玉米苗期对NaCl胁迫的响应与耐盐性调控机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究对不同浓度NaCl胁迫下玉米幼苗的干重、渗透调节物质含量、保护酶活性、各器官离子的吸收与运转等生理生化特性进行研究,分析并探讨了盐胁迫对玉米幼苗的伤害及其耐盐机制,为进一步在分子水平上深入研究玉米耐盐性奠定了基础。同时,在盐胁迫下,施用适量的外源物质钙、钾、磷、硅和NO供体硝普钠(sodium nitroprussideSNP),分析了其对玉米幼苗生理生化特性的影响,探讨了外源物质提高玉米耐盐性的作用机理,为提高植物的耐盐性提供一定的理论依据。主要研究结果如下:
     1盐胁迫对玉米幼苗的伤害及其耐盐机制
     盐分胁迫包括渗透胁迫和离子胁迫,渗透胁迫导致吸水困难,离子胁迫造成生物膜破坏和生理紊乱。盐胁迫对玉米幼苗的伤害及其耐盐机理主要有以下几个方面:
     1.1玉米幼苗具有一定的耐盐性,50mmol·L~(-1)NaCl胁迫下,玉米幼苗干重略有增加,主要是根系干重显著增加。随着NaCl浓度增加玉米幼苗各器官干重下降,干重下降较大的器官是生长叶和成熟叶叶片。随NaCl浓度增加,各器官的含水量降低,含水量变化幅度为:根系>生长叶>成熟叶叶片>成熟叶叶鞘。
     1.2 NaCl胁迫导致叶绿素含量降低,其中叶绿素a降低的幅度小于叶绿素b。盐胁迫下玉米幼苗净光合速率、蒸腾速率、胞间CO_2浓度、气孔导度降低,而水分利用率和气孔限制值上升,表明盐胁迫使玉米幼苗光合速率降低主要是由气孔因素引起的。
     1.3 NaCl胁迫导致玉米幼苗细胞膜受到伤害,随NaCl浓度增加,叶片的电解质渗漏率增加,叶片和根系中MDA含量增加。
     1.4 NaCl胁迫下,玉米幼苗叶片和根系中可溶性糖、可溶性蛋白、游离氨基酸和脯氨酸含量均增加,但叶片增加幅度大于根系。
     1.5玉米幼苗在50 mmol·L~(-1)、100mmol·L~(-1)NaCl胁迫下,叶片和根系中SOD、CAT、POD活性均增加。但此时叶片和根系中MDA的含量并没有下降,反而增加,说明玉米叶片和根系组织的膜伤害有更复杂的机理。当NaCl浓度达到一定限度后,酶的活性受到抑制,酶活力降低,盐害加重。
     1.6玉米各个部分Na~+和Cl~-含量、Na~+/K~+和Na~/Ca~(2+)比值都是随着培养液中NaCl浓度的增加而迅速提高,Na~+、K~+和Cl~-含量的变化幅度是:根系>成熟叶叶鞘>生长叶>成熟叶叶片,玉米幼苗的根系最易受外界离子浓度的影响,叶片受外界环境影响较小。各器官中Ca~(2+)、Mg~(2+)对盐胁迫的响应不一致,NaCl胁迫使根系中Ca~(2+)、Mg~(2+)量下降,成熟叶叶鞘中Mg~(2+)含量变化规律性不明显;而NaCl胁迫下,成熟叶叶片中Ca~(2+)、Mg~(2+)含量增加。NaCl胁迫对各器官中的Zn~(2+)含量的影响不大。玉米幼苗具有拒Na~+机制,具有一定的耐盐性,它的耐盐性是根和成熟叶叶鞘来实现的,Na~+主要贮存在根系和成熟叶叶鞘中,而向成熟叶叶片和生长叶中运输较少。成熟叶叶鞘同时还具有拒Cl~-能力。
     2外源物质对盐胁迫的缓解作用
     植物的耐盐性是一种综合机制,其对盐胁迫的适应也是多种多样的,作物的耐盐性是一种相当复杂的生理功能,是遗传特性与外界环境共同作用的结果,不同的外源物质对盐胁迫的缓解作用是通过不同途径实现的,因而很难用某一个指标来说明外源物质与耐盐性的关系。总体上,外源物质对盐害的缓解作用表现在以下几方面:
     2.1盐胁迫最显著的效应是生长受抑制,本试验中几种外源物质钙、磷、钾、硅和NO在一定浓度下均不同程度的增加了盐胁迫下玉米幼苗的干物质产量。
     2.2外源物质提高了盐胁迫下叶片中的叶绿素含量,维持了盐胁迫下玉米幼苗较高的光合速率,但不同物质对叶绿素含量的影响不同,例如:外源钾和NO使叶绿素a/b比值增加,而外源磷、硅处理的玉米幼苗绿素a/b比值降低。
     2.3细胞膜是盐胁迫对植物伤害的原初部位,盐胁迫下细胞电解质渗漏的增加是盐伤害的重要特征之一,适量的外源物质均可降低盐胁迫下玉米幼苗的电解质渗漏率。
     2.4活性氧清除能力增加。外源钙、磷、钾、硅和NO均可不同程度地增强叶片和根系中SOD、CAT、POD活性,同时使叶片和根系中的膜脂过氧化产物-MDA含量降低。
     2.5外源物质通过促进盐胁迫下玉米幼苗体内渗透调节物质的运输,使其在叶片和根系中分配更合理,增强了玉米幼苗的渗透调节能力。判断盐胁迫下玉米幼苗渗透调节能力的大小,应看渗透调节物质在叶片和根系中的分配是否合理,单纯叶片中渗透调节物质含量的高低并不能完全说明渗透调节能力的大小。这可能是外源物质提高玉米幼苗耐盐性的一个重要方面。
     2.6外源钙、磷、钾、硅和NO降低了盐胁迫下玉米幼苗各器官的Na~+/K~+和Na~+/Ca~(2+)比值,维持了盐胁迫下玉米幼苗各器官的离子平衡。
     盐胁迫下外源钙、磷、钾、硅和NO的这些效果是改善玉米幼苗离子吸收与分配、促进生长发育的综合结果,尽管其作用的途径和机理各不相同,但都达到了对盐害缓解的目的,这说明通过外源物质提高植物耐盐性的直接机理不是唯一的。
With room water culture experiment, the physiological and biochemical characteristic of maize seedling involved the dry weight, the content of osmotic adjustment, activity of protected enzyme, absorption and transport of ion in different part of maize seedling was studied, Primarily damage and salt tolerance mechanisms of maize seedling under the salt stress was discussed and analyzed . That will provide foundation for the further research Salt tolerance of maize seedling on molecular Level. At the same time, applying proper exogenous substance such as calcium(Ca), Potassium(K), phosphorus(P), silicon(Si) and sodium nitroprusside (SNP), the effect of physiological and biochemical characteristic was analyzed. The mechanisms of enhance salt tolerance about exogenous substance was discussed, supply definite theory basis for enhance salt tolerance on maize. The main study results was as follows:
     1. The damage and salt tolerance mechanisms of maize seedling under the salt stress
     The salt stress are mainly consist of osmotic stress and ion toxic, osmotic stress could result in difficulty of absorb moisture, the ion stress could result in the biofilms were destroyed and physiological turbulence. The damage and salt tolerance mechanisms of maize seedling can be shown in following main aspects:
     1.1 maize seedling have definite salt tolerance, under the salt stress (50mmol·~(-1)NaCl), the dry weight of maize seedling increase little, the dry weight of root increase remarkably. The dry weight of different part of maize seedling decreases along with the increase of salt concentration. The biggish apparatus decreased in dry weight was young leaf and mature leaf. The water content of different parts of maize seedlings decreases along with the increase of salt concentration, the changed extent of the water content are: root>young blade>mature blade>mature sheath.
     1.2 Salt stress can conduce to the decrease of chlorophyll content; the decrease extent of chlorophyll a is smaller than chlorophyll b. Under the salt stress, the net photosynthesis, transpiration rate, intercellular CO_2 concentration,stomatal conductance of maize seedling decreased, but water use efficiency stomatal limited value of maize seedlings increased.This indicated that the dicrease of photosynthesis of maize seedling under salt stress is the result of stoma factor.
     1.3 The salt stess can induce the maize seedling Plasma membrane to be damaged, along with the increase of salt concentration, the electrolyte leakage in leaf increases, the content of MDA in leaf and root increase.
     1.4 Under the salt stress, the content of soluble sugar, soluble protein, free amino acids and proline in leaf and root of maize seedling increased, but the increasing extent in leaf greater than that in root.
     1.5 When the maize seedling was under the salt stress of 50mmol·L~(-1) and 100mmol·l~(-1), the activeness of SOD, CAT, POD in leaf and root all increases. But the content of MDA in leaf and root was not decreased on the contrary it was increased. It indicates that the damage of Plasma membrane in maize leaf and root have more complex mechanism. After the concentration of salt attain definite limit, the activeness of enzyme gets to be restrained, the activeness of enzyme decreases, the salt damage aggravated.
     1.6 The content of Na~+, Cl~-, Na~+/K~+, Na~+/Ca~(2+) ratio in different part of maize seedling was all rapidly increase along with the increase of salt concentration, the changed extent of Na~+, K~+ and Cl~- was: root>mature sheath>young blade>mature blade, the root of maize seedling was influenced most easily by outside ion concentration, the influence on leaf by outside circumstance was on the small side.The response of salt stress on different part of maize seedling was not consistent, it cause the decrease of content of Ca~(2+) and Mg~(2+). The changed disciplinarian of Mg~(2+) content in mature blade is not obvious. But the content of Ca~(2+) and Mg~(2+) increase under the salt stress. The influence on the content of Zn~(2+) is not too. The maize seedling have the mechanism of Na~+-exclusion and have definite salt tolerance, the salt tolerance was implemented by root and mature sheath, Na~+ is mainly reserved in root and mature sheath, and the content of Na~+ was less to be transported to mature blade and young blade. At the same time, mature sheath still have the capacity of Cl~--exclusion.
     2 Alleviative effect of exogenous substance under salt stress
     The salt tolerance of plant is a integrative mechanism, its fit to salt stress was multifarious, the salt tolerance of crop is a kind of complicated physiological mechanism that is the acted together result of genetic characteristic and exoteric condition, the alleviative effect on salt stress caused by exogenous substance was realize through different approach, so it is very difficult to explain the relation of exogenous substance and salt tolerance with a given index. On the whole, the alleviative effect on salt stress caused by exogenous substance manifests as follows:
     2.1 The growth restrained under salt stress was the most obvious effect, several kinds of exogenous substance such as calcium(Ca), Potassium(K), phosphorus(P), silicon(Si) and NO increased the dry weight of maize seedling at the different extent.
     2.2 Exogenous substance increased the content of chlorophyll in leaf under salt stress, it keep higher velocity of photosynthesis, but the effect by the different matter is distinct, for example: outer Potassium (K) and NO make the ratio of chlorophyll a/b increased, but outer phosphorus (P) and silicon (Si) make the ratio of chlorophyll a/b decreased in the maize seedling.
     2.3 Plasma membrane is the primary position of plant damage under the salt stress, that plant electrolyte leakage increased under salt stress was one of the important characters for salt damage; appropriate amount of exogenous substance all decreased the 1 electrolyte leakage in maize seedling under salt stress.
     2.4 T he capacity of active oxygen scavenging was increased, exogenous calcium (Ca), phosphorus(P), Potassium(K), silicon(Si) and NO all increase the activity of SOD, CAT, POD in leaf and root at the different extent, at the same time, exogenous substance decreased the content of lipid peroxidation material-MDA.
     2.5 Exogenous substance accelerate transportation of osmotic adjustable substance in maize seedling under salt stress, osmotic adjustable substance can be distributed more reasonable in leaf and root, osmotic adjustment ability of maize was increased. It was lie on that whether the osmotic adjustable substance distributing in the leaf and root reasonable or not, when we estimated the magnitude of osmotic adjustment ability, and the magnitude of osmotic adjustable substance in the leaf could not completely explain the magnitude of osmotic adjustment ability. It may be an important aspect that exogenous substance improves the salt tolerance in maize seedling.
     2.6 Exogenous calcium(Ca), phosphorus(P), Potassium(K), silicon(Si) and NO decrease the ratio of Na~+/K~+ and Na~+/Ca~(2+), maintain the ion balance in different part of maize seedling under salt stress.
     These effects caused by exogenous calcium(Ca), phosphorus(P), Potassium(K), silicon(Si) and NO on maize seedling under salt stress was the integrated result of improving ion absorption , distribution , growth and development in maize seedling. Whereas its mechanism of effect was diverse, but they all attach the aim which alleviative the salt damage, this illuminate that the direct mechanism of improving the salt tolerance through exogenous substance is not only.
引文
1. 蔡妙珍,罗安程,林咸永,等.2003.Ca~(2+)对过量Fe~(2+)胁迫下水稻保护酶活性及膜脂过氧化的影响[J].作物学报,29(3):447-451。
    2. 柴小清,靳飞,张艳萍.2004.缺铁逆境胁迫下水稻叶蛋白质组的双向电泳分析[J].首都师范大学学报(自然科学版) 25(3)46-51
    3. 曹敏建,张雨林.1994.钾肥对玉米抗旱性生理指标及产量的影响[J].作物杂志,(4):37-39
    4. 曹让,梁宗锁,武永军.2004.分根交替渗透胁迫下玉米幼苗叶片中游离氨基酸的变化[J].干旱地区农业研究,22(1):49-54.
    5. 陈华新,李卫军,安沙舟,等.2003.钙对NaCl胁迫下杂交酸模幼苗叶片光抑制的减轻作用[J].植物生理与分子生物学学报,29(5):449-454.
    6. 陈淑芳,朱月林,刘友良,李式军.2005.NaCl胁迫对番茄嫁接苗保护酶活性、渗透调节物质含量及光合特性的影响[J].园艺学报,32(4):609-613
    7. 陈新平.1993.水分胁迫条件下施用钾对土壤生物有效性和小麦抗旱性的研究[D].北京:北京农业大学硕士学位论文
    8. 崔德杰,高静,宋宏伟.施用硅钾肥对冬小麦抗旱性的影响[J].土壤肥料,2000(4),27-29
    9. 段培,王芳,王宝山.2006.NO供体SNP浸种显著缓解盐胁迫对小麦幼苗的氧化损伤[J].菏泽学院学报,28(5):93-97
    10. 郭书奎,赵可夫.2001.NaCl胁迫抑制玉米幼苗光合作用的可能机理[J].植物生理学报,27(6):461-466:
    11. 樊怀福,郭世荣,杜长霞等.2006.外源NO对NaCl胁迫下黄瓜幼苗氮化合物和硝酸还原酶活性的影响[J].西北植物学报, 26(10):2063-2068
    12. 冯固,杨茂秋,白灯莎.1998.盐胁迫下VA菌根对无芒雀麦体内矿质元素含量及组成的影响[J].草业学报,7(3):21-28.
    13. 冯固,李晓林,张福锁,李生秀.2000.盐胁迫下丛枝菌根真菌对玉米水分和养分状况的影响[J].应用生态学报,11(4):595-598
    14. 高永生,王锁民,宫海军,赵志光,张承烈.盐胁迫下植物离子转运的分子生物学研究[J].草业学报,2003,12(5):18-25.
    15. 龚明.1989.盐胁迫下大麦和小麦等叶片脂质过氧化伤害与超微结构变化的关系[J].植物学报.31(11):841-846
    16. 龚明,李英,曹宗巽.1990.植物体内的钙信使系统[J].植物学通报.7(3):19-29
    17. 郭延平,陈屏昭,张良诚,等.2002.不同供磷水平对温州蜜柑叶片光合作用的影响[J].植物 营养与肥料学报,8(2):186-191。
    18. 霍仕平.1995.玉米抗旱的形态和生理生化指标研究进展[J].干旱地区农业研究.13(3):67-73,57
    19. 江行玉,窦君霞,王正秋.2001.NaCl对玉米和棉花光合作用与渗透调节能力影响的比较[J].植物生理学通讯,37(4):303-305
    20. 李长润,刘友良.1993.盐胁迫下小麦幼苗离子吸收运输的选择性与叶片耐盐量[J].南京农业大学学报,16(1):16-20.
    21. 李合生.2002.现代植物生理学[M].北京:高等教育出版社.
    22. 李合生,2003.植物生理生化实验原理和技术[M].高等教育出版社.
    23. 李其星,唐新莲,沈方科,等.2006.铝胁迫下外源Ca~(2+)对黑麦幼根膜脂过氧化及保护酶活性的影响[J].广西农业科学,37(3):249-252
    24. 李青云,葛会波,胡淑明,等.2004.盐胁迫下钙对草莓叶片脂肪酸含量及组成的影响[J],河北农业大学学报,27(6):56-59
    25. 梁银丽,康绍忠,张成娥.1999.不同水分条件下小麦生长特性及氮磷营养的调节作用[J].干旱地区农业研究,(12):58-63
    26. 粱永超,丁瑞兴,剂谦.1999.硅对大麦耐盐性的影响及其机制[J].中国农业科学,32(6):75-83
    27. 廖建雄,王根轩.1999.谷子叶片光合速率日变化及水分利用效率[J].植物生理学报.25(4):362-368
    28. 凌腾芳,宣伟,樊颖瑞,等.2005.外源葡萄糖果糖和NO供体(SNP)对盐胁迫下水稻种子萌发的影响[J].植物生理与分子生物学学报,31(2):205-212.
    29. 刘俊,张艳艳,章文华.2005.大麦根中多胺含量和转化与耐盐性的关系[J].南京农业大学学报,28(2):7-11
    30. 刘开力,韩航如,徐颖洁,等.2005.外源一氧化氮对盐胁迫下水稻根部脂质过氧化的缓解作用[J].中国水稻科学,19(4):333-337
    31. 刘鹏程,王辉,程家强,黄久常,2004.NO对小麦叶片干旱诱导膜脂过氧化的调节效应[J].西北植物学报,24(1):141-145
    32. 刘伟宏,刘飞虎,Schachtman D,等.1999.植物根部细胞钾离子转运机制及其分子基础[J].江西农业大学学报,(4):451-455。
    33. 刘友良,汪良驹.1998.植物对盐胁迫的反应和耐盐性.见:余叔文,汤章城主编.植物生理和分子生物学[M].北京:科学出版社.
    34. 刘志生.鲁德1号冬小麦耐盐力分析[J].中国农学通报,1996,12(3):21-22
    35. 刘祖祺,张石城.1994.植物抗性生理学[M].北京:中国农业出版社.
    36. 罗斌.1994.我国的盐碱化土地与治理技术[J].林业科技通讯,(3):8-10
    37. 陆景陵.1994.植物营养学[M].北京:北京农业大学出版社:32-33
    38. 吕金岭,董永.2007.盐逆境胁迫下施钾对降低小麦盐害的生理效应研究[J].江西农业学报,19(3):39-40
    39. 马翠兰,刘星辉.2004.盐对柚幼苗的胁迫效应分析[J],热带作物学报,25(1):28-31
    40. 马向丽,魏小红,龙瑞军,等.2005.外源一氧化氮提高一年生黑麦草抗冷性机制[J].生态学报,25(6):1269-1274
    41. 彭志红,彭克勤,胡家金,等.2002.渗透胁迫下植物脯氨酸积累的研究进展[J].中国农学通报18(4):80-83
    42. 钱骅,刘友良.1995.盐胁迫下钙对大麦根系质膜和液泡膜功能的保护效应(简报)[J].植物生理学通讯,31(2):102-104
    43. 任红旭,陈雄,王亚馥.2001.抗旱性不同的小麦幼苗在水分斜坡和盐斜坡下抗氧化酶和多胺的变化[J].植物生态学报,25(6):709-715
    44. 任小林,张少颖,于建娜.2004.一氧化氮与植物成熟衰老的关系[J].西北植物学报,24:167-171
    45. 阮海华,沈文飚,叶茂炳,等.2001.一氧化氮对盐胁迫下小麦叶片氧化损伤的保护作用[J].科学通报,46(23):1993-1997
    46. 邵晶,刘玲,刘兆普,等.2005.磷对海水抑制芦荟幼苗生长的缓解效应[J].中国农业科学38(4):843-848
    47. 史跃林,罗庆熙,刘佩英.1995.Ca~(2+)对盐胁迫下黄瓜幼苗中CaM、MDA含量和质膜透性的影响[J].植物生理学通讯,31:347-349
    48. 束良佐,刘英惠.2001.硅对盐胁迫下玉米幼苗叶片膜脂过氧化和保护系统的影响[J].厦门大学学报(自然科学版),40(6):1295-1300
    49. 谈建康,安树青,王峥嵘,等.1998.NaCl、Na_2SO_4和Na_2CO_3胁迫对小麦叶片自由基含量及质膜透性的比较研究[J].植物学通报,15(增刊):82-86
    50. 汤章城.1999.植物生理和分子生物学[C].北京:科技出版社,739-745.
    51. 陶帅平,葛志清,虞国兴,等.2001.施钾对扬麦158等小麦品种的养分吸收与生物产量的影响[J].土壤学报,38(3):301-307
    52. 土壤农化分析,1994,南京农业大学主编,农业出版社出版,132-133
    53. 汪邓民,周冀衡,朱显灵,孙亚凌.1998.干旱胁迫下钾对烤烟生长及抗旱性的生理调节[J].中国烟草科学,(3):26-29
    54. 汪耀富,宋世旭,王佩,等.2006.渗透胁迫对不同供钾水平烤烟叶片抗旱生理指标的影响,中国农学通报,22(5):216-219
    55. 王宝山.1995.小麦叶片中Na~+、K~+提取方法的比较[J].植物生理学通讯,31(1):50-52
    56. 王宝山、赵可夫.1997a.NaCl胁迫下玉米黄化苗质外体和共质体Na,Ca浓度的变化[J].作物学报,23(1):27-33
    57. 王宝山,赵可夫,邹琦.1997b.作物耐盐机理研究进展及提高作物抗盐性的对策,植物学通报,14(增刊):25-30
    58. 王宝山,李德全,赵士杰等.1999.等渗NaCl和KCl胁迫对高粱幼苗生长和气体交换的影响[J].植物学通报.16(4):449-453;
    59. 王宝山,邹琦,赵可夫,2000.NaCl胁迫对高粱不同器官离子含量的影响[J].作物学报,6(11):845-850
    60. 王代军.1998.温度胁迫下几种冷季型草坪草抗性机制的研究[J].草业学报,7(1):75-80
    61. 王凤婷,艾希珍,刘金亮,徐坤范.2005.钾对日光温室黄瓜糖、维生素C、硝酸盐及其相关酶活性的影响[J].植物营养与肥料学报,11(5):682-687.
    62. 王洪春,1997.生物膜结构功能和渗透调节,上海科学出版社.
    63. 王利军,李家承,刘允芬,等.2003.高温干旱胁迫下水杨酸和钙对柑橘光合作用和叶绿素荧光的影响[J],中国农学通报,19(6):185-189
    64. 王丽燕、赵可夫.2004.Nacl胁迫对海蓬子(Salicornia bigelovii torr.)离子区室化、光合作用和生长的影响[J].植物生理与分子生物学学报,30(1):94-98
    65. 王丽燕,赵可夫.2005.玉米幼苗对盐胁迫的生理响应[J].作物学报31(2):264-266
    66. 王鸣刚.1995.小麦耐盐变异体的筛选Ⅰ小麦耐盐细胞系的筛选及生理生化特性的分析[J].西北植物学报,15(5):15-20
    67. 王锁民,朱兴运,王增荣.1993.渗透调节在碱茅幼苗适应盐逆境中的作用初探[J].草业学报,2(3):40-46
    68. 王锁民,朱兴运.等.1994.盐胁迫对拔节期碱茅游离氨基酸成分和脯氨酸含量的影响[J].草业学报,3(3):22-26
    69. 王文卿,叶庆华,王笑梅.等,2001.盐胁迫对木榄幼苗各器官热值,能量积累及分配的影响[J].应用生态学报,12(1):8-12
    70. 王应,张颖妹.2001.果蝇程序化死亡基因(PD CD5)同源cDNA的克隆和序列分析[J]中国生物化学和分子生物学报,17(2):143-147。
    71. 王泽港.1999.半根干旱胁迫对水稻叶片光合特性和糖代谢的影响[J].江苏农业研究,20(3):15-18.
    72. 吴雪霞,朱月林,朱为民,陈建林.2006.外源一氧化氮对NaCl胁迫下番茄幼苗生长和光合作用的影响[J].西北植物学报,26(6):1206-1211
    73. 夏阳,林彬,陶洪斌,等.2000.不同基因型小麦对NaCl胁迫的反应[J].植物营养与肥料学报, 6(4):417-423
    74. 徐呈祥,刘兆普,刘友良.2004.硅在植物中的生理功能[J].植物生理学通讯,40(6):753-757
    75. 徐呈祥,2006.博士学位论文,库拉索芦荟(Aloe vera L.)对盐胁迫的响应和硅对其盐害的缓解效应,南京农业大学
    76. 许兴,李树华,惠红霞.等.2002.NaCl胁迫对小麦幼苗生长、叶绿素含量及Na~+、K~+吸收的影响[J],西北植物学报,22(2):278-284
    77. 徐云岭,余叔文.1990.植物适应盐逆境过程中的能量消耗[J].植物生理学通讯,(6):70-72
    78. 阎国华,等.1996.Ca(NO_3)_2对盐胁迫下大豆离体胚再生植株保护系统的影响[J].山西农业大学学报,16(3):222-225
    79. 晏斌,戴秋杰.1994.外界K水平对水稻幼苗耐盐性的影响[J].中国水稻科学,8(2):119-122
    80. 杨根平,荆家海,王韶唐,等.1992.钙在水分胁迫植物体内作用的初步研究[J],西北植物学报,12(5):13-17。
    81. 杨洪兵,丁顺华,邱念伟.等.2001.耐盐性不同的小麦根和根茎结合部的拒Na~+作用,植物生理学报[J].27(2):179-185
    82. 杨俊兴,张彤,吴冬秀.2003.磷素营养对植物抗旱性的影响[J].广东微量元素科学,10(12):13-19
    83. 杨敏生,李艳华,梁海永,等.2003.盐胁迫下白杨无性系苗木体内离子分配及比较[J].生态学报23(2):271-277
    84. 郑海雷,林鹏.1998.培养盐度对海莲和木木榄幼苗膜保护系统的影响[J].厦门大学学报37(2)278-282
    85. 郑延海,宁堂原,贾爱君,等.2007.钾营养对不同基因型小麦幼苗NaCl胁迫的缓解作用[J].植物营养与肥料学报,13(3):381-386
    86. 宰学明,吴国荣,陆长梅,等.2001.Ca~(2+)对花生幼苗耐热性和活性氧代谢的影响[J].中国油料作物学报,23(1):46-50。
    87. 张福锁.1993.植物营养生态生理学和遗传学[M].北京:中国科学技术出版社.
    88. 张金林,陈托兄,王锁民.2004.阿拉善荒漠区几种抗旱植物游离氨基酸和游离脯氨酸的分布特征[J].中国沙漠,24(4):493-499
    89. 张岁岐,山仑.1998.磷素营养对春小麦抗旱性的影响关系[J].应用与环境生物学报.4(2):115-119
    90. 张岁岐,山仑,薛青武.2000.氮磷营养对小麦水分关系的影响[J].植物营养与肥料学报,6(2):147-151,165
    91. 张宪政,1992.作物生理研究法,农业出版社
    92. 张绪成,上官周平,高世铭.2005.NO对植物生长发育的调控机制[J].西北植物学报.25(4):812-818
    93. 张燕,方力,李天飞,等.2002.钙对低温胁迫的烟草幼苗某些酶活性的影响[J].植物学通报,19(3):342-347。
    94. 张艳艳,刘俊,刘友良.2004.一氧化氮缓解盐胁迫对玉米生长的抑制作用[J].植物生理与分子生物学学报,30(4):455-459
    95. 赵福庚,王晓云,王汉忠.1999.花生叶片生长发育过程中多胺代谢的变化[J],作物学报.25(2):249-253
    96. 赵可夫.1983.植物抗盐生理.中国科学技术出版社
    97. 赵可夫,邹琦,李德全.等.1993a.盐分和水分胁迫对盐生和非盐生植物细胞膜脂过氧化作用的效应[J].植物学报,35:519-525
    98. 赵可夫.1993b.盐生植物的抗盐性及抗盐机理.见:赵可夫主编.植物抗盐生理.北京:中国科学技术出版社.
    99. 赵可夫,1997.作物耐盐机理研究进展及提高作物抗盐性的对策[J].植物学通报,14(增刊):235-240。
    100. 赵可夫,李军.1999.盐浓度对3种单子叶盐生植物渗透调节剂及其在渗透调节中贡献的影响[J].植物学报,41(12):1287-1292
    101. 赵蕊,赵轶,楼宜嘉.生理溶液中硝普钠释放一氧化氮巯基通路的动力学研究[J].中国药学杂志 2003,38(2)103-105
    102. 郑青松,王仁雷,刘友良.2001.钙对盐胁迫下棉苗离子吸收分配的影响[J].植物生理学报,27(4):325-330
    103. 钟鹏,朱占林,李志刚,等.2005.干旱和低磷胁迫对大豆叶保护酶活性的影响[J].中国农学通报.(21)2:153-154。
    104. 周冀衡,汪邓民,朱显灵.1998.钾对烟草抗旱性影响的生理研究[J].黑龙江烟草,(2);8-10
    105. 朱德民1982.植物生长与耐盐性[J].科学农业(台),30(3-4):202
    106. 朱新广,张其德.1999.NaCl对光合作用影响的研究进展.植物学通报[J].16(4):332-338
    107. 朱新广,张其德,匡廷云.2000.NaCl对小麦光合功能的伤害主要是由离子效应造成的.植物学通报[J].127(4):360-365
    108. 邹琦,2000.植物生理生化实验指导,中国农业出版社.
    109. Ahmad R, Zaheer SH, Ismail S .1992. Role of silicon in salt tolerance of wheat (Triticum aestivum L). Plant Sci 85:43-50
    110. Akio U, Andre T J, Takashi H, et al. 2002. Effects of hydrogen peroxide and nitric oxide on both salt and heat stress tolerance in rice[J]. Plant Sci. 163(3): 515-523.
    111.Allison EM.Walsby AE .1984.The role of K~+ in the control of turgor pressure in a gas— vacuolate blue—green alga.J Exp Bot, 32: 241
    112.Alscher R.G., Donahue J.L., Cramer C.L.1997.Reactive oxygen species and antioxidants: relationship in green cells.Physiol.Plant.100: 224—233.
    113.Beligni M V, Lamattina L 1999.Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues[J].Planta.208: 337~344.
    114.Beligni M V, Lamattina L.2001.Nitric oxide: a non-traditional regulator of plant growth.Trends Plant Sci.6:508-509
    115.Beligni M V, Fath A ,Bethke P C , Lamattina L, Jones R L.2002.Nitric oxide acts as an antioxidant and delays programmed cell death in barley aleurone layer.Plant Physiol.129:1642—1645
    116.Bernstein L.1961.Osmtic adjustment of plants to saline media.Amer J Bot.48:909~918.
    117.Bernstein.L.Francoism.L.E, and Clark, R.A.1974.Interacyive effects of salinity and fertility on yields of grains and vegetables, AgronJ.66:412~421
    118.Berry JA,Downton WJS.Environmental regulation of photosynthesis[A].In:Govindjee (ed).Photosynthesis (Vol Ⅱ)[C].New York:Academic Prees,1982.294 ~ 306.
    119.Blat M.R.1993.Hormonal control of ion channel gating, [J]Ann, Rev; plant MoLBiol.44:553~559
    120.Bouler DJeremy J J, Wilding M.1966.Amino acids liberated into the culture medium by pea seedling roots.Plant Soil, 4:121~ 127
    121.Camp W V, Van Montagum.1998.H_2O_2 and NO: redox signals in disease resistance[J].Trends Plant Sci.3: 330-334.
    122.Carter D.R.Cheeseman J.M.1993.The effect of external NaCl on thylakoid stacking in lettuce plants.Plant Cell Environ.16:215—223
    123.Clark A, Desikan R, Hurst R, D, et al.2000.NO way back: nitric oxide and programmed cell death in Arabiodopsis thaliana suspension cultures.Plant J.24: 667—677
    124.Cramer GR.Lauchli A, and Polito V.S.1985.Displacement of Ca~(2+)by Na+from the plasmalemma of root cells [J].Plant Physiol.79: 207—211
    125.Delledonne M, Xia YJ, Dixon RA, Lamb C.1998.Nitric oxide functions as a signal in plant diseasere resistance.Nature.394:585—588
    126.Durner J.Wendehenned D.Klessing D F.1998.Defense gene induction in tobacco by nitric oxide,cyclic GMP, and cyclic ADP—ribose [J].Proc.Natl.Acad.Sci.USA, 95: 10328—10333.
    127.Edward L.1981.Potasb fertilizer and increased tolerance to stress [J].Agriview.
    128.Elster E F, Haral D S.1994.Biological socources of free radicals[J].Free Radicals in the Enviro.(7): 13-15.
    129.Elstner E .F.1982.Oxygen activivation and oxygen toxicity.Annu.Rev.Plant Physiol., 133: 73—96
    130.Epstein M.1987.Advance salt tolerance [J].Plant Soil, 99:17—29
    131.Epstein W, Wieczorek Z.Soeners A et al.1984.Potassium transport in adirgenetic and biochemical characterization of the K~+-translocating ATPase.Btochern Soc Trans, 12:235
    132.Epstein E.1994.The anomaly of silicon in plant biology.Proc Natl.Acad.Sci.USA .91.11—17
    133.Epstein E.1999.Silicon.Annu.Rev.Plant Physiol.Plant Mol.Biol.50: 641~664
    134.Evans R E, S A Briars, L E Willians.J Exp bot, 1991.42: 285-303
    135.Farquhar G D, Sharkey T D.1982.Stomatal conductance and photosynthesis [J].Annu.Rev.Plant Physiol.33: 317-345.
    136.Flowers, T.J.A.Hajibagher, A.R Yeo, 1991.Plant, Cell and Environment, 14, 319~325
    137.Garcia Mata C, Lamattina 1.2001.Nitric oxide induce stomatal closure and enhance the adaptive plant responses against drought stress.Plant Physiol, 126(3): 1196~1204.
    138.Gnansiri SJHirohumi S.Cell membrane stability and leaf water relation as affected by phosphorus nutrition under water stress in Maize[J].Soil Sci Plant nutri, 1990, 36(4): 661~666
    139.Gong H J, Chen K M, Chen G C, et al.2003.Effects of silicon on growth of wheat under drought.J Plant Nutr.26:1055-1063
    140.Gossett DR, Millhollon EP, Lucas MC.1994.Antioxidant response to NaCl in salt-tolerant and Salt-sensitive cultivars of cotton [J].Crop Science, 34:706—714.
    141.Grattan.S.R, Grieve, CM.1992.Mineral element acquisition and response of plants grown in saline environments.[J].Agric Ecosystem and Envirr, 38: 275—300
    142.Greenway H, A Cunn, M G Pitman et al.1965.Aust J Biol Sci, 18:525—540
    143.Hayashi H.A, Alia, Mustardy Letal.1997.Transformation of Arabidopsis thaliana with the coda gene for choline 130.oxidase: accumulation of glycinebetaine and enhanced tolerance to salt and cold stress.Plant J, 66:133-142
    144.Haro R, Baneulosma, Quintero F J, et al.1999.Genetec basis of sodium exclusion and sodium tolerance in yeast a model for plants [J]Physilol Plant, 89: 868—874
    145.Jacoby B.1964.Function of bean roots and stems in sodium retention.Plant physiol.39: 445—449
    146.Jean.R, H.CP.Mattijs, 1993.Exposure of Cyanobacterium synechocystis PCC 6803 to salt stress induces concerted change in respiration and photosynthesis.Plant and Cell physiol, 34:1073—1079
    147.Jeschke W D, Stelter W, Reising B, Behl R.1983.Vacuole Na/K exchange, its occurrence in root cells of Hordeum, Atriplex and Zea and its significance for K/Na discrimination in roots.J Exp Bot,34:964-979.
    148.Ke.Y.Q.Dan.T.G 1999.Effects of salt stress on the ultratnicture of chloroplast and activities of some protective enzymes in leaves of sweet potato [J]Acta phytophysiol.Sin, 25(3): 229—233
    149.Kenneth B, Marcum.1994.Salinity tolerance mechanisms of six C_4 turfgrasses.J.Amer: Soc.Hort.SCI.119(4) , 779-784
    150.Kramer.G.F, Norman.H.A.Krized.D.J, et al.1991.Influence of UV-B radiation on polyamines lipid peroxidation and membrane lipid in cucumber photochemistry, 30: 2101—2018
    151.Lauchi A.1984.Salinity tolerance in plant: strategies for crop improvement: New York, John Wiley and Sons, 171-184
    152.Lauchli A.1990.Calcium in Plant Growth.Rockville M D, The American Society of Plant Physiologists, 26~35
    153.Liang Y.1998.Effects of Si on leaf ultra structure, chlorophyll content and photosynthetic activity in barley under salt stress.Pedosphere, 8: 289~296.
    154.Liang YC, Chen Q, Liu Q, et al.2003.Exogenous silicon (si) increase antioxidant enzyme activity and reduce lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.).Journal of Plant Physiology, 160:1157-1164
    155.Liang YC, Zhang WH, Chen Q et al.2005.Effects of silicon on tonoplast H~+-ATPase and H+-PPase activity, fatty acid composition and fluidity in roots of salt-stressed barley(Hordeum vulgare L.)[J].Envir.Exp.Bot.53:29-37.
    156.Leopold A.C 1984.Evidence for toxicity effects of salt in membranes [A]In: Staples R.C.Toenniessen.GLH.Salinity tolerance in Plants.Strategies for crop improvement [C].New York;John Wiley and Sona, 67—75
    157.Levitt, J, 1980.Responses of plants to environmental stresses.Vol.2Academic press, New York :Academic Press.
    158.Lynch J A.Salinity affects intracellular calcium in corn potato plasts [J].Plant Physiol,1988(87):351~356
    159.Lynch J, Politc VS, Lauchli A.1989.Salinity stress increases Ca activity in maize root protoplasts [J].Plant Physiol, 90:1271-1274.
    160.Magy.Z, Galiba.G..1995.Drought and salt tolerance are not necessarily linked: a Study on wheat varieties differing in drought tolerance under consecutive water and salinity stress, Journal of plant physiology.145:168—174
    161.Marcum, K, B, Murdoch.CL.1990.Growth responses, ion relations, and osmotic adaptations of eleven C_4 Turf grasses to salinity.Agron, J.82(5): 892—896
    162.Marrilyn, C.B, Jan.MA.1986.Sensitivity of PSⅡ to NaCl in relation to salinity tolerance.Comparative studies with thylakoida of the salt-tolerant Mangrove.Avicennia marina, and the salt-sensitive Pea, pisum sativum.Aust J Plant physiol.13: 689—698
    163.Martinez V, Lauchli A, 1994.Salt-induced inhibitions of phosphate uptake in plant of cotton (Gossypium hirsuzum L).[J]New phytol, 126: 609—614.
    164.Mata C G? Lamattina L.2001.Nitric oxide induces stomatal closure and enhances the adaptive plan; responses against drought stress [J].Plant Physiol.126: 1196—1204.
    165.Matsushita.N.Matoh.T.1992.Function of the shoot base of salt-tolerant reed (phagmites communis Trinius) planta for Na~+exclusion from the shoot .Sci Plant.Nutr, 38(3): 565—571
    166.Mitler R.2002.Oxidative stress, antioxidants and stress tolerance.Trends in Plant Sci, 7: 405~410
    167.Munns R, Bracely C J.1979.Barlow E W R.Solute accumulation in the apex and leaves of wheat during water stress [J].Aust J Plant physiol, (6): 379~389.
    168.Nassery H.1972.The loss of potassium and solium from existed barley and bean roots, New Phytol.71: 269~274
    169.Oertli, JJ 1968.Exracellular salt accumulation, a possible mechanism of salt injury in plants.Agrochimical.12: 461~469
    170.Rathert,G, 1982.Influence of extreme K: Na ratios and high substrate salinity on plant metabolism of crops differing in salt tolerenceJ.plant Nutr, 5: 183~193.
    171.SchilmperA.F 1986.[A]In: Sharma S.K.Gupta.L.C.Saline environment and plant growth agro Botanical publishers [C].India.: 64~66
    172.Shen L M, David M, Joyce G F.1990.Influence of drought on the concentration and distribution of 2,4-diami-naobutyric acid and other free amino acids in tissues of flatpea (Lathyrus sylvestris L.)[J].Enviro Expt Bot.30: 497~504.
    173.Smith, TA.1985.Polyamines.Annual Review of Plant Physiology [J], 6 :117~143
    174.Snedden WA, Fromm H.2001.Calmodulin as a versatile calcium signal transducer in plants [J].New Phytol.151: 35~66
    175.Steven J N, Radhika D, Andrew C, John T H.2002.Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells[J].Plant Physiol.128: 13~16
    176.Walker R.R.Blackmore.D.H.Sun Qing.1993.Carbon dioside assimilation and folia ion concentration in leaves of Leamon (Citrus Limon L) tress irrigated with NaCl and Na2S04.Aust J Plant Physiol, 20:173-185
    177.Watad A-EA, Reuverni M.Bressan R A .1991 .Enhanced net K~+ uptake capacity of NaCl-adaptcells.Plant Physiol, 15:1265
    178.Winter.E.1982, Salt tolerance of Trifolium alexandrinum LEffects of salt in ultrasreucture of phloem and xylem transfer cells in petioles and leaves.AustJ.plant physiol, 9239~250
    179.Wu.l, lim, H, 1994, Salt tolerance and salt uptake in diploid and poolyploid buffalo grass (Buchloe dactloides).Journal of plant nutrition, 17(11): 1905~1928
    180.Yeo, A, R.Flowers T, J, 1982.Accumulation and localization of sodium ions within the shoots of rice (Oryza sativa) varieties differing in salinity resistance.Physiol plant Copenhagen.56:343~348
    181.Yu Z, Rengel Q.Drought and salinity differentially influence activities of superoxide dismutase in narrow leafed lupines Plant Science, 1999, 141: 1—11
    182.Zhao LQ, Zhang F, Guo JK, et al, 2004.Nitric oxide functions as a signal in salt resistance in the calluses from two ecotypes of reed [J].Plant Physiol, 134 (2): 849 ~857
    183.Zhu J K,Liu JP,Xiong LM.Genetic analysis of salt tolerance in Arabidopsisrevidence for a critical role of potassium nutrition [J].Plant Cell,1998,10:1181~1191
    184.Zhu J K.Genetic analysis of plant salt tolerance using Arabidopsis[J].Plant Physiol, 2000,124:941~948.
    185.Zhu Z J, WeiGQ, LI J, Qian Q Q, Yu J Q.2004, Silicon alleviates salt-stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L) [J], plant Science,167(3): 527-533.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700