增强上转换发光的纳米粒子新结构构建及物理性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米科技是近年来迅速崛起和飞速发展的前沿研究领域。纳米技术和生命科学两大学科的结合与发展使得利用生物大分子及其复合体的检测和模拟成为可能。众所周知,纳米微粒具有大的比表面积,表面原子数、表面能和表面张力随粒径下降急剧增加,从而导致其特殊的热、磁、光、敏感特性和表面稳定性。由于纳米微粒的尺寸一般比生物体内的细胞小得多,可在血液中循环,因而可以对身体各病变部位的进行特异性生物标记和检测(诊断),经过“智能”的纳米组装可实施新颖的特殊治疗,疏通脑血管中血栓,清除心脏动脉脂肪沉积物,甚至用于诱导病毒和癌细胞。纳米技术在生物医学中的应用和发展,将解决当今生物医学尚无法治愈的许多疑难病症,这将导致生物医学及人类健康保障方面发生巨大的变革。
     由于稀土离子的特殊电子能级结构和4f电子屏蔽效应,因而其发光性质稳定、发射谱线接近线谱和具有较长的能级寿命等特点。稀土离子掺杂的发光上转换纳米粒子(LUN:RE~(3+))在红外光激发下,可发生多光子吸收过程,从而将低能量的红外光转换为较高能量的近紫外光、蓝绿光和红光,此过程获得的发光即所谓的上转换发光。
     正是由于上转换发光是多光子吸收过程,其发光效率比较低,对其在发光器件、生物成像和光动力治疗方面的应用构成了限制,所以长期以来如何提高其上转换发光效率和强度一直是稀土掺杂的发光材料研究领域的重大科学难题。本文针对稀土掺杂的发光材料研究领域这一重大的科学难题,在合成制备NaYF_4:Yb~(3+),Tm~(3+)共掺的纳米粒子的研究基础之上,设计和构建发光上转换纳米粒子的新结构,以便研究解决提高上转换发光效率的重要科学问题和获得提高上转换发光效率的新途径。创新地开展了如下的主要研究内容:
     1.通过高温热溶剂法研究合成NaYF_4:Yb~(3+),Tm~(3+)共掺的纳米粒子,通过分别改变Yb~(3+)、Tm~(3+)离子浓度,研究了其优化条件及发光机理,当Tm~(3+)离子浓度从0.2%变化到2%时,发光是先提高后减弱,这是由于Tm-Tm之间的交叉弛豫导致的;Yb~(3+)离子浓度在40%时会出现浓度猝灭现象。在Yb~(3+)和Tm~(3+)在最佳浓度分别为40%和1%的条件,通过在纳米粒子外面包覆不同厚度的NaYF_4同质壳层,发现随着壳层厚度的增加,Tm~(3+)在蓝紫光区域的发光强度远远强于800nm的近红外光。通过实验我们知道,Tm~(3+)在452nm和479nm的发光分别是4光子和3光子过程,其发光强度与中间态能级的寿命呈现四次方和三次方的关系,随着壳层厚度的增加,中间态能级的寿命大大加长导致了上转换效率提高。
     2.研究掺杂不同浓度的Li~+离子的NaYF_4:Yb~(3+),Tm~(3+)纳米粒子的发光优化条件;发展了通过掺杂Li~+离子改进和提高NaYF_4:Yb~(3+),Tm~(3+)纳米粒子发光上转换强度的新方法。揭示了Li~+离子掺入NaYF_4:Yb~(3+),Tm~(3+)纳米粒子,当掺杂浓度低于7%时,晶格收缩,结晶度提高,上转换发光强,对应于Li~+离子替位掺杂,当达到7%时,上转换发光强度达到最大。随着Li~+离子浓度的继续提高,晶格开始逐渐膨胀直至接近无掺杂时的状态,此时对应于Li~+离子以填隙和替位二种方式共存。
     3.研究裸核(core)NaYF_4:Yb~(3+),Er~(3+)和核壳结构(core/shell)NaYF_4@NaYF_4:Yb~(3+),Er~(3+)结构同温度的关及其对上转换发光的影响,揭示同质包覆对上转换发光影响的规律.研究发现520nm谱带主要来源于能级4S3/2的热布居。当温度从12K逐渐增加到300K时545nm谱带随着温度的升高发光先变强后减弱,这是由于热扰动和无辐射弛豫两个过程相互竞争导致的;在低温阶段,热布居占主导作用,温度升高所以发光增强,而当温度继续升高的时候,无辐射弛豫开始增强,导致发光减弱。而包壳可以减少无辐射弛豫的作用,使得发光最强的点向高温方向移动。
In recent years, the nanotechnology has been developed so fast that become thefrontier domains. The combination of nanotechnology and biology makes it possibleto use biomacromolecule and its complex to detect and simulate. It is well knownthat nanoparticals has a large ratio of surface to volume leading to the rapid increaseof the surface atoms, surface energy and surface tension with the size ofnanoparticals decreasing resulting the special properties of heat, light, magnetism,high sensitivity. The nanopartical is much smaller than the size of cells generally andcan circulate in the blood so that they can detect pathological changes and are usedas specific biomarkers. The development and applications of nanotechnology inbiomedicine will overcome complicated disorders incurable before.
     The Rare earth (RE) elements are composed of the lanthanide(Ln) series (fromlanthanum to lutetium), yttrium, and scandium.With abundant and unique energylevel structures arisingfrom4fninner shell configurations, Ln~(3+)ions can exhibitsharp fluorescent emission via intra-4f or4f–5d transitions. The luminescencefeatures of Ln~(3+)ions include narrow bandwidth, long-lived emission, large Stokesshifts, ligand-dependent luminescence sensitization which have received startlinginterest because of the continuously expanding need for luminescent materialsmeeting the stringent requirements of telecommunication, lighting, electroluminescent devices,(bio-) analytical sensors, bioimaging set-ups and solarcells. While the lower of upconversion luminescence efficiency attributed to themultiphoton absorbed process limits its applications in luminescent device,bioimaging and photodynamics therapy (PDT), so how to enhance the luminescenceefficiency and intensity is an important frontier research direction which hasattracted significant research interest. This thesis carried on the synthesis andluminescent properties of NaYF_4:Yb~(3+),Tm~(3+)nanocrystals in order to solve theefficiency and get new approaches to enhance the luminescence efficiency:
     (1) NaYF_4: Yb~(3+), Tm~(3+)nanocrystals were synthesized by thermaldecomposition. We changed the concentrations of Yb~(3+)and Tm~(3+)ions and got theoptimization condition. Under the optimized conditions, the nanocrystals was coateda homogeneous shell of NaYF_4; the effect of different thickness on thecharacteristics of luminescence of Tm~(3+)was also investigated.
     (2) NaYF_4:Yb~(3+), Tm~(3+)nanocrystals doped with Li~+ions of various concentrationswere studied in detail. The significant enhancement of the UC emission inNaYF_4:Yb~(3+), Tm~(3+)nanocrystals by introducing Li~+ions without changes in phaseand morphology were observed. In contrast to lithium-free NaYF_4:Yb~(3+), Tm~(3+), theUC emission intensitys of452nm and479nm of the NPs codiped with7ml%Li~+ions were increased by about8and5times respectively. The mechanisms for theenhancement of upconversion emission were also discussd which can be attributedto the improvement of the NPs’crystallinity and the lower local crystal fieldsymmetry around the Tm~(3+).
     (3) The upconversion luminescence of core NaYF_4:Yb~(3+),Er~(3+)and core/shellconstruction NaYF_4:Yb~(3+),Er~(3+)@NaYF_4nanocrystals was studied at varioustemperatures from15K to300K. Both the luminescence intensity and peak energywere found to depend on temperature. A nonradiative process plays a key role in theupconversion luminescence, which results in the increase and then decrease in theintensity when temperature is increased.
引文
[1]顾宁,付德刚,张海黔.纳米技术及应用[M],北京:人民邮电出版社,2002.
    [2]杨志伊.纳米科技[M],北京:机械工业出版社,2004.
    [3]白春礼.纳米科技及其发展前沿[J],微纳电子技术,2002,1:2-5.
    [4]张志焜,崔作林.纳米技术与纳米材料[M],北京:国防工业出版社,2000.
    [5] Feynman R P. There is plenty of room at the bottom, Lecture at the annualmeeting of the American Physical Society at the California Institute ofTechnology[R].1959.
    [6] Kubo R. Electronic properties of fine metallic particles [J]. J. Phys. Soc. Jpn,1962,17:975-986.
    [7] Esaki L, Tsu R. Superlattice and negative differential conductivity inSemiconductors [J]. IBM J. Res. Development,1970,61-65.
    [8] Tsu R and Esaki L. Tunneling in a finite superlattice [J]. Appl. Phys. Lett.,1973,22:562-564.
    [9] Esaki L, Chang L L. New transport phenomenon in a semiconductorsuperlattice [J].Phys. Rev. Lett.,1974,33:495-498
    [10]薛增泉.纳米电子学[J],现代科学仪器,1998,1-2:8-12.
    [11]薛群基,徐康.纳米化学[J],化学进展,2000,12(4):431-444.
    [12]温诗铸.纳米摩擦学[J],北京:清华大学出版社,1998.
    [13]陈慧文,容敏智,章明秋.分子与纳米自组装材料的研究进展[J],材料导报,2002:16(8):59-61.
    [14]徐叙熔,苏勉曾.发光学与发光材料[M].化学工业出版社,2004.4
    [15]孙家跃,杜海燕,胡文祥.固体发光材料[M].化学工业出版社,2003-7
    [16]刘祖武.现代无机合成[M].化学工业出版社
    [17]唐漠堂,程华月.磷酸锌的应用及其制备工艺[J].无机盐工业,2000,32(2):29.
    [18]俞于怀,郭秋宁,黄德文等.INORGANIC CHEMICAL INDUSTRY [J],2006.38:46
    [19]汪应灵,谢友海,耿明江等.稀土掺杂纳米发光材料制备方法的研究进展[J]安徽农业科学,2007-35(15):4604
    [20]李文翠.郭树才.溶胶一凝胶技术在新型纳米气凝胶合成中的应用[J].化工进展.2001.2:34一36.
    [21]Sen D, Deb P.Mazumder S.etal. Microstructural investigations of ferritenanoparticles prepared by nonaqueous Preeipitation route [J].Mater.Res.Bull.2000,35:1243一1250.
    [22]Kawahashi N, Shiho H. Copper and copper compounds as coatings onPolystyrene particles and as hollow spheres [J]. J.Mater.Chem.2000,10:2294一2297.
    [23]Yu D.Yam V. Hydrothermal-Indueed assembly of colloidal silver spheres intovarious nanoparticles on the basis of HTAB-modified silver mirror reaetion[J].J.Phys.Chem.B.2005.109:5497-550
    [24]冯华君,陈渊,唐芳琼,等.单分散GdxY2-xO3:Eu3+纳米颗粒的制备及其荧光性能[J].感光科学与光化学,2006,24(3):180-186.
    [25]Hongzhi Wang, Lian Gao, Koichi Niihara. Synthesis of nanoscaled yttriumaluminum garnet powder by the co-precipitation method [J]. Materials Scienceand Engineering A,2000,288(1):1-4.
    [26]孙日圣,陈达,魏坤,等.纳米粒子Y2O3∶Eu3+的合成及其光谱性质研究[J].光谱学与光谱析,2001,21(3):339-342.
    [27]Shen-Kang Ruan, Jian-Guo Zhou, Ai-Min Zhong, etal. Synthesis ofY3Al5O12:Eu3+phosphor by sol-gel method and its luminescence behavior [J].Journal of Alloys and Compounds,1998,275:72-75.
    [28]周建国,李振泉,赵凤英,等.均分球形Y2O3∶Eu3+纳米粒子的制备[J].稀有金属材料与工程,2005,34(4):33
    [29]Yukiya Hakuta, Kazuei Seino.etal Production of phosphor (YAG∶Tb) fineparticles by hydrothermal synthesis in supercritical water [J]. J. Mater. Chem.,1999,9,2671-2674.
    [30]C.J.Briuker and G.W.Scherer. Sol-Gel Science-The Physics and Chemistry ofS-G Processing [M]. Academic Press, Inc,1990
    [31]W.Geffcken and Berger. German Patent.736411(May,1939)
    [32]H.Dislich.New Routes to Multicomponent Oxide Glasses [J]. AngewandteChemie1971,10(6):363-370
    [33](a)B.E.Yoldas. Alumina gels that form porous transparent Al2O3[J].J.Mater.Sci.,1975,10(11):1856-1860.(b) B.E.Yoldas. Preparation of glassesand ceramics from metal-organic compounds [J].J.Mater.Sci.1977:12(6):1203-1208
    [34]M.Yamare, A.Shinji and T.Sakaion J.Mater.Sci.,1978,13:860-875
    [35]Takayuki Hirai, Takashi Hirano, and Isao Komasawa. Preparation of Gd2O3:Eu3+and Gd2O2S: Eu3+Phosphor Fine Particles Using an Emulsion LiquidMembrane System [J]. J.Colloid.Interface.Sci.2002.253(1):62-9.
    [36]N.Bloembergen, Solid State Infrared QuantumCounters[J].Phys.Rev.Lett.,1959,2:84
    [37](a) Auzel F. Acad Sci (Paris)[Z].1966,262:1016-1019.(b) Auzel F, AcadSci(Paris)[Z].1966,263:819-821.
    [38]石春山,足立吟也.稀土,1984(4):52
    [39]李彬,石春山.化学通报.1983,(2):21
    [40]Dieke.G.H. Spectra and Energy Levels of Rare Earth Ions in Crystals [M].NewYork:Wiley Interscience.1968.142
    [41]Meijerink.A, Wegh.R.T, Materials Science Forum,1999,(315-317):11-26
    [42]J. S. Chivian, W. E. Case and D. D. Eden, The photon avalanche: A newphenomenon in Pr3+-based infrared quantum counters [J]. Appl. Phys. Lett.,1979,35,124
    [43]J. M. F. van Dijk and M. F. H. Schuurmans. On the nonradiative and radiativedecay rates and a modified exponential energy gap law for4f-4f transitions inrare-earth ions [J]. J. Chem. Phys.,1983,78,5317.
    [44]A. A. Bol, R. van Beek and A. Meijerink. On the Incorporation of Trivalent RareEarth Ions in II VI Semiconductor Nanocrystals [J]. Chem. Mater.,2002,14,1121.
    [45]S. Heer, K. K mpe, H. U. Güdel and M. Haase. Highly Efficient MulticolourUpconversion Emission in Transparent Colloids of Lanthanide-DopedNaYF4Nanocrystals [J]. Adv. Mater.,2004,16,2102
    [46]G. Blasse and B. C. Grabmaier, Luminescent Materials [M], Springer, Berlin,1994
    [47]Zijlmans H J M A A, Bonnet J, Burton J, et al. Detection of cell and tissuesurface antigens using upconverting phosopors: a new reports technology [J].Anal Biochem,1999,267:30-36
    [48]Hampl J, Hall M, Mufti N A, et al. Up-converting phosphor reporters inimmunochromatographic assays [J]. Analytical Biochemistry,2001,288:176-187
    [49]Niedbala R S, Feindt H, Kardos K, et al. Detection of analytes by immunoassayusing up-converting phosphor technology [J]. Analytical Biochemistry,2001,293:22-30
    [50]Zijlmans H J M A A, Bonnet J, Burton J, et al. Detection of cell and tissuesurface antigens using upconverting phosopors: a new reports technology [J].Anal Biochem,1999,267:30-36
    [51]D. K. Chatterjee, A. J. Rufaihah and Y. Zhang. Upconversion fluorescenceimaging of cells and small animals using lanthanide doped nanocrystals [J].Biomaterials,2008,29,937
    [52]Nyk M, Kumar R, Ohulchanskyy TY, Bergey EJ, Prasad PN. High contrast invitro and in vivo photoluminescence bioimaging using near infrared to nearinfrared up-conversion in Tm3+and Yb3+doped fluoride nanophosphors [J].Nano Lett.2008,8:3834-3838
    [53]Zhang P, Steelant W, Kumar M, et al. Versatile Photosensitizers forhotodynamic Therapy at Infrared Excitation [J]. J Am Chem Soc,2007,129:4526-4527
    [54]Lin, H.; Meredith, G.; Jiang, S.; Peng, X.; Luo, T.; Peyghambarian, N.; Pun, E.Y.B. Optical transitions and visible upconversion in Er3+doped niobic telluriteglass [J]. J. Appl. Phys.2003,93:186.
    [55]Oliveira, A. S.; De Araujo, M. T.; Gouveia-Neto, A. S.; MedeirosNeto, J. A.;Sombra, A. S. B.; Messaddeq, Y. Frequency upconversion in Er3+/Yb3+-codopedchalcogenide glass [J]. Appl. Phys. Lett.1998,72:753.
    [56]Man, S. Q.; Pun, E. Y. B.; Chung, P. S. Upconversion luminescence of Er3+inalkali bismuth gallate glasses [J]. Appl.Phys.Lett.2000,77:483.
    [57]Patra, A.; Friend, C. S.; Kapoor, R.; Prasad, P. N. Effect of crystal nature onupconversion luminescence in Er3+:ZrO2nanocrystals [J]. Appl. Phys. Lett.2003,83,284.
    [58]Patra, A.; Friend, C. S.; Kapoor, R.; Prasad, P. N. Upconversion in Er3+:ZrO2Nanocrystals [J]. J. Phys. Chem.B.,2002,106,1909.
    [59](a) H. J. M. A. Zijlmans, J. Bonnet, J. Burton, K. Kardos, T. Vail,R. S. Niedbalaand H. Tanke. Detection of Cell and Tissue Surface Antigens UsingUp-Converting Phosphors: A New Reporter Technology [J]. Anal. Biochem.,1999,267,30;(b)J. A. Feijo and N. Moreno, Imaging plant cells by two-photonexcitation [J]. Protoplasma,2004,223,1.
    [60](a) A. Bril, J. L. Sommerdijk and A. W. De Jager, On the Efficiency ofYb3+-Er3+Activated Up-Conversion Phosphors [J]. J. Electrochem.Soc.,1975,122,660;(b) J. F. Suyver, J. Grimm, K. W. Kramer andH. U. Güdel, Highlyefficient near-infrared to visible up-conversion process in NaYF4:Yb3+, Er3+. J.Lumin.,2005,114,53;(c) J. F. Suyver, J. Grimm,M. K. van Veen, D. Biner, K.W. Kramer and H. U. Güdel, Upconversion spectroscopy and properties ofNaYF4doped with Er3+, Tm3+and/or Yb3+[J]. J. Lumin.,2006,117,1.
    [61](a) S. Heer, K. Kompe, H. U. Güdel and M. Haase, Highly EfficientMulticolour Upconversion Emission in Transparent Colloids ofLanthanide-Doped NaYF4Nanocrystals [J]. Adv. Mater.,2004,16,2102;(b) J.H. Zeng, J. Su, Z. H. Li, R. X. Yan and Y. D. Li, Synthesis and UpconversionLuminescence of Hexagonal-Phase NaYF4:Yb3+, Er3+Phosphors of ControlledSize and Morphology [J]. Adv. Mater.,2005,17,2119;(c) H. X. Mai, Y. W.Zhang,R. Si, Z. G. Yan, L. D. Sun, L. P. You and C. H. Yan, High-QualitySodium Rare-Earth Fluoride Nanocrystals: Controlled Synthesis and OpticalProperties [J]. J. Am.Chem. Soc.,2006,128,6426;
    [62]F. Wang and X. G. Liu, Recent advances in the chemistry of lanthanide-dopedupconversion nanocrystals [J]. Chem. Soc. Rev.,2009,38,976
    [63]H. X. Mai, Y. W. Zhang, R. Si, Z. G. Yan, L. D. Sun, L. P. You andC. H. Yan,High-Quality Sodium Rare-Earth Fluoride Nanocrystals: Controlled Synthesisand Optical Properties [J]. J. Am. Chem. Soc.,2006,128,6426
    [64]H. X. Mai, Y. W. Zhang, L. D. Sun and C. H. Yan. Size-and Phase-ControlledSynthesis of Monodisperse NaYF4: Yb, Er Nanocrystals from a UniqueDelayed Nucleation Pathway Monitored with Upconversion Spectroscopy [J]. J.Phys. Chem. C,2007,111,13730
    [65]Boyer, J. C.; Vetrone, F.; Cuccia, L. A.; Capobianco, J. A. Synthesis ofColloidal Upconverting NaYF4Nanocrystals Doped with Er3+, Yb3+and Tm3+,Yb3+via Thermal Decomposition of Lanthanide Trifluoroacetate Precursors[J]J. Am.Chem. Soc.,2006,128,7444.
    [66]L. F. Liang, H. Wu, H. L. Hu, M. M. Wu and Q. Su, Enhanced blue and greenupconversion in hydrothermally synthesized hexagonalNaY1xYbxF4:Ln3+(Ln3+=Er3+or Tm3+)[J]. J. Alloys. Compd.,2004,368,94.
    [67]A. Aebischer, M. Hostettler, J. Hause, K. Kramer, T. Weber,H. U. Gudel and H.B. Buergi, Structural and Spectroscopic Characterization of Active Sites in aFamily of Light-Emitting Sodium Lanthanide Tetrafluorides [J]. Angew. Chem.,Int. Ed.,2006,45,2802.
    [68]K. W. Kramer, D. Biner, G. Frei, H. U. Gudel, M. P. Hehlen andS. R. Luthi.Hexagonal Sodium Yttrium Fluoride Based Green and Blue EmittingUpconversion Phosphors [J]. Chem. Mater.,2004,16:1244-1251.
    [69]G. Nagel, T. Szellas, W. Huhn, S. Kateriya, N. Adeishvili, P. Berthold, D. Ollig,P. Hegemann and E. Bamberg, Channelrhodopsin-2, a directly light-gatedcation-selective membrane channel [J]. Proc.Natl.Acad. Sci.,2003,100,13940
    [70]Y. Wang, L. Tu, J. Zhao, Y. Sun, X. Kong, and H. Zhang, UpconversionLuminescence of NaYF4: Yb3+, Er3+@NaYF4Core/Shell NanoparticlesExcitation Power Density and Surface Dependence [J]. J. Phys.Chem. C.,2009,113,7164
    [71]John-Christopher Boyer and Frank C. J. M. van Veggel, Absolute quantumyield measurements of colloidal NaYF4: Er3+, Yb3+upconverting nanoparticles[J]. Nanoscale.,2010,2,1417–1419
    [72]Y Wang, Szymon Smolarek, Xianggui Kong, Wybren Jan Buma, AlbertManfred Brouwer, and Hong Zhang, Effect of Surface Related OrganicVibrational Modes in Luminescent Upconversion Dynamics of Rare Earth IonsDoped Nanoparticles [J]. J. Nanoscience and Nanotechnology.,2010,10,7149-7153
    [73] Yi, G. S.; Chow, G. M. Synthesis of Hexagonal-Phase NaYF4:Yb,Er andNaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence [J].Adv. Funct. Mater.2006,16(18),2324.
    [74] Chamarro, M. A.; Cases, R. Energy up-conversion in (Yb, Ho) and (Yb, Tm)doped fluorohafnate glasses [J]. J. Lumin.1988,42,267-274.
    [75] Pollnau, M.; Gamelin, D. R.; Lu¨thi, S. R.; Gu¨del, H. U.; Hehlen, M.P,Power dependence of upconversion luminescence in lanthanide andtransition-metal-ion systems [J]. Phys. Rev. B2000,61,3337-3346
    [76]J. F. Suyver, A. Aebischer, S. Garcia-Revilla, P. Gerner,H. U. Gu¨del,Anomalous power dependence of sensitized upconversion luminescence [J].Phys. Rev.B2005,71,125123
    [77]Hinkliin, T. R.; Rand, S. C.; Laine, R. M. Transparent, PolycrystallineUpconverting Nanoceramics: Towards3-D Displays [J]. Adv. Mater.2008,20,1270.
    [78]Wang, X.; Kong, X. G.; Yu, Y.; Sun, Y. J.; Zhang, H. Effect of Annealing onUpconversion Luminescence of ZnO:Er3+Nanocrystals and High ThermalSensitivity [J]. J. Phys.Chem. C.2007,111,15119.
    [79]Zhang, J.; Wang, S. W.; An, L. Q.; Liu, M.; Chen, L. D. Infrared to visibleupconversion luminescence in Er3+:Y2O3transparent ceramics [J]. J.Lumin.2006,122:8,
    [80](a) Lim, S. F.; Riehn, R.; Ryu, W. S.; Khanarian, N.; Tung, C. K.;Tank, D.;Austin, R. H. In Vivo and Scanning Electron Microscopy Imaging ofUpconverting Nanophosphors in Caenorhabditis elegans [J]. Nano. Lett.2006,6,169.(b) Chen, G. Y.; Zhang, Y. G.; Somesfalean, G.; Zhang, Z. G.; Sun,Q.;Wang, F. P. Two-color upconversion in rare-earth-ion-doped ZrO2nanocrystals[J]. Appl. Phys. Lett.2006,89,163105.
    [81] Wang, L. Y.; Li, Y. D. Green upconversion nanocrystals for DNA detection [J].Chem. Commun.2006,2557.
    [82] Zhang, P.; Steelant, W.; Kumar, M.; Scholfield, M. Versatile Photosensitizersfor Photodynamic Therapy at Infrared Excitation [J]. J. Am. Chem.Soc.2007,129,4526.
    [83](a) W. B. Niu, S. L. Wu, S. F. Zhang and L. Li, Synthesis of colour tunablelanthanide-ion doped NaYF4upconversion nanoparticles by controllingtemperature [J]. Chem. Commun.,2010,46,3908.(b) S. Liang, Y. Liu, Y.Tang, Y. Xie, H. Z. Sun, H. Zhang and B. Yang, A User-Friendly Method forSynthesizing High-Quality NaYF4:Yb,Er(Tm) Nanocrystals in Liquid Paraffin[J]. Journal of Nanomaterials,2011,2011,302364.(c) F. Wang, Y. Han, C. S.Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen,C. Zhang, M. H. Hong and X. G. Liu,Simultaneous phase and size control of upconversion nanocrystals throughlanthanide doping [J]. Nature,2010,463,1061.(d) D. Q. Chen, Y. L. Yu, F.Huang, P. Huang, A. P. Yang and Y. S. Wang, Modifying the Size and Shape ofMonodisperse Bifunctional Alkaline-Earth Fluoride Nanocrystals throughLanthanide Doping [J]. J. Am. Chem. Soc.,2010,132,9976.(e) F. Wang, J. A.Wang and X. G. Liu, Direct Evidence of a Surface Quenching Effect onSize-Dependent Luminescence of Upconversion Nanoparticles [J]. Angew.Chem., Int. Ed.,2010,49,7456.
    [84] G. S. Yi and G. M. Chow, Synthesis of Hexagonal-Phase NaYF4:Yb,Er andNaYF4:Yb,Tm Nanocrystals with Efficient Up-Conversion Fluorescence [J].Adv. Funct. Mater.,2006,16,2324.
    [85] D. Li, B. A. Dong, X. Bai, Y. Wang and H. W. Song, Influence of the TGAModification on Upconversion Luminescence of Hexagonal-Phase NaYF4:Yb3+,Er3+Nanoparticles [J]. J. Phys. Chem.C,2010,114,8219.
    [86](a) F. Vetrone, R. Naccache, V. Mahalingam, C. G. Morgan andJ. A.Capobianco, The Active-Core/Active-Shell Approach: A Strategy to Enhancethe Upconversion Luminescence in Lanthanide-Doped Nanoparticles [J]. Adv.Funct. Mater.,2009,19,2924.(b) L. Sudheendra, V. Ortalan, S. Dey, N. D.Browning and I. M. Kennedy, Plasmonic enhanced emissions from cubicNaYF4:Yb: Er/Tm nanophosphors [J].Chem. Mater.,2011,23,2987.
    [87](a) L. Sudheendra, V. Ortalan, S. Dey, N. D. Browning and I. M. Kennedy,Plasmonic Enhanced Emissions from Cubic NaYF4:Yb:Er/Tm Nanophosphors[J]. Chem. Mater.,2011,23,2987.22.(b) N. Liu, W. P. Qin, G. S. Qin, T. Jiangand D. Zhao, Highly plasmon-enhanced upconversion emissions fromAu@β-NaYF4:Yb,Tm hybrid nanostructures [J]. Chem. Commun.,2011,47,7671.
    [88] X. J. Xue, F. Wang and X. G. Liu, Emerging functional nanomaterials fortherapeutics [J]. J. Mater. Chem.,2011,21,13107
    [89] Q. M. Huang, J. C. Yu, E. Ma and K. M. Lin, Synthesis and Characterizationof Highly Efficient Near-Infrared Upconversion Sc3+/Er3+/Yb3+TridopedNaYF4[J]. J. Phys. Chem. C,2010,114,4719.
    [90] N.Dhananjaya, H.Nagabhushana, B.M.Nagabhushana, B. Rudraswamy, C.Shivakumara and R. Chakradhar, J. Alloys Compd.,2011,509,2368.
    [91] G. Y. Chen, H. C. Liu, H. J. Liang, G. Somesfalean and Z. G. Zhang,Upconversion Emission Enhancement in Yb3+/Er3+-Codoped Y2O3Nanocrystals by Tridoping with Li+Ions [J]. J. Phys. Chem. C,2008,112,12030.
    [92]Qian Cheng, Jiehe Sui and Wei Cai. Enhanced upconversion emission in Yb3+and Er3+codoped NaGdF4nanocrystals by introducing Li+ions [J]. Nanoscale,2012,4,779-784.
    [93]Z. Q. Li and Y. Zhang, An efficient and user-friendly method for the synthesisof hexagonal-phase NaYF4:Yb, Er/Tm nanocrystals with controllable shape andupconversion fluorescence [J]. Nanotechnology,2008,19,345606.
    [94]N. Dhananjaya, H. Nagabhushana, B. M. Nagabhushana,B. Rudraswamy, C.Shivakumara and R. Chakradhar, J. Alloys Compd.,2011,509,2368.
    [95] X. Q. Chen, Z. K. Liu, Q. Sun, M. Ye and F. P. Wang, Upconversion emissionenhancement in Er3+/Yb3+-codoped BaTiO3nanocrystals by tridoping with Li+ions [J]. Opt. Commun.,2011,284,2046.
    [96] M. Z. Yang, Y. Sui, S. P. Wang, X. J. Wang, Y. Q. Sheng,Z. G. Zhang, T. Q. Luand W. F. Liu, Enhancement of upconversion emission inY3Al5O12:Er3+induced by Li+doping at interstitial sites [J]. Chem. Phys. Lett.,2010,492,40.
    [97] H. J. Liang, G. Y. Chen, H. C. Liu and Z. G. Zhang, Ultraviolet upconversionluminescence enhancement in Yb3+/Er3+-codoped Y2O3nanocrystals induced bytridoping with Li+ions [J]. J. Lumin.,2009,129,197.
    [98] J. Y. Sun, W. H. Zhang, H. Y. Du and Z. P. Yang, Hydrothermal synthesis andthe enhanced blue upconversion luminescence of NaYF4:Nd3+,Tm3+,Yb3+[J].Infrared Phys.Technol.,2010,53,388
    [99]T. Huang and W. Hsieh, Er-Yb Codoped Ferroelectrics for Controlling VisibleUpconversion Emissions [J]. J. Fluoresc.,2009,19,511
    [100] F. Auzel, Upconversion and Anti-Stokes Processes with f and d Ions inSolids [J]. Chem. Rev.2004,104,139
    [101] S. Fischer, J. C. Goldschmidt, P. Lo¨per, G. H. Bauer, R. Bru¨ggemann,K.Kra¨mer, D. Biner, M. Hermle, and S. W. Glunz, Enhancement of silicon solarcell efficiency by upconversion: Optical and electrical characterization [J].J.Appl. Phys.2010,108,044912.
    [102] T. H. Ji, F. Yang, H. Y. Du, H. Guo, and J. S. Yang, Preparation andcharacterization of upconversion nanocomposite for β-NaYF4:Yb3+,Er3+-supported TiO2nanobelts [J]. J. Rare Earths.2010,28,529
    [103] O. Ehlert, R. Thomann, M. Darbandi, and T. Nann, A Four-Color ColloidalMultiplexing Nanoparticle System [J]. ACS Nano.2008,2,120
    [104] J. C. Boyer, F. Vetrone, L. A. Cuccia, and J. A. Capobianco, Synthesis ofcolloidal upconverting NaYF4nanocrystals doped with Er3+, Yb3+and Tm3+,Yb3+via thermal decomposition of lanthanide trifluoroacetate precursors [J]. J.Am. Chem.Soc.2006,128,7444
    [105] G. Y. Chen, T. Y. Ohulchanskyy, R. Kumar, H. Agren, and P. N. Prasad,Ultrasmall Monodisperse NaYF4:Yb3+/Tm3+Nanocrystals with EnhancedNear-Infrared to Near-Infrared Upconversion Photoluminescence [J]. ACSNano.2010,4,3163
    [106] J. H. Zeng, J. Su, Z. H. Li, R. X. Yan, and Y. D. Li, Synthesis andUpconversion Luminescence of Hexagonal-Phase NaYF4:Yb3+, Er3+Phosphorsof Controlled Size and Morphology[J]. Adv. Mater.2005,17,2119
    [107] F. Liu, E. Ma, D. Q. Chen, Y. L. Yu, and Y. S. Wang, Tunable Red-GreenUpconversion Luminescence in Novel Transparent Glass Ceramics ContainingEr: NaYF4Nanocrystals [J]. J. Phys. Chem. B.2006,110,20843.
    [108] H. X. Mai, Y. W. Zhang, L. D. Sun, and C. H. Yan, Highly EfficientMulticolor Up-Conversion Emissions and Their Mechanisms of MonodisperseNaYF4:Yb,Er Core and Core/Shell-Structured Nanocrystals [J]. J. Phys. Chem.C.2007,111,13721
    [109] J. W. Zhao, Y. Sun, X. Kong, L. Tian, Y. Wang, L. Tu, J. Zhao, and H.Zhang,Controlled Synthesis, Formation Mechanism, and Great Enhancement of RedUpconversion Luminescence of NaYF4:Yb3+, Er3+Nanocrystals/Submicroplates at Low Doping Level [J]. J. Phys. Chem. B.2008,112,15666
    [110] J. N. Shan and Y. G. Ju, Controlled synthesis of lanthanide-doped NaYF4upconversion nanocrystals via ligand induced crystal phase transition and silicacoating [J]. Appl. Phys. Lett.2007,91,123103
    [111] M. Pollnau, D. R. Gamelin, S. R. Lu¨thi, H. U. Gu¨del, and M. P. Hehlen,Power dependence of upconversion luminescence in lanthanide andtransition-metal-ion systems [J]. Phys. Rev. B.2000,61,3337
    [112] J. F. Suyver, A. Aebischer, S. Garc′a-Revilla, P. Gerner, and H. U. Gu¨del,Anomalous power dependence of sensitized upconversion luminescence [J].Phys. Rev. B.2005,71,125123
    [113] X. Wang, X. G. Kong, Y. Yu, Y. J. Sun, and H. Zhang, Effect of Annealingon Upconversion Luminescence of ZnO:Er3+Nanocrystals and High ThermalSensitivity [J]. J. Phys. Chem. C.2007,111,15119
    [114] Y. Q. Lei, H. W. Song, L. M. Yang, L. X. Yu, Z. X. Liu, G. H. Pan.X. Bai,and L. B. Fan, Upconversion luminescence, intensity saturation effect, andthermal effect in Gd2O3:Er3,Yb3+nanowires [J]. J. Chem. Phys.2005,123,174710
    [115] Y. Wang, L. P. Tu, J. W. Zhao, Y. J. Sun, X. G. Kong, and H. Zhang,Upconversion Luminescence of β-NaYF4: Yb3+, Er3+@β-NaYF4Core/ShellNanoparticles: Excitation Power Density and Surface Dependence [J]. J. Phys.Chem. C.2009,113,7164
    [116] A. M. Pires, O. A. Serra, S. Heer, and H. U. Gu¨del, Low-temperatureupconversion spectroscopy of nanosized Y2O3:Er,Yb phosphor [J]. J. Appl.Phys.2005,98,063529
    [117] J. P. Van der Ziel, F. W. Ostermayer, and L. G. Van Uitert, InfraredExcitation of Visible Luminescence in Y1-xErxF3via Resonant Energy Transfer[J]. Phys. Rev. B.1970,2,4432
    [118] J. F. Suyver, J. Grimm, K. W. Kramer, and H. U. Gudel, Highly efficientnear-infrared to visible up-conversion process in NaYF4:Er3+,Yb3+[J]. J.Lumin.2005,114,53
    [119] X. Bai, H. W. Song, G. H. Pan, Y. Q. Lei, T. Wang, X. G. Ren, S. Z. Lu,B.Dong, Q. L. Dai, and L. Fan, Size-Dependent Upconversion Luminescence inEr3+/Yb3+-Codoped Nanocrystalline Yttria: Saturation and Thermal Effects [J].J. Phys. Chem. C.2007,111,13611
    [120] J. Silver, M. I. Martinez-Rubio, T. G. Ireland, and R. Withnall, YttriumOxide Upconverting Phosphors. Part2: Temperature Dependent UpconversionLuminescence Properties of Erbium in Yttrium Oxide [J]. J. Phys.Chem.B.2001,105,7200
    [121] W. Xu, S. Dait, L. M. Toth, G. D. D. Cul, and J. R. Peterson, GreenUpconversion Emission from Er3+Ion Doped into Sol-Gel Silica Glasses underRed Light (647.1nm) Excitatio[J]. J. Phys.Chem.1995,99,4447
    [122] J. N. Shan, W. J. Kong, R. Wei, N. Yao, and Y. G. Ju, An investigation of thethermal sensitivity and stability of the β-NaYF4:Yb,Er upconversionnanophosphors [J]. J. Appl. Phys.2010,107,054901
    [123] J. Silver, M. I. M. Rubio, T. G. Ireland, G. R. Fern, and R. Withnall, TheEffect of Particle Morphology and Crystallite Size on the UpconversionLuminescence Properties of Erbium and Ytterbium Co-doped Yttrium OxidePhosphors [J]. J. Phys. Chem. B.2001,105,948
    [124] M. D. Shinn, W. A. Silbley, M. G. Drexhage, and R. N. Brown, Opticaltransitions of Er3+ions in fluorozirconate glass [J]. Phys. Rev.B.1983,27,6635
    [125] P. V. dos Santos, E. A. Gouveia, M. T. de Araujo, and A. S. Gouveia-Neto,A.S. B. Sombra, and J. A. M. Neto, Thermally induced threefold upconversionemission enhancement in nonresonant excited Er3+/Yb3+-codoped chalcogenideglass[J]. Appl. Phys. Lett.1999,74,3607.
    [126] I. R. Martin, P. Vlez, V. D. Rodriguez, U. R. Rodriguez-Mendoza, andV.Lavin, Upconversion dynamics in Er3+-doped fluoroindate glasses [J].Spectrochim. Acta A,1999,55,935

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700