棉花与黄萎病菌的分子互作机制研究及GbWRKY1基因的功能鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花黄萎病是由大丽轮枝菌引起的土传真菌维管束病害,发病时会引起棉花叶片失绿变黄,蕾铃脱落,严重时造成棉株死亡,是当前影响棉花生产的主要病害之一。了解棉花与黄萎病菌互作的分子机制,分离抗病相关基因并利用基因工程技术对现有陆地棉品种进行抗性改造,已成为当前棉花分子生物学研究的重点内容之一本研究分别构建了抗黄萎病的海岛棉‘海7124’接种黄萎病菌后的抑制差减杂交cDNA文库以及通过大规模测序的RNA-Seq技术研究棉花抗黄萎病机制。通过基因表达分析,获得了大批棉花抗黄萎病相关基因,并对其中的一个WRKY类转录因子进行了较为详细的功能研究,取得的主要结果如下:1、构建了‘海7124’受黄萎病菌接种后的抑制差减杂交cDNA文库。对得到的211个差异表达基因功能分类表明主要包括代谢类相关基因、生物及非生物胁迫反应相关基因、细胞结构以及信号传导相关基因等,此外有38%左右的基因未在数据库中得到功能注释或者功能注释为未知功能蛋白。一些已知的植物防卫反应相关的基因,如PR蛋白、氧爆发相关基因以及一些次生代谢相关的基因等在‘海7124’接种黄萎病菌后受诱导表达明显。此外一些参与基因表达调控类基因,如WRKY类转录因子、MAPK类蛋白激酶等信号传导相关的基因也在棉花抗黄萎病反应中差异表达明显。对这些参与信号转导和表达调控类基因的详细分析会将有助于深入了解棉花抗黄萎病病反应的分子机制。运用Nothern杂交、RT-PCR和qRT-PCR技术对分离得到的这些差异表达基因进行验证,并对它们在一些信号分子,如乙烯、茉莉酸、水杨酸及H202等处理后的表达模式进行分析,推测棉花抗黄萎病反应所参与的信号路径。研究发现,乙烯作为重要的一类抗病信号分子可能在棉花抗黄萎病反应中具有重要作用。
     2、为了进一步了解棉花抗黄萎病分子机制,我们利用RNA-Seq大规模测序分析技术对‘海7124’接种黄萎病菌后4h、12h、24h和48h的不同时间点取样研究参与棉花抗黄萎病反应的基因表达变化。通过数据库筛选及比对分析,共获得3442个差异表达基因。为了验证RNA-Seq大规模测序表达谱分析结果的准确性,我们选取了不同功能分类、不同表达模式的361个基因进行qRT-PCR分析,结果表明两种基因表达模式结果基本吻合,可对表达谱数据进行深入分析。对这些差异表达基因进行GO功能富集分析发现,它们主要参与代谢类相关途径和应对外界的刺激相关反应。我们对其中参与植物抗病免疫反应信号传导途径的四类基因包括富含亮氨酸重复的类受体激酶、激素信号路径相关基因、转录调控基因及次生代谢苯丙环类路径相关基因进行了深入分析。研究表明大多数苯丙环类物质代谢路径基因都参与了棉花与黄萎病菌的分子互作,并在抗病的‘海7124’和感病的陆地棉品系‘YZ-1’中均受黄萎病菌诱导,但在抗病材料中这些基因被诱导的速度和表达水平都高于感病的陆地棉。酶活检测的结果与基因表达分析的结果相似。采用组织化学检测的方法对接菌前后‘海7124’和‘YZ-1’的木质素沉积和维管结构的变化进行了比较分析,结果显示抗病材料的木质素合成增强并在次生壁中的积累和沉积使得维管结构增强了对病原菌的抗性,在海岛棉对黄萎病的抗性中起着重要作用。
     3、GbWRKY1是从海岛棉中克隆得到的一个受黄萎病菌诱导的WRKY类转录因子。通过序列比对发现,GbWRKY1与拟南芥AtWRKY75相似性较高,同属于第二类C亚组的WRKY蛋白。通过在拟南芥中超量表达该基因发现转基因拟南芥能有效缓解对低磷逆境胁迫的反应,包括减少花青素的积累和更多的生物学产量。研究还表明,在正常条件下转基因拟南芥的侧根数增多、磷酸酶活性增强以及植株体内无机磷和总磷含量增加。对一系列受磷饥饿诱导基因表达研究发现,无论是磷转运子基因还是磷饥饿诱导相关基因,在低磷处理后转基因拟南芥中受诱导程度都低于野生型。由此推论,GbWRKY1可能是缓解磷饥饿胁迫信号传导中的一个正调控因子,在拟南芥中该基因的超量表达能在正常条件下模拟磷饥饿的信号,激活植物的低磷反应,包括侧根增多,体内积累吸收更多的磷,从而能在低磷处理下能够缓解植物的低磷胁迫反应。由于生长素对低磷胁迫反应有重要的调控机制,我们对超量表达GbWRKY1转基因拟南芥对外源生长素处理的响应进行了分析,并对其内源生长素含量和生长素响应的相关基因表达进行了检测。但结果显示转基因与野生型拟南芥在内源生长素含量上没有显著差异,而转基因植株对生长素的敏感性增强。GbWRKY1是磷饥饿反应的正调控因子,可能通过增强生长素响应信号路径和促进拟南芥侧根发生来调控拟南芥的低磷胁迫反应。GbWRKY1在棉花中受黄萎病菌诱导表达,它在棉花抗黄萎病反应中的作用还有待进一步研究。
Cotton Verticillium wilt caused by Verticillium dahliae is a soil-borne vascular disease. The representative symptoms caused by V. dahliae in the susceptible cotton include leaf curl, necrosis and defoliation. The disease has become the most economically important disease of cotton and severe outbreak of this disease causes reduction in fibre quality and significant yield losses. Through research on the molecular mechanism during the cotton defense response to V. dahliae, and identification of defense related genes for the use of genetic engineering methods to cultivate resistant cotton varieties will be the main direction of future cotton breeding. In this study, a suppression subtractive hybridization (SSH) based cDNA library constructed from V. dahliae inoculated Gossypium barbadense variety'Hai7124'and deep-sequencing technology based RNA-Seq were developed to better understand the molecular mechanism in cotton defense response to V. dahliae. Through gene expression analysis, a number of defense related genes were identified. Detailed functional identification of a defense related WRKY-type transcription factor isolated from the SSH cDNA library was studied in Arabidopsis. The main results of this study were as follow:
     A suppression subtractive hybridization (SSH) based cDNA library was constructed from V. dahliae inoculated G. barbadense variety'Hai7124'. A total of211unique genes were differentially identified and classified into11functional categories. The largest groups contain genes involved in metabolism, stress/defence response, cell structure and signal transduction. More than one-third of the genes (38%) were identified as unknown classification or function. This study identified a set of disease-related genes involved in the process of the response, including pathogenesis-related genes of various classes, oxidative burst-related genes and secondary metabolism-related genes, which were better understand in the disease resistance. The characterization of some transcription factors and kinases enabled us to better understand the defence mechanisms. Northern blot analysis and quantitative real-time PCR (qPCR) were performed to investigate the expression patterns of some representative genes and characterize the role of some signal molecules (H2O2, ethylene, jasmonic acid and salicylic acid) in the cotton defence response. Our results suggested that a complicated and concerted mechanism involving multiple pathways including salicylic acid, jasmonic acid and ethylene was responsible for the cotton defence response to V. dahliae. The results suggested that ethylene play a putative role in the resistant response as a signal molecule in the cotton defense response.
     The incompatible pathosystem between resistant cotton (Gossypium barbadense cv.'Hai7124') and V. dahliae strain V991was used to study the cotton transcriptome changes after pathogen inoculation by RNA-Seq. Of32(?)774genes detected by mapping the tags to assembly cotton contigs,3442defence-responsive genes were identified. Gene cluster analyses and functional assignments of differentially expressed genes indicated a significant transcriptional complexity. Quantitative real-time PCR (qPCR) was performed on selected genes with different expression levels and functional assignments to demonstrate the utility of RNA-Seq for gene expression profiles during the cotton defence response. Detailed elucidation of responses of leucine-rich repeat receptor-like kinases (LRR-RLKs), phytohormone signalling-related genes, and transcription factors described the interplay of signals that allowed the plant to fine-tune defence responses. On the basis of global gene regulation of phenylpropanoid metabolism-related genes, phenylpropanoid metabolism was deduced to be involved in the cotton defence response. A closer look at the expression of these genes, enzyme activity, and lignin levels revealed differences between'Hai7124' and 'YZ-1'. Both types of plants showed an increased level of expression of lignin synthesis-related genes and increased phenylalanine-ammonia lyase (PAL) and (POD) enzyme activity after inoculation with V. dahliae, but the increase was greater and faster in the'Hai7124'. Histochemical analysis of lignin revealed that'Hai7124'not only retains its vascular structure, but also accumulates high levels of lignin. Furthermore, quantitative analysis demonstrated increased lignification and cross-linking of lignin in stem of'Hai7124'. Overall, a critical role for lignin was believed to contribute to the cotton disease resistance to V. dahliae.
     GbWRKY1is a cloned WRKY transcription factor from Gossypium barbadense cv.'Hai7124', which was firstly identified as defense related gene and showed highest similarity with AtWRKY75in Arabidopsis thaliana which was assigned to class Ⅱc of WRKY family. Overexpression of GbWRKYl in Arabidopsis resulted of attenuated Pi starvation stress response, including reduced accumulation of anthocyanin and more biological yield. Moreover, overexpression plants exhibited relative high level of total P and Pi as well as enhanced accumulation of acid phosphatases ativity. Genes encoding highaffinity Pi transporters (PT1, PT2, and PHT1;8) and phosphatases (PS1, ACP5, and RNS1) were upregulated in overexpression plants compared to WT plants under Pi-sufficient condition. The result demonstrated that GbWRKY1may be act as a positive regulator involved in the global Pi starvation response. Together with the fact that AtWRKY75was only induced upon Pi starvation, the results suggested that the overexpression of GbWRKY1caused plants exhibited a Pi starvation response in the Pi-sufficient condition, including enhanced number of LR and accmulation more Pi, which may attenuate Pi starvation stress response of overexpression plants. To explore whether the alterations of root system architecture and enhanced Pi signaling response in the overexpression plants by modulating the auxin signaling response, the response to exogenous IAA treatment was investigated. Together with the result of internal IAA concentration and gene expression level of TIR1and ARF19, it seemed that the overexpression plants was more sensitivity to exogenous auxin under Pi-sufficient conditions compared with the WT. Changes in the auxin sensitivity of the root seemed to be involved in the developmental response of the Arabidopsis root system to Pi starvation. Overall, the involvement of GbWRKY1in the modification of the root system by changed auxin sensitivity to regulate Pi starvation responses. The expression of GbWRKY1was induced by V. dahliae inoculation in cotton. The putative role of GbWRKY1in the cotton defense response still need further study.
引文
1.陈捷胤.海岛棉LRR-TM类抗病基因GbaVdl和GbaVd2的克隆与功能研究.[博士学位论文].武汉:华中农业大学图书馆,2010
    2.纪好勤,郭小平,潘家驹.棉花黄萎病抗性的生理生脂指标探讨.华北农学报,1995,10(3)73-75
    3.马存.棉花黄萎病和枯萎病的研究.北京:中国农业出版社,2005
    4.任爱霞,胡家恕,祝水金,季道藩.棉花黄萎病抗性与过氧化物酶同工酶分析.棉花学报,2002,14(5):273-276
    5.孙济中,陈布圣.棉作学.北京:中国农业出版,1999
    6.吴家和,张献龙,罗晓丽,聂以春,田颖川,陈正华.转几丁质酶和葡聚糖酶基因棉花的获得及其对黄萎病的抗性.遗传学报,2004,31(2):183-188
    7.徐建疆.浅谈棉花黄萎病的发生特点及防治措施.新疆农业科技,2009,02:53
    8.朱龙付,涂礼莉,张献龙,聂以春,郭小平,夏启中.黄萎病菌诱导的海岛棉抗病反应的SSH文库构建及分析.遗传学报,2005,32(5):528-532
    9. Abel S, Ticconi CA, Delatorre CA. Phosphate sensing in higher plants. Physiol Plant, 2002,115(1):1-8.
    10. Alonso JM, Ecker JR. The ethylene pathway:a paradigm for plant hormone signaling and interaction. Sci STKE,2001,2001(70):RE1.
    11. Alonso JM, Hirayama T, Roman G, Nourizadeh S, Ecker JR. EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science,1999,284(5423): 2148-2152.
    12. Anand A, Zhou T, Trick HN, Gill BS, Bockus WW, Muthukrishnan S. Greenhouse and field testing of transgenic wheat plants stably expressing genes for thaumatin-like protein, chitinase and glucanase against Fusarium graminearum. J Exp Bot,2003, 54(384):1101-1111.
    13. Ansorge WJ. Next-generation DNA sequencing techniques. N Biotechnol,2009, 25(4):195-203.
    14. Audic S, Claverie JM. The significance of digital gene expression profiles. Genome Res,1997,7(10):986-995.
    15. Austin MJ, Muskett P, Kahn K, Feys BJ, Jones JD, Parker JE. Regulatory role of SGT1 in early R gene-mediated plant defenses. Science,2002,295(5562): 2077-2080.
    16. Azaiez A, Boyle B, Levee V, Seguin A. Transcriptome profiling in hybrid poplar following interactions with Melampsora rust fungi. Mol Plant Microbe Interact,2009, 22(2):190-200.
    17. Azevedo C, Sadanandom A, Kitagawa K, Freialdenhoven A, Shirasu K, Schulze-Lefert P. The RAR1 interactor SGT1, an essential component of R gene-triggered disease resistance. Science,2002,295(5562):2073-2076.
    18. Bari R, Jones JD. Role of plant hormones in plant defence responses. Plant Mol Biol, 2009,69(4):473-488.
    19. Barna B, Fodor J, Pogany M, Kiraly Z. Role of reactive oxygen species and antioxidants in plant disease resistance. Pest Manag Sci,2003,59(4):459-464.
    20. Bell AA. Foramtion of gossypol in infected or chemically irritated tissures of Gossypium species. Phytopathol,1967,57:759-764
    21. Berrocal-Lobo M, Molina A. Ethylene response factor 1 mediates Arabidopsis resistance to the soilborne fungus Fusarium oxysporum. Mol Plant Microbe Interact, 2004,17(7):763-770.
    22. Berrocal-Lobo M, Molina A, Solano R. Constitutive expression of ETHYLENE-RESPONSE-FACTOR1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J,2002,29(1):23-32.
    23. Beyer EM Ethylene metabolism during leaf abscission in cotton. Plant Physiol,1979, 64:971-974.
    24. Bhat RG, Subbarao KV. Host Range Specificity in Verlicillium dahliae. Phytopathol, 1999,89(12):1218-1225.
    25. Bhuiyan NH, Selvaraj G, Wei Y, King J. Role of lignification in plant defense. Plant Signal Behav,2009,4(2):158-159.
    26. Bianchini GM, Stipanovic RD, Bell AA. Induction of delta-cadinene synthase and sesquiterpenoid phytoalexins in cotton by Verticillium dahliae. J Agric Food Chem, 1999,47(10):4403-4406.
    27. Billa E, Tollier MT, Monties B. Characterisation of the monomeric composition of in situ wheat straw lignins by alkaline nitrobenzene oxidation:effect of temperature and reaction time. J Sci Food Agric,1996,72:250-256.
    28. Birzele F, Schaub J, Rust W, Clemens C, Baum P, Kaufmann H, Weith A, Schulz TW, Hildebrandt T. Into the unknown:expression profiling without genome sequence information in CHO by next generation sequencing. Nucleic Acids Res,2010,38(12): 3999-4010.
    29. Bisson MM, Bleckmann A, Allekotte S, Groth G. EIN2, the central regulator of ethylene signalling, is localized at the ER membrane where it interacts with the ethylene receptor ETR1. Biochem J,2009,424(1):1-6.
    30. Bisson MM, Groth G. New paradigm in ethylene signaling:EIN2, the central regulator of the signaling pathway, interacts directly with the upstream receptors. Plant Signal Behav,2011,6(1):164-166.
    31. Bleecker AB, Kende H. Ethylene:a gaseous signal molecule in plants. Annu Rev Cell Dev Biol,2000,16:1-18.
    32. Bloom JS, Khan Z, Kruglyak L, Singh M, Caudy AA. Measuring differential gene expression by short read sequencing:quantitative comparison to 2-channel gene expression microarrays. BMC Genomics,2009,10:221-230.
    33. Broekaert WF, Delaure SL, De Bolle MF, Cammue BP. The role of ethylene in host-pathogen interactions. Annu Rev Phytopathol,2006,44:393-416.
    34. Chen XY, Chen Y, Heinstein P, Davisson VJ. Cloning, expression, and characterization of (+)-delta-cadinene synthase:a catalyst for cotton phytoalexin biosynthesis. Arch Biochem Biophys,1995,324(2):255-266.
    35. Chen XY, Wang M, Chen Y, Davisson VJ, Heinstein P. Cloning and heterologous expression of a second (+)-delta-cadinene synthase from Gossypium arboreum. J Nat Prod,1996,59(10):944-951.
    36. Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH. The WRKY6 transcription factor modulates PHOSPHATE1 expression in response to low Pi stress in Arabidopsis. Plant Cell,2009,21(11):3554-3566.
    37. Clough SJ, Bent AF. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J,1998,16(6):735-743.
    38. Conesa A, Gotz S. Blast2GO:A comprehensive suite for functional analysis in plant genomics. Int J Plant Genomics,2008,2008:1-12.
    39. Conrath U, Pieterse CM, Mauch-Mani B. Priming in plant-pathogen interactions. Trends Plant Sci,2002,7(5):210-216.
    40. Creelman RA, Mullet JE. Biosynthesis and Action of Jasmonates in Plants. Annu Rev Plant Physiol Plant Mol Biol,1997,48:355-381.
    41. Cu YX, Bell AA, Joost O, Magill CW. Expression of potential defense response genes in cotton. Physiol Mol Plant Pathol,2000,56:25-31.
    42. Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature,2001,411(6839):826-833.
    43. de Lorenzo L, Merchan F, Laporte P, Thompson R, Clarke J, Sousa C, Crespi M. A novel plant leucine-rich repeat receptor kinase regulates the response of Medicago truncatula roots to salt stress. Plant Cell,2009,21(2):668-680.
    44. Devaiah BN, Karthikeyan AS, Raghothama KG. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in arabidopsis. Plant Physiol,2007,143(4):1789-1801.
    45. Devaiah BN, Raghothama KG. Transcriptional Regulation of Pi Starvation Responses by WRKY75. Plant Signal Behav,2007,2(5):424-425.
    46. Devoto A, Nieto-Rostro M, Xie D, Ellis C, Harmston R, Patrick E, Davis J, Sherratt L, Coleman M, Turner JG. COI1 links jasmonate signalling and fertility to the SCF ubiquitin-ligase complex in Arabidopsis. Plant J,2002,32(4):457-466.
    47. Diatchenko L, Lau YF, Campbell AP, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD. Suppression subtractive hybridization:a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc Natl Acad Sci U S A,1996,93(12):6025-6030.
    48. Dong X. SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol, 1998,1(4):316-323.
    49. Dong X. Genetic dissection of systemic acquired resistance. Curr Opin Plant Biol, 2001,4(4):309-314.
    50. Dowd C, Wilson IW, McFadden H. Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Mol Plant Microbe Interact,2004,17(6):654-667.
    51. Dubery IA, Smit F. Phenylalanine ammonia-lyase from cotton (Gossypium hirsutum) hypocotyls:properties of the enzyme induced by a Verticillium dahliae phytotoxin. Biochim Biophys Acta,1994,1207(1):24-30.
    52. Elfstrand M, Sitbon F, Lapierre C, Bottin A, von Arnold S. Altered lignin structure and resistance to pathogens in spi 2-expressing tobacco plants. Planta,2002,214(5): 708-716.
    53. Encinas-Villarejo S, Maldonado AM, Amil-Ruiz F, de los Santos B, Romero F, Pliego-Alfaro F, Munoz-Blanco J, Caballero JL. Evidence for a positive regulatory role of strawberry (Fragaria ananassa) FaWRKYl and Arabidopsis AtWRKY75 proteins in resistance. J Exp Bot,2009,60(11):3043-3065.
    54. Eudes A, Pollet B, Sibout R, Do CT, Seguin A, Lapierre C, Jouanin L. Evidence for a role of AtCAD 1 in lignification of elongating stems of Arabidopsis thaliana. Planta, 2006,225(1):23-39.
    55. Fan J, Hill L, Crooks C, Doerner P, Lamb C. Abscisic acid has a key role in modulating diverse plant-pathogen interactions. Plant Physiol,2009,150(4): 1750-1761.
    56. Farmer EE, Almeras E, Krishnamurthy V. Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol,2003,6(4):372-378.
    57. Farquharson KL. Phosphate-Deprived Roots Are Hypersensitive to Auxin. Plant Cell, 2008,20(12):3183-3183.
    58. Ferrer JL, Austin MB, Stewart C, Jr., Noel JP. Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem,2008, 46(3):356-370.
    59. Feys BJ, Parker JE. Interplay of signaling pathways in plant disease resistance. Trends Genet,2000,16(10):449-455.
    60. Fradin EF, Abd-El-Haliem A, Masini L, van den Berg GC, Joosten MH, Thomma BP. Interfamily transfer of tomato Vel mediates Verticillium resistance in Arabidopsis. Plant Physiol,2011,156(4):2255-2265.
    61. Fradin EF, Thomma BPHJ. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol Plant Pathol,2006,7(2):71-86.
    62. Fradin EF, Zhang Z, Juarez Ayala JC, Castroverde CD, Nazar RN, Robb J, Liu CM, Thomma BP. Genetic dissection of Verticillium wilt resistance mediated by tomato Vel. Plant Physiol,2009,150(1):320-332.
    63. Franke R, Hemm MR, Denault JW, Ruegger MO, Humphreys JM, Chapple C. Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J,2002,30(1):47-59.
    64. Fukushima K. Regulation of syringyl to guaiacyl ratio in lignin biosynthesis. J Plant Res,2001,114(1116):499-508.
    65. Gao X, Wheeler T, Li Z, Kenerley CM, He P, Shan L. Silencing GhNDRl and GhMKK2 compromises cotton resistance to Verticillium wilt. Plant J,2011,66(2): 293-305.
    66. Gayoso C, Pomar F, Novo-Uzal E, Merino F, Martinez de Ilarduya O. The Ve-mediated resistance response of the tomato to Verticillium dahliae involves H2O2, peroxidase and lignins and drives PAL gene expression. BMC Plant Biol,2010,10(1): 232-239.
    67. Gou XP, He K, Yang H, Yuan T, Lin HH, Clouse SD, Li J. Genome-wide cloning and sequence analysis of leucine-rich repeat receptor-like protein kinase genes in Arabidopsis thaliana. BMC Genomics,2010,11:1-15
    68. Gray WM. Hormonal regulation of plant growth and development. PLoS Biol,2004, 2(9):E311.
    69. Gutterson N, Reuber TL. Regulation of disease resistance pathways by AP2/ERF transcription factors. Curr Opin Plant Biol,2004,7(4):465-471.
    70. Harris JC, Hrmova M, Lopato S, Langridge P. Modulation of plant growth by HD-Zip class Ⅰ and Ⅱ transcription factors in response to environmental stimuli. New Phytol,2011,190(4):823-837.
    71. Hill MK, Lyon KJ, Lyon BR. Identification of disease response genes expressed in Gossypium hirsutum upon infection with the wilt pathogen Verticillium dahliae. Plant Mol Biol,1999,40(2):289-296.
    72. Hua J, Meyerowitz EM. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell,1998,94(2):261-271.
    73. Iwai T, Miyasaka A, Seo S, Ohashi Y. Contribution of ethylene biosynthesis for resistance to blast fungus infection in young rice plants. Plant Physiol,2006,142(3): 1202-1215.
    74. Jain A, Poling MD, Karthikeyan AS, Blakeslee JJ, Peer WA, Titapiwatanakun B, Murphy AS, Raghothama KG. Differential effects of sucrose and auxin on localized phosphate deficiency-induced modulation of different traits of root system architecture in Arabidopsis. Plant Physiol,2007,144(1):232-247.
    75. James JT, Dubery I A. Inhibition of polygalacturonase from Verticillium dahliae by a polygalacturonase inhibiting protein from cotton. Phytochem,2001,57(2):149-156.
    76. Jensen MK, Hagedorn PH, de Torres-Zabala M, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF. Transcriptional regulation by an NAC (NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J,2008,56(6):867-880.
    77. Jones DA, Takemoto D. Plant innate immunity-direct and indirect recognition of general and specific pathogen-associated molecules. Curr Opin Immunol,2004,16(1): 48-62.
    78. Jones JD, Dangl JL. The plant immune system. Nature,2006,444(7117):323-329.
    79. Joost O, Bianchini G, Bell AA, Benedict CR, Magill CW. Differential induction of 3-hydroxy-3-methylglutaryl CoA reductase in two cotton species following inoculation with Verticillium. Mol Plant Microbe Interact,1995,8(6):880-885.
    80. Kandan A, Commare RR, Nandakumar R, Ramiah M, Raguchander T, Samiyappan R. Induction of phenylpropanoid metabolism by Pseudomonas fluorescens against tomato spotted wilt virus in tomato. Folia Microbiol (Praha),2002,47(2):121-129.
    81. Karban R, Adamchak R, Schnathorst WC. Induced resistance and interspecific competition between spider mites and a vascular wilt fungus. Science,1987, 235(4789):678-680.
    82. Kawamura Y, Takenaka S, Hase S, Kubota M, Ichinose Y, Kanayama Y, Nakaho K, Klessig DF, Takahashi H. Enhanced defense responses in Arabidopsis induced by the cell wall protein fractions from Pythium oligandrum require SGT1, RAR1, NPR1 and JAR1. Plant Cell Physiol,2009,50(5):924-934.
    83. Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prufer D. Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A,2001, 98(11):6511-6515.
    84. Kazan K, Manners JM. Linking development to defense:auxin in plant-pathogen interactions. Trends Plant Sci,2009,14(7):373-382.
    85. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the raf family of protein kinases. Cell,1993,72(3):427-441.
    86. Koornneef A, Pieterse CM. Cross talk in defense signaling. Plant Physiol,2008, 146(3):839-844.
    87. Kunkel BN, Brooks DM. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol,2002,5(4):325-331.
    88. Lamb C, Dixon RA. The Oxidative Burst in Plant Disease Resistance. Annu Rev Plant Physiol Plant Mol Biol,1997,48:251-275.
    89. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol,2009,10(3): R25.
    90. Lapierre C, Pollet B, Rolando C. New insights into the molecular architecture of hardwood lignins by chemical degradative methods. Res Chem Intermed,1995,21: 397-412.
    91. Larsen PB, Chang C. The Arabidopsis eerl mutant has enhanced ethylene responses in the hypocotyl and stem. Plant Physiol,2001,125(2):1061-1073.
    92. Lasserre E, Godard F, Bouquin T, Hernandez JA, Pech JC, Roby D, Balague C. Differential activation of two ACC oxidase gene promoters from melon during plant development and in response to pathogen attack. Mol Gen Genet,1997,256(3): 211-222.
    93. Lawton KA, Potter SL, Uknes S, Ryals J. Acquired Resistance Signal Transduction in Arabidopsis Is Ethylene Independent. Plant Cell,1994,6(5):581-588.
    94. Levine A, Tenhaken R, Dixon R, Lamb C. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell,1994,79(4):583-593.
    95. Lister R, Gregory BD, Ecker JR. Next is now:new technologies for sequencing of genomes, transcriptomes, and beyond. Curr Opin Plant Biol,2009,12(2):107-118.
    96. Liu CJ, Heinstein P, Chen XY. Expression pattern of genes encoding farnesyl diphosphate synthase and sesquiterpene cyclase in cotton suspension-cultured cells treated with fungal elicitors. Mol Plant Microbe Interact,1999,12(12):1095-1104.
    97. Liu H, Zhang H, Yang Y, Li G, Wang X, Basnayake BM, Li D, Song F. Functional analysis reveals pleiotropic effects of rice RING-H2 finger protein gene OsBIRFl on regulation of growth and defense responses against abiotic and biotic stresses. Plant Mol Biol,2008,68(12):17-30.
    98. Liu L, Du H, Tang XF, Wu YM, Huang YB, Tang YX. The roles of MYB transcription factors on plant defense responses and its molecular mechanism. Yi Chuan,2008,30(10):1265-1271.
    99. Lloyd AJ, William Allwood J, Winder CL, Dunn WB, Heald JK, Cristescu SM, Sivakumaran A, Harren FJ, Mulema J, Denby K, Goodacre R, Smith AR, Mur LA. Metabolomic approaches reveal that cell wall modifications play a major role in ethylene-mediated resistance against Botrytis cinerea. Plant J,2011,67:852-868
    100.Lopez-Bucio J, Cruz-Ramirez A, Herrera-Estrella L. The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol,2003,6(3):280-287.
    101.Lorenzo O, Piqueras R, Sanchez-Serrano JJ, Solano R. ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell,2003,15(1):165-178.
    102.Lorenzo O, Solano R. Molecular players regulating the jasmonate signalling network. Curr Opin Plant Biol,2005,8(5):532-540.
    103.Lund ST, Stall RE, Klee HJ. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell,1998,10(3):371-382.
    104.Luo P, Wang YH, Wang GD, Essenberg M, Chen XY. Molecular cloning and functional identification of (+)-delta-cadinene-8-hydroxylase, a cytochrome P450 mono-oxygenase (CYP706B1) of cotton sesquiterpene biosynthesis. Plant J,2001, 28(1):95-104.
    105.Mace ME, Stipanovic RD, Bell AA. Toxicity and role of terpenoid phytoalexins in verticillium wilt resistance in cotton. Physiol Plant Pathol,1985,26:209-218.
    106.Mace ME, Stipanovic RD, Bell AA. Histochemical localization of desoxyhemigossypol, a phytoalexin in Verticillium dahliae-infected cotton stems. New Phytol,1989,112(2):229-232.
    107.Maher EA, Bate NJ, Ni W, Elkind Y, Dixon RA, Lamb CJ. Increased disease susceptibility of transgenic tobacco plants with suppressed levels of preformed phenylpropanoid products. Proc Natl Acad Sci U S A,1994,91(16):7802-7806.
    108.Makkar HP, Siddhuraju P, Becker K. Plant secondary metabolites. Methods Mol Biol, 2007,393:1-122.
    109.Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq:an assessment of technical reproducibility and comparison with gene expression arrays. Genome Res, 2008,18(9):1509-1517.
    110.Martin C, Paz-Ares J. MYB transcription factors in plants. Trends Genet,1997,13(2): 67-73.
    111.Mcfadden HG, Chapple R, Defeyter R, Dennis E. Expression of pathogenesis-related genes in cotton stems in response to infection by Verticillium dahliae. Physiol Mol Plant Pathol,2001,58(3):119-131.
    112.Medzhitov R, Jane way CA, Jr. Innate immunity:impact on the adaptive immune response. Curr Opin Immunol,1997,9(1):4-9.
    113.Menden B, Kohlhoff M, Moerschbacher BM. Wheat cells accumulate a syringyl-rich lignin during the hypersensitive resistance response. Phytochem,2007,68(4): 513-520.
    114.Metlen KL, Aschehoug ET, Callaway RM. Plant behavioural ecology:dynamic plasticity in secondary metabolites. Plant Cell Environ,2009,32(6):641-653.
    115.Miura K, Jin JB, Hasegawa PM. Sumoylation, a post-translational regulatory process in plants. Curr Opin Plant Biol,2007,10(5):495-502.
    116.Miura K, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. Plant Physiol,2011,155(2): 1000-1012.
    117.Miura K, Rus A, Sharkhuu A, Yokoi S, Karthikeyan AS, Raghothama KG, Baek D, Koo YD, Jin JB, Bressan RA, Yun DJ, Hasegawa PM. The Arabidopsis SUMO E3 ligase SIZ1 controls phosphate deficiency responses. Proc Natl Acad Sci U S A,2005, 102(21):7760-7765.
    118.Morrissy AS, Morin RD, Delaney A, Zeng T, McDonald H, Jones S, Zhao Y, Hirst M, Marra MA. Next-generation tag sequencing for cancer gene expression profiling. Genome Res,2009,19(10):1825-1835.
    119.Munne-Bosch S, Penuelas J. Photo-and antioxidative protection, and a role for salicylic acid during drought and recovery in field-grown Phillyrea angustifolia plants. Planta,2003,217(5):758-766.
    120.Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science, 2008,320(5881):1344-1349.
    121.Nandi A, Kachroo P, Fukushige H, Hildebrand DF, Klessig DF, Shah J. Ethylene and jasmonic acid signaling affect the NPR1-independent expression of defense genes without impacting resistance to Pseudomonas syringae and Peronospora parasitica in the Arabidopsis ssil mutant. Mol Plant Microbe Interact,2003,16(7):588-599.
    122.Naoumkina MA, Zhao Q, Gallego-Giraldo L, Dai X, Zhao PX, Dixon RA. Genome-wide analysis of phenylpropanoid defence pathways. Mol Plant Pathol, 2010,11(6):829-846.
    123.Nishimura M, Somerville S. Plant biology-Resisting attack. Science,2002, 295(5562):2032-2033.
    124.Otto TD, Wilinski D, Assefa S, Keane TM, Sarry LR, Bohme U, Lemieux J, Barrell B, Pain A, Berriman M, Newbold C, Llinas M. New insights into the blood-stage transcriptome of Plasmodium falciparum using RNA-Seq. Mol Microbiol,2010, 76(1):12-24.
    125.Pandey SP, Somssich IE. The role of WRKY transcription factors in plant immunity. Plant Physiol,2009,150(4):1648-1655.
    126.Panstruga R, Parker JE, Schulze-Lefert P. SnapShot:Plant Immune Response Pathways. Cell,2009,136(5):978-U976.
    127.Pantelides IS, Tjamos SE, Paplomatas EJ. Ethylene perception via ETR1 is required in Arabidopsis infection by Verticillium dahliae. Mol Plant Pathol,2010,11(2): 191-202.
    128.Penninckx IA, Thomma BP, Buchala A, Metraux JP, Broekaert WF. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell,1998,10(12):2103-2113.
    129.Peret B, Clement M, Nussaume L, Desnos T. Root developmental adaptation to phosphate starvation:better safe than sorry. Trends Plant Sci,2011,16(8):442-450.
    130.Perez-Torres CA, Lopez-Bucio J, Cruz-Ramirez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell,2008,20(12):3258-3272.
    131.Pieterse CM, Van Loon LC. NPR1:the spider in the web of induced resistance signaling pathways. Curr Opin Plant Biol,2004,7(4):456-464.
    132.Pomar F, Novo M, Bernal MA, Merino F, Barcelo AR. Changes in stem lignins (monomer composition and crosslinking) and peroxidase are related with the maintenance of leaf photosynthetic integrity during Verticillium wilt in Capsicum annuum. New Phytol,2004,163(1):111-123.
    133.Pre M, Atallah M, Champion A, De Vos M, Pieterse CM, Memelink J. The AP2/ERF domain transcription factor ORA59 integrates jasmonic acid and ethylene signals in plant defense. Plant Physiol,2008,147(3):1347-1357.
    134.Raghothama KG. Phosphate Acquisition. Annu Rev Plant Physiol Plant Mol Biol, 1999,50:665-693.
    135.Remy L, Wilson LA, Michnick SW. Erythropoietin Receptor Activation by a Ligand-Induced Conformation Change. Sci,283:990-993.
    136.Robatzek S, Somssich IE. A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6, is associated with both senescence-and defence-related processes. Plant J,2001,28(2):123-133.
    137.Rogers S, Wells R, Rechsteiner M. Amino acid sequences common to rapidly degraded proteins:the PEST hypothesis. Sci,1986,234:364-368.
    138.Rubin BA, Pereviazkina LM. Importance of tannic substances in the resistance phenomena in cotton to wilt. Dokl Akad Nauk SSSR,1951,79(2):303-306.
    139.Rushton PJ, Somssich IE, Ringler P, Shen QJ. WRKY transcription factors. Trends Plant Sci,2010,15(5):247-258.
    140.Shaw JJ, Dane F, Geiger D, Kloepper JW. Use of bioluminescence for detection of genetically engineered microorganisms released into the environment. Appl Environ Microbiol,1992,58(1):267-273.
    141.Singh K, Foley RC, Onate-Sanchez L. Transcription factors in plant defense and stress responses. Curr Opin Plant Biol,2002,5(5):430-436.
    142.Sirpio S, Khrouchtchova A, Allahverdiyeva Y, Hansson M, Fristedt R, Vener AV, Scheller HV, Jensen PE, Haldrup A, Aro EM. AtCYP38 ensures early biogenesis, correct assembly and sustenance of photosystem Ⅱ. Plant J,2008,55(4):639-651.
    143.Smit F, Dubery LA. Cell wall reinforcement in cotton hypocotyls in response to a Verticillium dahliae elicitor Phytochem,1997,44(5):811-815.
    144.Staswick PE, Tiryaki I, Rowe ML. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation. Plant Cell,2002,14(6):1405-1415.
    145.Stearns JC, Glick BR. Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv,2003,21(3):193-210.
    146.Stepanova AN, Alonso JM. Arabidopsis ethylene signaling pathway. Sci STKE,2005, 22(276):cm4
    147.Sturn A, Quackenbush J, Trajanoski Z. Genesis:cluster analysis of microarray data. Bioinformatics,2002,18(1):207-208.
    148.Suza WP, Staswick PE. The role of JAR1 in Jasmonoyl-L:-isoleucine production during Arabidopsis wound response. Planta,2008,227(6):1221-1232.
    149.Takahashi H, Kanayama Y, Zheng MS, Kusano T, Hase S, Ikegami M, Shah J. Antagonistic interactions between the SA and JA signaling pathways in Arabidopsis modulate expression of defense genes and gene-for-gene resistance to cucumber mosaic virus. Plant Cell Physiol,2004,45(6):803-809.
    150.Thatcher LF, Manners JM, Kazan K. Fusarium oxysporum hijacks COI1-mediated jasmonate signaling to promote disease development in Arabidopsis. Plant J,2009, 58(6):927-939.
    151.Theodorou ME, Plaxton WC. Purification and characterization of pyrophosphate-dependent phosphofructokinase from phosphate-starved Brassica nigra suspension cells. Plant Physiol,1996,112(1):343-351.
    152.Thomma BP, Eggermont K, Tierens KF, Broekaert WF. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol,1999,121(4):1093-1102.
    153.Tobias DJ, Manoharan M, Pritsch C, Dahleen LS. Co-bombardment, integration and expression of rice chitinase and thaumatin-like protein genes in barley (Hordeum vulgare cv. Conlon). Plant Cell Rep,2007,26(5):631-639.
    154.Ton J, Flors V, Mauch-Mani B. The multifaceted role of ABA in disease resistance. Trends Plant Sci,2009,14(6):310-317.
    155.Townsend BJ, Poole A, Blake CJ, Llewellyn DJ. Antisense suppression of a (+)-delta-cadinene synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression. Plant Physiol,2005,138(1):516-528.
    156.Uppalapati SR, Marek SM, Lee HK, Nakashima J, Tang Y, Sledge MK, Dixon RA, Mysore KS. Global gene expression profiling during Medicago truncatula-Phymatotrichopsis omnivora interaction reveals a role for jasmonic acid, ethylene, and the flavonoid pathway in disease development. Mol Plant Microbe Interact,2009,22(1):7-17.
    157.van der Molen GE, Labavitch JM,Strand LL, DeVay JE. Pathogen-induced vascular gels: ethylene as a host intermediate.Physiol Plant,1983,59:573-580
    158.van Loon LC, Geraats BP, Linthorst HJ. Ethylene as a modulator of disease resistance in plants. Trends Plant Sci,2006,11(4):184-191.
    159.Verhage A, van Wees SCM, Pieterse CMJ. Plant Immunity:It's the Hormones Talking, But What Do They Say? Plant Physiol,2010,154(2):536-540.
    160. Veronese P, Narasimhan ML, Stevenson RA, Zhu JK, Weller SC, Subbarao KV, Bressan RA. Identification of a locus controlling verticillium disease symptom response in Arabidopsis thaliana. Plant J,2003,35(5):574-587.
    161. Wang FX, Ma YP, Yang CL, Zhao PM, Yao Y, Jian GL, Luo YM, Xia GX. Proteomic analysis of the sea-island cotton roots infected by wilt pathogen Verticillium dahliae. Proteomics,2011,11(22):4296-4309.
    162.Wilhelm BT, Landry JR. RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods,2009,48(3):249-257
    163.Wilhelm BT, Marguerat S, Watt S, Schubert F, Wood V, Goodhead I, Penkett CJ, Rogers J, Bahler J. Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature,2008,453(7199):1239-1243.
    164.Williamson LC, Ribrioux SP, Fitter AH, Leyser HM. Phosphate availability regulates root system architecture in Arabidopsis. Plant Physiol,2001,126(2):875-882.
    165.Xie DX, Feys BF, James S, Nieto-Rostro M, Turner JG COI1:an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science,1998,280(5366): 1091-1094.
    166.Xu YH, Wang JW, Wang S, Wang JY, Chen XY. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiol,2004,135(1):507-515.
    167.Zabala G, Zou J, Tuteja J, Gonzalez DO, Clough SJ, Vodkin LO. Transcriptome changes in the phenylpropanoid pathway of Glycine max in response to Pseudomonas syringae infection. BMC Plant Biol,2006,6(26):1-18.
    168.Zarei A, Korbes AP, Younessi P, Montiel G, Champion A, Memelink J. Two GCC boxes and AP2/ERF-domain transcription factor ORA59 in jasmonate/ethylene-mediated activation of the PDF1.2 promoter in Arabidopsis. Plant Mol Biol,2011,75(4-5): 321-331.
    169.Zareie R, Melanson DL, Murphy PJ. Isolation of fungal cell wall degrading proteins from barley (Hordeum vulgare L.) leaves infected with Rhynchosporium secalis. Mol Plant Microbe Interact,2002,15(10):1031-1039.
    170.Zhou JM, Trifa Y, Silva H, Pontier D, Lam E, Shah J, Klessig DF. NPR1 differentially interacts with members of the TGA/OBF family of transcription factors that bind an element of the PR-1 gene required for induction by salicylic acid. Mol Plant Microbe Interact,2000,13(2):191-202.
    171.Zuo K, Wang J, Wu W, Chai Y, Sun X, Tang K. Identification and characterization of differentially expressed ESTs of Gossypium barbadense infected by Verticillium dahliae with suppression subtractive hybridization. Mol Biol,2005,39(2):214-223.
    172.Zuo KJ, Qin J, Zhao JY, Ling H, Zhang LD, Cao YF, Tang KX. Over-expression GbERF2 transcription factor in tobacco enhances brown spots disease resistance by activating expression of downstream genes. Gene,2007,391(1-2):80-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700