure[J]..ASCE,Journal of Infrastructure Systems,2007,13(4):330-339.
    [17]Andersen EY,Pedersen L.Structural health monitoring of the Great Belt East Bridge[A].Proceedings of the 3rd Symposium on Strait Crossings[R],Balkema,Roterdam,Netherlands,1994:189-195.
    [18]Brincker R,Frandsen JB,Andersen P.Ambient response analysis of the Great Belt Analysis[A].Proceedings of 18th International Modal Analysis Conference[C],San Antonio,Texas, 2000:26-32.
    [19]Wang KY,Lau CK,Flint AR.Planning and Implementation of the Structural Health Monitoring System for cable supported Bridges in Hong Kong[A].SPIE[C],2000,3995:266-275.
    [20]Ko JM,Ni YQ.Technology developments in structural health monitoring of large-scale bridges[J].Engineering Structures,2005,27(12):1715-1725.
    [21]张劲超,颜东煌.香港索支撑桥的发展--从青马桥到昂船洲桥[J].中外公路,2003,23(1):60-63.
    [22]何旭辉,陈政清,黄方林,等.南京长江大桥安全监测和状态评估的初步研究[J].振动与冲击,2003,22(1):75-78.
    [23]苏木标,杜彦良,孙宝臣,等.芜湖长江大桥长期健康监测与报警系统研究[J].铁道学报,2007,29(2):71-76.
    [24]尹仕健,曹映泓,张海明.湛江海湾大桥健康监测系统及其设计[J].中外公路,2006,26(5):102-105.
    [25]董学武,张宇峰,徐宏,等.苏通大桥结构健康监测及安全评价系统简介[J].桥梁建设,2006,4:71-73,81.
    [26]李爱群,缪长青,李兆霞,等.润扬长江大桥结构健康监测系统研究[J].东南大学学报(自然科学版),2003,33(5):544-548.
    [27]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(Ⅱ):系统实现[刀.土木工程学报,2006,39(4):45-53.
    [28]谭永朝,郑翰献,俞菊虎,等.钱江四桥桥梁实时健康监测系统开发研究[J].公路交通科技,2004,21(11):43-46.
    [29]朱永,符欲梅,陈伟民.大佛寺长江大桥健康监测系统[J].土木工程学报,2005,38(10):66-71.
    [30]孙俊清,陈辉堂,史家钧.卢浦大桥健康监测系统通信网络设计[J].同济大学学报(自然科学版),2004,32(9):1225-1228.
    [31]王晓东.吴忠黄河大桥施工阶段健康监测研究--光纤应变传感器的应用研究[D],东北大学,2002.
    [32]张敏,杨志芳,朱利明.东海大桥桥梁结构健康监测系统研究与设计[J].桥梁建设,2006,2:67-70.
    [33]江军,黄法大,赵伟明,等.上海徐浦大桥测量监控技术[J].测绘通报,1999,5:19-22.
    [34]Wong KY.Instrumentation and health monitoring of cable-supported bridges[J].Structural Control and Health Monitoring,2004,11(2):91-124.
    [35]Zhang Tong,Ou Jingping.Research of Full-life Monitoring for Long Span Bridge[A].Proceedings of International Conference on Health Monitoring of Structure,Material and Environment[C],Nanjing,China,2007:820-823.
    [36]陈启飞,李爱群,缪长青,等.淮安大桥结构健康监测和评估系统研究与实施[J].特种结构,2007,24(2):90-92,108.
    [37]陈彦君,常明华.哈尔滨西环松花江大桥索塔挠度变形观测[A].中国公路学会2003年学术年会[C],2003:158-161.
    [38]左云,陈明宪,赵跃宇.桥梁健康监测及传感器的优化布置[J].公路,2004,(4):90-94.
    [39]欧进萍,周智,武湛君,等.黑龙江呼兰河大桥的光纤光栅智能监测技术[J].土木工程学报,2004,37(1):45-49,64.
    [40]刘玲,陆建辉,李玉辉.海洋石油平台健康监测研究方法与进展[J].石油工程建设,2005,31(1):2-7.
    [41]Duggan DM,Wallace ER,Caldwell SR.Measured and Predicted Vibrational Behavior of Gulf of Mexico Platforms[A].Proc.12~(th) Annual Offshore Tech..Conf.[C],1980:92-100.
    [42]Brincker R,Kinkegaard PH,Anderson P.Damage Detection in an Offshore Structure[A].Proc.of the 13~(th) International Modal Analysis Conf.[C],1995:661-667.
    [43]欧进萍,肖仪清,黄虎杰,等.海洋平台结构实时安全监测系统[J].海洋工程,2001,19(2):1-6.
    [44]徐绍铨.隔河岩大坝GPS自动化监测系统[J].铁路航测,2001,4:42-44.
    [45]兰永新,马晓光,阮晓宁.新疆某水库大坝变形监测方法研究[J].新疆地质,2007,25(4):440-443.
    [46]Fuhr PL,Huston DR,Ambrose TP,et al.Embedded Sensors Results from the Winooski one hydroelectric Dam[A].SPIE[C],1994,(2191):446-456.
    [47]Kronenberg P,Casanova N,Inaudi D,et al.Dam monitoring with fiber optic sensors[A].SPIE[C],Smart Structures and materials,San Diego,USA,1997,3043:2-11.
    [48]Glisic B,Inaudi D,Kronenberg P,et al.Dam monitoring using long SOFO sensor[A].Hydropower Conference,Aqua Media International[C],Gmunden,Austria,1999:709-717.
    [49]蔡德所,何薪基,郑勇.混凝土面板堆石坝面板裂缝光纤传感技术研究[J].武汉水利电力大学(宜昌)学报,2000,22(1):1-4,10.
    [50]徐卫军,侯建国,李端有.分布式光纤测温系统在景洪电站大坝混凝土温度监测中的应用研究[J].水力发电学报,2007,26(1):97-101.
    [51]Nayeri RD,Masri SF,Chassiakos AG.Application of Structural Health Monitoring Techniques to Track Structural Changes in a Retrofitted Building Based on Ambient Vibration[J].ASCE,Journal of Engineering Mechanics,2007,133(12):1311-1325.
    [52]宋秀青.简介加利福尼亚理工学院建筑结构健康状态的实时监测和性能评估系统[J].国际地震动态,2006,(4):42-44.
    [53]欧进萍.土木工程结构智能感知材料、传感器与健康监测系统[J].功能材料,2004年增刊(35):32-43.
    [54]瞿伟廉,滕军,项海帆,等.风力作用下深圳市民中心屋顶网架结构的智能健康监测[J].建筑结构学报,2006,27(1):1-15.
    [55]Johnson EA,Lam HF,Katafygiotis LS,et al.Phase I IASC-ASCE Structural Health Monitoring Benchmark Problem Using Simulated Data[J].ASCE,Journal of Engineering Mechanics,2004,130(1):3-15.
    [56]丁勇,施斌,隋海波.隧道结构健康监测系统与光纤传感技术[J].防灾减灾工程学报,2005,25(4):375-380.
    [57]Glisic B,Badoux M,Jaccoud J P,et al.Monitoring of a subterranean structure with the SOFO system[J].Tunnel Management International,2000,2(8):22-27.
    [58]Inaudi D,Casanova N.SOFO:Tunnel Monitoring with Fiber Optic Sensors[J].Reducing Risk in Tunnel Design and Construction,1998,12(7-8):25-36.
    [59]Inaudi D.Application of Optical Fiber Sensor in Civil Structural Monitoring[A].SPIE,International symposium on smart structures and materials[C],Newport Beach,2001,4328:1-10.
    [60]Casanova N,Inaudi D.Structural monitoring with embedded and surface mounted fiber optic sensors[A].ISMES,International Colloquium Seriate,Bergamo[C],Italy,1997,5:325-332.
    [61]Metje Nicole,Chapman DN,Christopher DF,et al.Optical fibre sensors for remote monitoring of tunnel displacements-Prototypo tests in the laboratory[J].Tunnelling and Underground Space Technology,2006,21(3-4):417.
    [62]丁勇,施斌,孙宇等.基于BOTDR的白泥井3号隧道拱圈变形监测[J].工程地质学报,2006,14(5):649-653.
    [63]施斌,徐学军,王镝,等.隧道健康诊断BOTDR分布式光纤应变监测技术研究[J].岩石力学与工程学报,2005,24(15):2622-2628.
    [64]胡群芳,黄宏伟.盾构下穿越已运营隧道施工监测与技术分析[J].岩土工程学报,2006,28(1):42-47.
    [65]王文通.监控量测技术在地铁工程中的应用[D].北方交通大学,2002.
    [66]闫小波,苏臣宏,卫建华.监控量测在特殊地质地段隧道施工中的应用[J].山西建筑,2005,31(11):274-275.
    [67]Mendez A.Morse TF,Mendez F.Applications of Embedded Fiber Optic Sensors in Reinforced Concrete Buildings and Structures[A].SPIE[C],1989,1170:60-69.
    [68]毕卫红,郎利影.桥梁检测中光纤传感技术研究综述[J].传感器世界,2002,8(6):1-5.
    [69]Alavie AT,Maaskant R,Ohn MM.Application and characterization of intraeore Grating Sensors in a CFRP prestressed concrete girder[A].SPIE[C],1994,2191:103-110.
    [70]Idriss RL.Monitoring of A Smart Bridge With Embedded Sensors During Manufacturing,Construction and Service[A].Third International Conference on Health Monitoring[C],Stanford California,2001.
    [71]Idriss RL.Monitoring of A High Performance Prestressed Concrete Bridge with Embedded Optical Fiber Sensors During Fabrication[A].Construction and Service,Structural Faults and Repair Conference[C],London,England,2001.
    [72]Ferraro Pietro,Natale De Giuseppe.On the possible use of optical fiber Bragg gratings as swain sensors for geodynamical monitoring[J].Optics and Lasers in Engineering,2002,37(2-3):115-130.
    [73]Seim J,Udd E,Schulz W.Health monitoring of an Oregon Historical Bridge with Fiber Bragg Grating Sensors[A].SPIE[C],1999,3671:123-134.
    [74]Chan KC,Jin W,Lau KT,et al.Strain monitoring of composite-boned concrete specimenn measusements by use of a FMCW Multiplexed Fiber Bragg Grating Sensors Array[A].SPIE[C],2000,4077:56-59.
    [75]欧进萍,周智,王勃.FRP-OFBG智能复合筋及其在加筋混凝土梁中的应用[J].高技术通讯,2005,15(4):23-28.
    [76]Alexander Kalamkarov,Gobinda Saha,Srujan Rokkam.Strain and deformation monitoring in infrastructure using embedded smart FRP reinforcements[J].Composites Part B:Engineering,2005,36(5):455-467.
    [77]张戌社,杜彦良,孙宝臣.基于光纤光栅的斜拉索振动参数监测实验研究[J].中国安全科学学报,2004,14(7):98-100.
    [78]李志全,陈慧卿,吴飞.分布式光纤Bragg光栅振动加速度测量及其系统的研究[J].论述与研究,2002(6):35-37,23.
    [79]Goltermann P.Integrated Monitoring Systems for Durability Assessment of Concrete Structures-project summary with status[A].5th Annual Workshop in Targeted Research Action,Environmentally Friendly Construction Technologies[C],Rimini,Italy,2001:11-12.
    [80]Goltermann P.Smart Structures:Monitoring of concrete structures[A].Symposium on Nordic Concrete Research[C],Elsinore,Denmark,2002:143-145.
    [81]顾健,郑旭晨,俞锐,等.《大体积混凝土工程施工技术规程》编制研究[J).城市道桥与防洪,2005,(5):133-135.
    [82]Wilson EL.The Determination of Temperature within Mass Concrete Structures[A].SESM Report No.68-17[C],University of California,Berkeley,1968.
    [83]Tatro SB,Schrader EK.Thermal Considerations for Roller.Compacted Concrete[J].Journal of the American Concrete Institute,1985,82(2):119-128.
    [84]王嘉航.混凝土水化热特性对温度场和应力场的影响分析[D].河海大学,2003.
    [85]Hattel JH,Thorborg,J.A numerical model for predicting the thermomechanical conditions during hydration of earlyage concrete[J].Applied Mathematical Modelling,2003,27(1):1-26.
    [86]阮静,叶见曙,谢发祥,等.高强度混凝土水化热的研究[J]。东南大学学报(自然科学版),2001,31(3):53-56.
    [87]陈志明.大体积混凝土施工工程实例[J].福建建筑,2004,90(5):91-92,4.
    [88]张子明,冯树荣,石青春,等.基于等效时间的混凝土绝热温升[J].河海大学学报(自然科学版),2004,32(5):573-577。
    [89]杨秋玲,马可栓.大体积混凝土水化热温度场三维有限元分析[J].哈尔滨工业大学学报,2004,36(2):261-263.
    [90]袁广林,黄方意,沈华,等.大体积混凝土施工期的水化热温度场及温度应力研究[J].混凝土,2005,(2):86-88.
    [91]凌道盛,许德胜,沈益源.混凝土中水泥水化反应放热模型及其应用[J].浙江大学学报(工学版),2005,39(11):1695-1698.
    [92]穆红英.关于外加剂/混合材料对硅酸盐水泥水化热的影响研究[D].大连理工大学,2000.
    [93]Jia CC,Sun DW,Cao CW.Mathematical simulation of temperature fields in a stored grain bin due to internal heat generation[J].Journal of Food Engineering,2000,43(4):227-233.
    [94]Asan H.Numerical computation of time lags and decrement factors for different building materials[J].Building and Environment 2006,41(5):615-620.
    [95]Cuadrado-Laborde C,Damonte LC,Mendoza-Zélis L.Theoretical treatment of a self=sustained,ball milling induced,mechanochemical reaction in the Fe_2O_3-A1 system[J].Materials Science and Engineering A,2003,355(1-2):106-113.
    [96]De Schutter G.Finite element simulation of thermal cracking in massive hardening concrete elements using degree of hydration based material laws[J].Computers & Structures,2002,80(27-30):2035-2042.
    [97]Faria R,Azenha M,Figueiras JA.Modelling of concrete at early ages:Application to an externally restrained slab[J].Cement and Concrete Composites,2006,28(6):572-585.
    [98]陈瑜,张起森.水泥混凝土早期抗裂性能的研究现状[J].建筑材料学报,2004,7(4):411-417。
    [99]Altoubat SA,Lange DA.Creep,shrinkage,and cracking of restrained concrete at early age[J].ACI Materials Journal,2001,98(4):323-330.
    [100]RILEM TC-119.Prevention of thermal cracking in concrete at early age[M].Munich:The Publishing Company of RILEM,1998.
    [101]Bazant ZP,Murphy WP.Creep and shrinkage prediction model for analysis and design of concrete structures-model B3[J].Materials and Structures,1995,28(168):357-365.
    [102]Emborg Mats,Bernander Stig.Assessment of risk thermal cracking in harding concrete[J].Journal of Structure Engineering,1994,120(10):2893-2911.
    [103]φstergaard L,Lange DA,Altoubat SA,et al.Tensile basic creep of early age concrete under constant load[J].Cement and Concrete Research,2001,31(12):1895-1899.
    [104]祝昌暾,陈敏,杨杨,等.高强混凝土的收缩和早期徐变特性[J].混凝土与水泥制品,2005,(2):1-4.
    [105]张子明,郭兴文,杜荣强.水化热引起的大体积混凝土墙应力与开裂分析[J].河海大学学报(自然科学版),2002,30(5):12-16.
    [106]张涛,覃维祖.混凝土早期徐变对开裂敏感性的影响[J].工业建筑,2005,35(8):89-92,105。
    [107]周履,陈永春.收缩徐变[M].北京:中国铁道出版社,1994。
    [108]天津大学,同济大学,东南大学,等.混凝土结构[M].北京:中国建筑工业出版社,1998.
    [109]Neville AM,Dilger WH,Brooks JJ.Creep of plain and structural concrete[M].London and NewYork:Construction Press,1983.
    [110]Bazant ZP,Prasannan S.Solidification theory for concrete creep[J].Journal of Engineering Mechanics,1989,115(8):1690-1703.
    [111]Carol Ignacio,Bazant ZP.Damage and plasticity in microplane theory[J].International Journal of Solids and Structure's,1997,34(29):3807-3835.
    [112]Bazant ZP,Chern JC.Double-power Logarithmic Law for Concrete Creep[J].Cement and Concrete Research,1984,14(6):793-806.
    [113]雷阳.基于B3模型的钢管混凝土轴心受压构件徐变研究[D].北京交通大学,2005.
    [114]王元丰.钢管混凝土徐变[M].北京:科学出版社,2006.
    [115]唐崇钊.混凝土的徐变与松弛计算[J].水利水运工程学报,1980,(1):66-78.
    [116]刘晶波,李彬.地铁地下结构抗震分析及设计中的几个关键问题[J].土木工程学报,2006,39(6):106-110.
    [117]谷拴成,朱彬,马德梅.地下结构抗震分析方法及其现状[J].西安科技大学学报,2005,25(2):143-146.
    [118]林皋.地下结构抗震分析综述(上)[J].世界地震工程,1990,(2):1-10。
    [119]国胜兵,赵毅,赵跃堂,等.地下结构在竖向和水平地震荷载作用下的动力分析[J].地下空间,2002,22(4):314-319.
    [120]曹炳政,罗奇峰,马硕,等.神户大开地铁车站的地震反应分析[J].地震工程与工程振动,2002,22(4):102-107。
    [121]李彬,刘晶波,尹骁.双层地铁车站的强地震反应分析[J].地下空间与工程学报,2005,1(5):779-782.
    [122]匡志平,刘竹钊,曹国安.地下结构纵向随机地震响应和极值分析[J].同济大学学报,2002,30(8):922-926.
    [123]杨林德,杨超,季倩倩,等.地铁车站的振动台试验与地震响应的计算方法[J].同济大学学报,2003,31(10):1135-1140.
    [124]周林聪,陈龙珠,宫必宁.地下结构地震模拟振动台试验研究[J].地下空间与工程学报,2005,1(2):182-187,213.
    [125]宫全美,徐勇,周顺华.地铁运行荷载引起的隧道地基土动力响应分析[J].中国铁道科学,2005,26(5):47-51。
    [126]张曦,唐益群,周念清,等.地铁振动荷载作用下隧道周围饱和软黏土动力响应研究[J].土木工程学报,2007,40(2):85-88。
    [127]张昀青,刘维宁,王霆.轨道参数对地铁列车所引起轨枕动力响应的影响[J].都市快轨交通,2004,17(6):21-24.
    [128]高峰,关宝树,仇文革,等.列车荷载作用下地铁重叠隧道的响应分析[J].西南交通大学学报,2003,38(1):38-42.
    [129]Degrande G,Schevenels M,Chatterjee P,et al.Vibrations due to a test train at variable speeds in a deep bored tunnel embedded in London clay[J].Journal of Sound and Vibration,2006,293(3-5):626-644.
    [130]Forrest JA,Hunt HEM.Ground vibration generated by trains in underground tunnels[J].Journal of Sound and Vibration,2006,294(4-5) 706-736.
    [131]Samata S,Ohuchi H,Matsuda T.A study of the damage of subway structures during the 1995 Hanshin-Awaji earthquake[J].Cement and concrete Composites,1997,19(3):223-239.
    [132]Hashash YMA,Hook JJ,Schmidt B,et al.Seismic design and analysis of underground structures[J].Tunnelling and Underground Space Technology,2001,16(4):247-293.
    [133]梁波,罗红,孙常新.高速铁路振动荷载的模拟研究[J].铁道学报,2006,28(4):89-94.
    [134]廖振鹏.强震地面运动模拟.中国工程抗震研究四十年(1949-1989)[M].北京:地震出版社,1989:22-26。
    [135]Rofooei FR,Mobarake Aghababaii,Ahmadi G.Generation of artificial earthquake records with a nonstationary Kanai-Tajimi model[J].Engineering Structures,2001,23(7):827-837.
    [136]白国良,朱丽华.基于现行抗震规范的Kanai-Tajimi模型参数研究[J].世界地震工程,2004,20(3):114-118。
    [137]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程震动,1991,11(3):45-53.
    [138]薛素铎,王雪生,曹资.基于新抗震规范的地震动随机模型参数研究[J].土木工程学报,2003,36(5):5-10.
    [139]江近仁,洪峰.功率谱与反应谱的转换和人造地震波[J].地震工程与工程震动,1984,4(3):1-10.
    [140]Sohn H,Dzwonczyk M,Straser EG,et al.An experimental study of temperature effect on modal parameters of the Alamosa Canyon bridge[J].Earthquake Engineering and Structural Dynamics,1999,28(8):879-97.
    [141]Peeters B,De Roeck G.One-year monitoring of the Z24-Bridge:Environmental effects versus damage events[J].Earthquake Engineering and Structural Dynamics,2000,30(2):149-171.
    [142]Zhang Tong,Ou Jingping.Research of Full-life Monitoring for Long Span Bridge[A].Proceedings of International Conference on Health Monitoring of Structure,Material and Environment[C],Nanjing,China,2007:820-823.
    [143]Chen B,Ng CL,Xu YL,et al.Temperature loading effects on a long span suspension bridge[A].Proceedings of International Conference on Health Monitoring of Structure,Material and Environment[C],Nanjing,China,2007:650-656.
    [144]杨耀乾,唐昌荣.结构力学(第三版)下册[M].北京:高等教育出版社,1989.
    [145]Yong Xia,Hong Hao,Giovanna Zanardo,et al.Long term vibration monitoring of an RC slab:Temperature and humidity effect[J].Engineering Structures,2006,28(3):441-452.
    [146]王丽慧,吴喜平,黄建林.地铁车站环控温度场的研究[J].制冷空调与电力机械,2007,28(1):30-33.
    [147]李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(Ⅰ):系统设计[J].土木工程学报,2006,39(4):39-44.
    [148]李宏男,李东升.土木工程结构安全性评估、健康监测及诊断述评,地震工程与工程振动,2002,22(3):82-90.
    [149]Kammer DC.Sensor Placement for On-orbit Modal Identification and Correlation of Large Space Structures[J].Journal of guidance,Control and Dynamics,1991,14(9):251-259.
    [150]Kammer DC,Tinker ML.Optimal placement of triaxial accelerometers for modal vibration tests[J].Mechanical Systems and Signal Processing,2004,18(1):29-41.
    [151]崔飞,高岩.结构损伤识别的传感器优化布设方法[J].铁道建筑,2003(3):51-54.
    [152]王利,李亚红,刘万林.卡尔曼滤波在大坝动态变形监测数据处理中的应用[J].西安科技大学学报,2006,26(3):353-357.
    [153]飞思科技产品研发中心.小波分析理论与MATLAB7实现[M].北京:电子工业出版社,2005.
    [154]陆秋海.基于应变模态理论的结构修改和损伤神经网络辨识法研究[D],北京:清华大学,1997.
    [155]陈国良,王煦法,庄镇泉,等.遗传算法及其应用[M].北京:人民邮电出版社,1996.
    [156]殷宝才.基于GIS的大型土木工程健康监测研究[D].东南大学,2003.
    [157]乔林,费广正,杜林,等.OpenGL程序设计[M].北京:清华大学出版社,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700