大丽轮枝菌拮抗细菌DM-54菌株的分离及抗菌蛋白纯化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花黄萎病是由大丽轮枝菌(Verticillium dahliae)侵染引起的真菌性维管束系统病害,是棉花最严重的病害之一,给我国棉花生产造成严重损失,被称为“棉花的癌症”目前以菌治菌的生物防治被认为是一种最具有发展潜力的有效防治方法。
     本研究从棉花根际土壤中分离到的891株细菌菌株中筛选出对大丽轮枝菌的生长有抑制作用的89株,其中10株拮抗菌株的无菌体发酵液表现拮抗活性,说明10株拮抗菌株主要是通过产生抗生类物质来抑制大丽轮枝菌的生长,其中DM-54菌株的活性最高。经进一步分析发现DM-54菌株所分泌的抗生类物质属于蛋白质类。DM-54菌株发酵液分别对12种病原菌进行抑菌实验,结果表明对其中大丽轮枝(Verticillium dahliae Kleb),胶胞炭疽菌(Colletotrichum gloeosporioides Penz),串珠镰孢菌(Fusarium moniliforme Sheld),剑兰炭疽(Glomerella cingulata)等8种病原菌有较高的拮抗活性,属较广抗菌谱的细菌,生防应用前景广阔。
     通过结合形态特征、生理生化反应及16S rDNA基因序列分析确定DM-54菌株为解淀粉芽孢杆菌(Bacillus amyloliquefaciens)。
     对解淀粉芽孢杆菌B. amyloliquefaciens DM-54菌株产抗菌物质的液态发酵条件进行优化,确定DM-54菌株发酵产抗菌蛋白最适发酵培养基为:糊精5%,大豆蛋白胨3%,MgSO4 0.02%, CaCl2 0.01%,初始pH 7.0;250 mL三角瓶装液量30 mL,种龄16h,接种量10%,摇床转速200r/min,发酵温度32℃,发酵时间48 h。优化前后蛋白抑菌活性差别明显,优化之前抑菌圈直径16.3 mm,优化后22.8 mm。
     芽孢是微生物菌剂的最佳制剂形式,对恶劣的环境因素的具有抗性,可延长制剂保存期,稳定活性。对B. amyloliquefaciens DM-54菌株产芽孢条件进一步进行摸索,产芽孢最适发酵培养基为:乳糖0.5%、黄豆饼粉2.0%、MnSO4·H2O0.3%、培养液初始pH值为7.5;种龄18 h、装液量50 mL/250 mL、接种量10%、发酵时间36 h、温度为30℃、转速为220r/min。在此优化条件下,DM-54菌株发酵液中的菌体芽孢形成率大大提高,最终生物量达到2×109个/mL,芽孢形成率达到98.3%。
     通过盆栽实验,考察棉花黄萎病拮抗细菌DM-54菌株在土壤中的定殖情况及在棉花根内的定殖情况。本实验分别对灭菌土和非灭菌土这两种土样进行拮抗菌的浸种、全部混土和部分混土三种不同处理进行盆栽实验。结果表明,30d后拮抗细菌DM-54菌株能够在灭菌土和非灭菌中定殖,定殖数量达106cfu/g土左右,经过30 d后并保持较高的抑菌活性,并且菌株在灭菌土中的定殖数量高于非灭菌土中的数量。施用方法中以其中全部混土情况下定殖能力最强。通过对棉苗根内细菌的回收,证实拮抗细菌DM-54能在棉花根内定殖,定殖数量达103cfu/g左右。
     B. amyloliquefaciens DM-54菌株胞外分泌蛋白溶液经DEAE Sepharose Fast Flow阴离子交换层析后分离纯化到分子质量约为47 KDa的抗菌蛋白。DM-54抗菌蛋白最适作用温度为28℃,蛋白活性随着温度增加而下降。最适pH值为8.0。Cu2+则使蛋白完全失活,Mn2+对蛋白有明显的激活作用。
Cotton Verticillium wilt is one of the most dangerous fascicular disease caused by Verticillium dahliae Kleb. V. dahliae caused serious losses to cotton production in China, known as the "cancer of cotton". Biological control which people pay more attention now is a highly effective measure for management of cotton Verticillium wilt.
     Eight hundred ninety one strains having antagonistic activities against V. dahliae Kleb were isolated and screened from the soil of cotton field from several different regions.89 strains had antagonistic activity.10 strains had antagonistic activity after secondary screening. A strain named DM-54 strain with a rather higher antagonistic activity was obtained. The experiment result showed that the antifungal substance of DM-54 is protein. The antifungal protein showed antibiosis activity to 9 pathogenic fungis, such as V. dahliae, Colletotrichum gloeosporioides Penz, Ceratosphaeria phyllostachydis, Colletotrichum lagenarium, Fusarium moniliforme Sheld and so on.
     Thus the morphology characteristics, physiological and biochemical properties and 16S rDNA sequence of this strain were further studied. Through 16S rDNA sequence comparison analysis as well as the physiological and biochemical properties analysis referring to Bergey's Manual of Determinative Bacteriology and Manual of systematic and Determinative Bacteriology, the DM-54 strain was finally identified as a kind of Bacillus amyloliquefaciens.
     The further studies on the antifungal protein-producing conditions of the strain was carried out. Through single factor experiment and orthogonal experiment, the optimal shaking flask fermentation conditions were determined as follow:media composed of 5% dextrin,3% soy peptone,0.02% MgSO4,0.3% CaCl2, initial pH 7.0 and 10% inoculum volume, media volume 30/250(mL/mL), fermentation temperature 32℃, rotating speed 200r/min, fermentation time 48h. A distinguished elevation of the antagonistic activity was observed with about 39.9%. This essay paves a bright way for the large scale production of the antagonistic protein.
     Spore is the best preparation form of microbial agents. Strain DM-54(Bacillus amyloliquefaciens) which was isolated and screened by our lab had better antagonistic activity against V. dahliae. In order to improve the formation rate and spore quantity of antagonistic bacterium strain DM-54. We investigated the main factors influencing sporulation using shake-flask fermentation method. Through single factor experiment and orthogonal experiment, the optimal shaking flask fermentation conditions were determined as follow: media composed of 0.5% lactose,2% soybean meal,0.3% MnSO_5·H_2O, initial pH 7.5, incubation time 18 h and bottle filling capacity 50 mL/250mL,10% inoculum volume, fermentation time 36h, fermentation temperature 30℃, rotating speed 220r/min. Under this optimum condition, the spore formation rate achieved 98.3%. Biomass achieves 2×109 spore /mL.
     Colonization of antagonistic bacteria DM-54 in root soil of cotton was studied through pot experiment of sterilized and non-sterilized soil, part and all mixed soil three kind of different methods. The results showed that antagonistic bacterium DM-54 could colonize in the sterilized and non-sterilized under laboratory conditions,the population in the sterilized and non-sterilized soil was 106cfu/g,and still kept the high bacteriostatic activity. The numbers in the non-sterilized soil were less than those in the sterilized soil. The colonization activity of all mixed soil is the highest. The results showed that antagonistic bacterium DM-54 could colonize in root of cotton on 30th day after treatment.
     An antagonistic protein was purified from the fermented broth of strain DM-54 by ammonium sulphate fractional precipitation, exchange chromatography on DEAE-Sepharose Fast Flow and preparative PAGE. The protein was a single chain polypeptide with a predicted molecular weight of 47 kDa in SDS-PAGE. We have done a preliminary research of the antifungal protein nature. The results showed that the optimum temperature of the antifungal protein was 28℃and the activity of antifungal protein increased with the temperature dropped. The optimum pH was 5.0, and Cu2+ was completely inactivating the antifungal protein, Mn2+ could apparently activate the antifungal protein.
引文
[1]石磊岩,冯洁,王莉梅,等.北方棉区棉花黄萎病菌生理分化类型研究[J].棉花学报,1997,9(5):273-280.
    [2]杜威世,杜雄明,马峙英.棉花黄萎病抗性基因SSR标记研究[J].西北农林科技大学学报(自然科学版),2004,32(3):20-24.
    [3]陈旭升,陈永萱,黄骏麒.棉花黄萎病菌致病性生理生化研究进展[J].棉花学报,2001,13(3):183-187.
    [4]GABRIEL E B, Nicolle R, Anette S, et al. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different Verticillium host plants[J].Appl Environ Microbiol, 2002,68(7):3328-3338.
    [5]张进霞,袁洪水,王世英,等.几种氨基酸铜对大丽轮枝菌产生毒素蛋白的影响[J].棉花学报,2006,18(2):79-82.
    [6]张进霞,袁洪水,王世英,等.几种氨基酸铜对大丽轮枝菌微菌核形成的抑制作用[J].棉花学报,2006,18(1):58-59.
    [7]LAURA O, Daniel D, Robert N G M. Variability in ribosomal DNA genic and spacer regions in Verticillium dahliae isolates from different hosts[J].Fitopatol bras,2004,29(4):441-446.
    [8]沈其益.棉花病害-基础研究与防治[M].北京:科学出版社,1992:139-141.
    [9]石磊岩.我国棉花黄萎病研究进展[J].棉花学报,1995,7(4):243-245.
    [10]邓先明,刘光珍.棉花黄萎病国内外研究进展与述评[J].植物医生,1994,11(1):4-7.
    [11]石磊岩,简桂良,孙文姬,等.我国棉花黄萎病研究现状与方向[J].植物保护学报,1998,25(2):103-107.
    [12]陈旭生,陈永萱.棉花黄萎病菌鉴定技术进展[J].棉花学报,1997,9(2):64-67.
    [13]马存,简桂良,孙文姬.我国棉花抗黄萎病育种现状、问题及对策[J].中国农业科学,1997,30(2):58-64.
    [14]朱乾浩.国外棉花病害防治研究进展[J].江西棉花,1994,3:19-22.
    [15]张洪涛,于频频,艾山江·阿布都拉,等.棉花黄萎病高效拮抗菌XJUL-6的筛选鉴定及其特性研究[J].微生物学报,2007,47(6):1084-1087
    [16]郑敬业.我国棉花黄萎病研究文献计量分析[J].农业图书情报期刊,2008,20(6):47-54.
    [17]杨华,蔡立旺,潘群斌,等.棉花黄萎病研究进展浅述[J].江西棉花,2006,28(6):3-6.
    [18]陈旭升,陈永萱,黄骏麒.棉花黄萎病菌鉴定技术进展[J].棉花学报,1997,9(2):64-67.
    [19]马存,简桂良,孙文姬,等.我国棉花黄萎病育种现状、问题及对策[C].全国棉花枯、黄萎病 学术研讨会论文汇编,北京,1996,12:77-78.
    [20]王省芬,马峙英.一种新的棉花黄萎病抗性鉴定方法[J].棉花学报,2002,14(4):231-233.
    [21]喻章,任国兰.菌物学基础[M].北京:气象出版社.1999,45.
    [22]付卫国,张永丹.棉花枯、黄萎病的发生与防治[J].农药与植保,2006,3:30.
    [23]周艳芬,杜红方,袁洪水,等.棉花黄萎病拮抗蛋白的分离与纯化[J].棉花学报,2007,19(2):98-101.
    [24]WOOD R K S.Verticillium wilt of tomatoes the role of pectic and cellulolytic enzymes[J].Ann. Appl. Biol,1961,49:120-139.
    [25]LEAL J A & Villanueva J R. Lack of pectic enzyme production by non-pathogenic species of Verticillium[J].Nature,1962,195:1328-1329.
    [26]MUSSELL H W. Endopolygalacturonase:Evidence for involvement in Verticillium wilt of cotton[J]. Phytopathology,1973,63:62-71.
    [27]COOPER R M & Wood R K S. Cell wall degrading enzymes of vascular wilt fungi.Ⅲ, possible involvement of endo-pectinlyase in Verticillium wilt of tomato[J].Physiol. Plant Pathol.,1980, 16:285-300.
    [28]KEEN N T. Endopolygalacturonase:Evidence against involvement in Verticillium wilt of cotton[J]. Phytopathology,1971,61:198-203.
    [29]DURRANDS P K and Cooper RM. The role of pectinases in vascularwilt disease as determined by definedmutants of Verticillium albo-atrum[J]. Physiol. Mol. Plant Pathol.,1988,32:363-371.
    [30]华南农学院.植物病理学[M].农业出版社,1980.217-218.
    [31]沈其益.棉花病害基础研究与防治[M].北京:科学出版社,1992,128-153.
    [32]殷剑美,宋振云,狄佳春,等.棉花黄萎病菌致萎毒素的研究进展[J].江西农业学报,2007,19(7):38-41.
    [33]聂鸿飞.棉花黄萎病、枯萎病的防治[J].山西农业,2008,10:44.
    [34]张桂寅,徐领会,马峙英,等.棉花抗黄萎病种质资源筛选[J].中国棉花,1999,26(8):8-11.
    [35]鹿秀云,马平,李社增,等.防治棉花黄萎病的生防细菌NCD-2的田间效果评价及其鉴定[J].植物病理学报,2005,35(5):451-455.
    [36]马社增,马平,刘杏忠,等.利用拈扰细菌防治棉花黄萎病[J].华中农业大学报,2001,20(5):422-425.
    [37]厉云,张天宇,李雪玲.利用拮抗细菌防治棉花黄萎病[J].棉花学报,2003,15(1):26-28.
    [38]梁启美,齐东梅,贾洁,等.棉花黄、枯萎病拮抗菌的筛选及抗菌蛋白B1102a的初步测定[J].植物保护,2005,8(5):31-35.
    [39]John Whipps M. Microbial interaction sandbiocontol in the rhizosphere. Journal of Experimental Botany[J].2003,56:487-451.
    [40]齐东梅,梁启美,惠明,等.棉花枯萎、黄萎病拮抗芽孢杆菌的抗菌蛋白特性[J].微生物学通报, 2005,32(4):42-46.
    [41]乔勇升,林玲,张爱香,等. 茄子内生细菌的分离及其对茄子黄萎病菌的室内拮抗活性测定[J].江苏农业科学,2007,6:53-55.
    [42]王琦,鲁素芸,梅汝鸿.棉花维管组织内生细菌分析之一-不同抗性品种含菌动态与土质和生育期的关系[J].中国微生态学杂志,1997,9(1):48-50.
    [43]夏正俊,肖庆璞,顾本康,等.西瓜与棉花枯萎病菌交互致病力的研究[J].中国西瓜甜瓜,1997(2):17-18.
    [44]余建,张志元,高必达.细菌在植物病害生物防治中的应用[J].江西农业学报,2007,19(8):53-55.
    [45]简桂良,邹亚飞,马存.棉花黄萎病连年流行的原因及对策[J].中国棉花,2003,30(3):13-14.
    [46]陈捷胤,戴小枫.棉花对黄萎病的抗病机制研究进展[J].分子植物育种,2005,3(3):427-435.
    [47]张铎,解莉,张丽萍,等.棉花黄萎病生物防治研究[J].安徽农业科学,2007,35(11):3302-3303.
    [48]陈海英,廖富蘋,林健荣,等.拮抗细菌在植物病害防治中的应用及展望[J].安徽农业科学,2008,36(20):8690-8691.
    [49]程永强,张海涛,石波,等.功能性食品以及其中的功能性成分的最新发现[J].食品科学,2004,25(S):197-199.
    [50]尤新.天然提取物和功能性食品添加剂[J].食品科学,2004,25(3):216-218.
    [51]齐东梅,梁启美,惠明,等.棉花枯萎、黄萎病拮抗芽孢杆菌的抗菌蛋白特性[J].微生物学通报,2005,32(4):42-46.
    [52]陈莉,缪卫国,刘海洋,等.短短芽孢杆菌A57对棉花主要病原真菌的拮抗机理[J].西北农业学报,2008,17(4):149-155.
    [53]中华人民共和国统计局.中国统计年鉴[M].北京:中国统计出版社,2005.
    [54]青海省地方志编纂委员会.青海省志(农业志)[M].西宁:青海人民出版社,1993:141-145,254-255.
    [55]孔建,王文夕,赵白鸽,等.枯草芽孢杆菌B-903菌株的研究对植物病原菌的抑制作用和防治实验[J].中国生物防治,1999,15(4):157-161.
    [56]范青,田世平,姜爱丽,等.采摘后果实病害生物防治拮抗菌的筛选和分离[J].中国环境科学,2001,21(4):313-316.
    [57]赵国其,林福呈,陈卫良,等.绿色木霉对西瓜枯萎病苗期的控制作用[J].浙江农业学报,1998,10(4):206-209.
    [58]童蕴慧,郭桂萍,徐敬友,等.拮抗细菌诱导番茄植株抗灰霉病机理研究[J].植物病理学报,2004,34(6):507-511.
    [59]傅学池,严志农,徐伟敏,等.苹果斑点落叶病和果实轮纹病生物防治研究[J].中国果树,1997 (3):7-10.
    [60]Kloepper J W, Leong J, Teintze M, et al. Pseudomonas siderophores:Amechanism explaining disease suppressive soils[J].Curr Microbiol,1980,4(5):317-320.
    [61]杨秀荣,刘水芳,孙淑琴,等.生防细菌防治土传病害的研究进展[J].天津农业科学,2008,14(4):38-42.
    [62]王光华,Jos M. Raaijmakers.生防细菌产生的拮抗物质及其在生物防治中的作用[J].应用生态学报,2004,15(6):1100-1104.
    [63]Nishida M, Matsubara T,Watanabe N. Pyrrolnitrin,a new antifungal antibiotic:Microbiological and toxicological observations[J].J A ntibiotics,1965,18:211-219.
    [64]Ligon JM, Hill DS,Hammer PE, etal. Natural products with antifungal activity from Pseudomonas biocontrol bacteria[J].Pest Manage Sci,2000,56:688-695.
    [65]Cronin D, MoenneLoccoz Y, Fenton A, etal. Role of 2,4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain Fl 13 with the potato cyst nematode Globodera rostochiensis[J].A ppl Envi ron Microbiol,1997,63:1357-1361.
    [66]王光华,周克琴,张秋英,等.拮抗细菌BRF-1对几种植物病原真菌的抗生效果[J].中国生物防治,2003,19(2):73-77.
    [67]Silo-Suh LA, Lethbridge BJ, Raffel SI, et al. Biological-activities of fungistatic antibiotics produced by Bacillus cereus UW85[J].Appl Environ Microbiol,1994,60:2023-2030.
    [68]Broderick NA, Goodman RM, Raffa KF, et al. Synergy between zwittermicin A and Bacillus thuringiensis subsp kurstaki against gypsy moth.[J].Environ Ent,2000,29:101-107.
    [69]贾士荣.我国棉花基因工程的研究进展[J].中国农业科技导报,2000,(2):18-22.
    [70]李术娜,杜红方,袁洪水,等.棉花黄萎病拮抗细菌LC-04菌株的抗菌蛋白产生条件研究[J].棉花学报,2006,18(4):233-237.
    [71]孙瑶,马平,朱宝成,等.棉花黄萎病菌拮抗细菌BDT-25的特性[J].华北农学报,2006,21(6):119-123.
    [72]张进霞,袁洪水,王世英,等.紫外分光光度法在复合氨基酸铜配合物测定中的应用[J].棉花学报,2006,18(6):394-395.
    [73]单耀军,张进霞,袁洪水,等.氨基酸铜对6种植物病原真菌的抑制作用[J].河北大学学报,2006,26(1):30-32.
    [74]程丽娟,薛泉宏,来航线,等.微生物学实验技术[M].陕西西安:世界图书出版公司,2000.
    [75]周艳芬,赵晓瑜,张玉,等.透明颤菌血红蛋白基因在苏云金杆菌中的表达[J].河北大学学报(自然科学版),2006,26(1):33-37.
    [76]陈中义,张杰,黄大.植物病害生防芽孢杆菌抗菌机制与遗传改良研究[J].植物病理学报,2003,33(2):97-103.
    [77]权春善,王军华,徐洪涛,等.一株抗真菌解淀粉芽孢杆菌的分离鉴定及其发酵条件的初步研究 [J].微生物学报,2006,46(1):7-12.
    [78]谢栋,彭憬,王津红,等.枯草芽孢杆菌抗菌蛋白X98Ⅲ的纯化与性质.微生物学报,1998,38(1):13-19.
    [79]武翠红.大丽轮枝菌拮抗细菌RS-25菌株的分离鉴定、发酵及抗菌多肽的纯化[D].硕士论文,河北农业大学,2008.
    [80]东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    [81]沈萍,范秀容,李广武.微生物学实验[M].北京:高等教育出版社,2001.
    [82]F.奥斯伯,等著;颜子颖,王海林,泽.精编分子生物学实验指南[M].北京:科学出版社,1998.
    [83]Lane D J.16S/23S rRNA Sequencing in:Stackebrandt E, Goodfellow. ed. Nucleic Acid Techniques in Bacteria Systematics[M]. Chichester:John Wiley & Sons,1991,115-147.
    [84]Saitou N, Nei M. The Neighbour-joining Method:a New Method for Reconstructing Phylogenetic Trees[J]. Mol Biol Evol,1987,4:406-425.
    [85]R.E.布坎南,N.E.吉本斯.伯杰细菌鉴定手册(第八版)[M].北京:科学出版社,1984,729-797.
    [86]董周永,胡青霞,郭松年,等.石榴果皮中抑菌活性物质提取工艺优化[J].农业工程学报,2008,24(3):274-277.
    [87]蓝希钳,周择扬,胡军华,等.假单孢菌20#-5菌株代谢产物对马铃薯晚疫病菌的抑制作用[J].植物保护学报,2003,30(3):300-304.
    [88]郭秀君,郑平,等.蜡质芽孢杆菌(Bacillus cereus)芽孢的形成与PHB的关系[J].山东大学学报(自然科学版),1994,29(1):101-108.
    [89]张龙翔,张庭芳,李令媛.生化实验方法和技术[M].北京:高等教育出版社,1997.
    [90]马平.棉花黄萎病生物防治研究进展[J].河北农业科学,2003,7(3):382-385.
    [91]Seung H K, Choi N S, Lee W Y L. Fibrin Zymography:A Direct Analysis of Fibrinolytic Enzymes on Gels[J].Analytical Biochemistry,1998,263:116-118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700