非平移条件下材料对称性分析与对称要素建立
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,对称物体或者图形对称性的认识主要是传统的、平移条件下的对称规律和对称要素的作用。自1984年科学家发现准晶体后,逐渐打破了基于具有“平移重复”的传统对称性理论的界限,但仍试图通过种种对称操作建立与“平移”条件相应的对称要素。
     研究发现,自然界中更广泛存在的材料结构、生物和自然体系等具有另一类对称性,即非平移对称性。这类对称性与平移条件下的对称性有本质的不同,是对称性的更复杂、更普遍的一类规律,有待进一步去认识。例如,材料的团簇结构、玻璃相结构;叶序、渐开线形贝壳等动植物的生物对称性;云团、湍流以及电磁波,等等。可以认为,这些材料结构、生物和自然体系中存在着具有共性的一类规律,即非平移条件下的对称性。研究这类对称性并建立相应的对称要素具有十分重要的意义。
     本文研究非平移条件下材料和体系的对称性,分析这类对称结构的对称性特点。研究发现,非平移结构都具有对称收敛性;总结了各种收敛性结构的对称要素;建立了达到对称结构重复的对称操作方法和相应的对称要素,提出了描述解决这类问题的新方法。
     本文在以下几方面开展了研究工作:
     最先关注对称要素的是晶体学,晶体学中传统的对称要素也是一些几何要素,它是可以让图形或者一些结构发生规律变化的依据,但是传统的对称要素不能够准确描述准晶体的对称性,需要寻找具有更广泛意义的对称要素来对其描述。
     准晶体是一类没有平移对称性质的物体,但是其具有收敛对称性,对准晶体对称性完整的研究需要建立在非平移对称的基础之上。分析了超材料中左手材料、光子晶体和超磁性材料在传统对称要素下的对称性,发现超材料中很多特性不能够用平移对称来解释,必须借助非平移对称才能进行更深层次的研究。
     建立了非平移条件下四种新的对称要素,包括直螺旋轴、曲螺旋轴、曲对称面和收敛心,并建立了其相应的数学模型。直螺旋轴类似于螺钉的螺纹,或者是球面的渐开线,通过建立螺纹数学模型得出了螺纹测量的新算法。曲螺旋轴指变直径螺旋状曲线,典型结构是牵牛花,建立了变螺距圆锥的数学模型,得出曲螺旋轴切线和法向量计算方法。曲对称面是传统对称要素经过一定的组合之后产生的新的对称要素,其能够描述一些传统对称要素无法描述的对称性,建立了曲对称面的数学模型,利用该模型能够更好的对具有曲对称面的物体或者图形来分析。在螺旋扩大物体或者图形中总会有一个或者几个收敛点,该点就是收敛心。给出了收敛心典型模型向日葵花盘拥有两个收敛心,鹦鹉螺的壳有一个收敛心,通过对典型模型的分析建立了收敛心的数学模型。证明了晶体中对称定律的正确性,验证在晶体中只存在一次、二次、三次、四次和六次对称轴,不可能存在其他的对称轴。
     对非平移条件下对称性进行扩展分析,包括在材料、控制、生物、机电等一些领域的应用。讨论了动物外形及其DNA结构在非平移条件下的对称性,对植物叶序、花瓣分布规律的分析得出其与斐波那契数列的关系,并研究了宇宙和混沌世界所具有的对称性。
     论文在以下几方面取得了创造性成果:
     分析了传统对称性的运用范围和对称要素特点,论述了这些对称性描述原理和对称要素的局限性,总结了用传统对称性原理方法描述的各类结构和现象。
     提出了描述非平移对称结构的新原理,即收敛性对称结构的描述方法,并归纳了各类具有非平移对称性结构的特点,建立了非平移对称性的描述体系,用更具有普遍性的曲线、曲面等来描述这类现象。
     定义了直螺旋轴、曲螺旋面、曲对称面、收敛心等全新的对称要素,并结合实际,推导出相应的对称群。
     运用非平移对称性理论,描述了材料结构、生物和自然体系。
     事实证明,提出的新理论和方法能够准确、全面的描述自然界中更多存在的非平移对称现象。这一理论和方法将对材料结构、认识和利用自然等具有重要的影响。
Currently, our understanding of symmetry objects and graphic symmetry isthe function of symmetry rules and symmetry elements under traditional andtranslational condition. Since the crystal was found on1984, the limit oftraditional symmetry theory based on the translation repetition was graduallybroken, but the scientists are still trying to build the corresponding symmetryelements with translation tradition by kinds of symmetry operation.
     The studies found, the widely spread material structure, biology andnatural system in the nature possessing another different symmetry, which isnon-translational symmetry. The establishing of the non-translational symmetryis fundamentally different from the symmetry under the transitional condition;being a kind more complicated and normal rule of symmetry which waiting forus to explore further.
     In this article, we studied the symmetry of the material under thenon-translational condition to find the characteristics of these symmetricalstructure, the astringency of structure; summarized the symmetry elements ofdifferent kinds of astringency structure; established the repeated operationalmethods and corresponding symmetry elements to reach the symmetry elements,promoting the new way to solve these problems. The first symmetry element wefocused on is the crystallography. In the crystallography, the traditionalsymmetry elements are some geometric elements which provide foundationallowing the graph and some objects to have regular variation. But the traditionalsymmetry elements could not describe the symmetry of the crystal, so we needto find a symmetry element with more extensively meaning to describe it.Quasicrystal is a kind of object without translational symmetry, while it hasastringency symmetry. The integrated study of Quasicrystal must be based on thenon-translational symmetry. After analyzing the symmetry of left-handedmaterials, photonic crystal and super magnetic materials under the traditionalsymmetry elements, we found that the some characteristics of the super materials could not be explained by the translational symmetry but thenon-translational symmetry, which would help us to do the deeper research.
     Some new symmetry elements under non-translational condition was given,including vertical screw axis, twist screw axis, twist symmetry plane andastringency center, and the corresponding mathematic model was built as well.Vertical screw axis is analogous to the thread of the screw, or the involute ofthe sphere surface. And we get the new algorithm of measuring the screw threadby building the screw thread mathematic model. The twist screw axis is thevarying diameter spiral curve whose typic structure is morning glory. And webuild the mathematic model of varying pitch conical to get the computingmethod of tangent line and normal vector of twist screw axis. Twist symmetryplane is a new symmetry element by combining some of the traditionalsymmetry elements which could describe the symmetry that the traditionalsymmetry elements could not. Build the mathematic model of twist symmetryplane would help us analyze the objects or graphs with twist symmetry plane.There will always be one or some astringency points in the spiral dilating objectsor graphs, and the point is the astringency center. And the astringency centertypical model-sunflower disc having two astringency centers, and there are oneastringency center in the shell of pearly nautilus. Its mathematical model wasbuilt by analyzing the typical model which prove the correctness of law ofsymmetry in crystal and verify that there only exist monogyre, axis of binarysymmetry, axis of trigonal symmetry, four-fold axis of symmetry and axis ofhexagonal symmetry in crystal, and other axis of symmetry is impossible toexist.
     Have a extended analysis on the symmetry under the non-translationalcondition, including its application in material, controlling, biology andelectromechanical field. We also discuss the symmetry of animals’ shapes and itsDNA structure under the non-translational condition; as well we analyze therule of plant phyllotaxis and petal distribution and get its relation with Fibonacciseries. At the same time, we study the symmetry of the universe and the ChaosWorld.
     The creative achievements in this article through analysis are:
     Analyze the application scope of traditional symmetry and the characteristics of the symmetry elements, and state the limits of these symmetry descriptiontheory and symmetry elements. At last we conclude different kinds of structureand phenomenon described by traditional symmetry theory.
     Propose the new theory to describe the non-translational symmetrystructure, which is the description of astringency symmetry structure. And wealso conclude the characteristics of all kinds of non-translational symmetrystructure and build the descriptive system for non-translational symmetry, usingmore general factors like curve, or surface to describe this phenomenon.
     Define the whole new elements like vertical screw axis, twist helicoids,twist symmetry plane, astringency center, etc. and elicit correspondingsymmetric group combining practice.
     Use the non-translational symmetry theory to describe the material structure,biology and natural system.
     Facts proved that the newly proposed theory and method could describe theexisting non-translational symmetry phenomenon in the nature accurately andcomprehensively. This theory and method would bring a significant influence tothe material structure, learn and make use of the nature.
引文
[1]黄韦中.对称理论[M].北京:地震出版社,2013:2-5.
    [2]施倪承,李国武.对称与晶体学[J].自然杂志,2010,30(1):44-49.
    [3]李祖军.利用简化图形提高立体几何的教学效率[J].黔南民族师范学院学报,2009(3):88-90.
    [4]郭庆胜,蔡永香.在图形简化中面状目标间拓扑关系渐进式转换的研究[J].测绘科学,2007,32(1):30-32.
    [5]陈礼民,琴爱红.三维图形简化新算法[J].中国图像图形学报,1997,2(3):157-160.
    [6]唐有祺.对称性原理[M].北京:科学出版社,2010:16-30.
    [7]冯端,师昌绪,刘治国.材料科学导论[M].北京:化学工业出版社,2002:56-62.
    [8]冯培恩.机械对称性理论及其应用规律[D].浙江:浙江大学,2010.
    [9]梁昌洪.话说对称[M].北京:科学出版社,2010:40-44.
    [10]钟晓媛,刘克文.准晶体的发现、性质及其价值[J].化学教育,2012(9):26-30.
    [11]吴玉芹,于凉云,张奇等.2011年诺贝尔化学奖-准晶体简介[J].中国西部科技,2011,10(34):39-40.
    [12]成惠,张春元,赵宝群.Al-Mn二十四面体准晶的相变研究[J].内江师范学院学报,2007,22(4):50-54.
    [13]黄晓辉,左秀荣,王齐伟. Al-Mn系合金研究现状[J].世界有色金属,2009(1):38-39.
    [14]陈敬中,陈瀛,龙光芝等.准晶对称与准晶结构[M].北京:科学出版社,2012:50-60.
    [15]陈敬中.准晶体的基本性质[J].中国地质大学学报,1993,6(18):13-25.
    [16]吴自勤,孙霞.晶体学基础对称性和结构晶体学方法[M].安徽:中国科学技术大学出版社,2011:26-40,373-390.
    [17]石刚.左手材料电磁特性的研究[D].江苏:扬州大学,2008.
    [18]崔海峰.一种新型单面型结构左手材料电磁特的研究性的研究[D].南京:南京航空航天大学,2012.
    [19]宋娟.非对称性和单元厚度对微波段左手材料的影响[D].西安:西北工业大学,2007.
    [20]冯尚申.大带隙二维光子晶体的设计[D].浙江:浙江大学,2007.
    [21]夏辉.一维类梳状光子晶体的带结构及缺陷模研究[D].湖南:湖南大学,2001
    [22]殷建玲,黄旭光,刘颂豪等.准晶光子晶体特性及应用[J].激光与光电子学进展,2009,47(1):11-15.
    [23]韩璐.新型介观晶体结构及形成机理的电子显微学研究[D].上海:上海交通大学,2011.
    [24]钟兰花.二维声子晶体中对称性对声波带隙的影响[D].广东:广东工业大学,2006.
    [25]邱爱红,龚曙光,谢桂兰等.变径变螺距螺旋轴参数化模型及性能仿真[J].机械工程学报,2008,44(5):121-127.
    [26]龚建伟,黄文宇,陆际联.轴对称曲线对称轴的数值计算方法[J].计量技术,2001(6):2-7.
    [27]陈宁,丁皓.双曲对称中的分形集[J].沈阳建筑大学学报,2007,2(5):856-861.
    [28]陈香珠.巧用对称性规律秒解地球运动知识[J].读与写杂志,2011,8(1):174-177.
    [29]尉晨阳.对称规律与人类社会发展[J].山西师范大学学报,1993,20(2):22-27.
    [30]张昌言,萧泰.晶体对称性定律的一种证明[J].西北师范学院学报,1988,1(1):35-40.
    [31]宋晓刚.基于对称性的DNA序列分类和计算模型[D].兰州:兰州大学,2010.
    [32] Serge i M.M irk in. Expa ndab le DN A repea ts a nd huma n d is ease[J]. NATURE,2007,9(21):932-941.
    [33]朱永胜.植物与斐波那契数[J].镇江高专学报,2006,19(1):67-70.
    [34]蒲利春.对称定律自然界普遍存在的规律[J].攀枝花大学学报,1998,15(1):71-77.
    [35]陈辉.群的结构与对称性[M].浙江:浙江大学出版社,2008:65-79.
    [36]刘有延,傅秀军.准晶体[M].上海:上海科技教育出版社,1999:23-36,69-106.
    [37]冯培恩,马志勇,邱清盈等.从自然科学到工程科学的对称性本体论研究[J].自然科学进展,2005,18(12):1441-1450.
    [38] A.C. Le hum. Dyna miea l b reak ing o f ga uge s ymme try in s upers ynune tricqua ntum e le ctro d yna mics in three-d ime ns io na l spaee time[J]. Phys. Re v. D79,025005(2009).
    [39]张英伯.对称中的数学[M].北京:科学出版社,2011:14-25.
    [40]孟道骥,史毅茜.对称空间[M].天津:南开大学出版社,2005:95-120.
    [41]宋国强.一维双曲平衡律系统的弱解和零松弛极限的研究[D].南京:南京航空航天大学,2009.
    [42]华义平,宋卫东.局部对称空间中具有常数量曲率的超曲面[J].纯粹数学与应用数学,2010,26(4):643-652.
    [43]王亚伟,韩广才,刘莹等.双曲面对称体红细胞模型的光散射虚拟仿真[J].中国激光,2007,34(12):1677-1683.
    [44]杨卫疆.奇偶性对称性在曲线积分和曲面积分中的应用[J].天津商学院学报,1999,19(6):21-27.
    [45]张慧芬,王兰卿.三维空间中曲面与曲线的对称[J].山西大同大学学报,2012,28(4):1-5.
    [46]曹娟娟.局部对称空间中具有常数量曲率的超曲面[J].咸阳师范学院学报,2009,24(2):7-13.
    [47]李家洋.植物花对称性发育研究的进展:从理论到应用的双重价值[J].分子植物育种,2006,4(6):751-753.
    [48]夏鼎立.等倾角变螺距圆锥螺旋线的几何特性及其作图方法[J].合肥工业大学学报,1992,15(4):138-145.
    [49]赵春艳.向日葵生长模型的构建方法研究[D].东北师范大学,2010.
    [50]李欣.自由曲面结构的形态学研究[D].哈尔滨工业大学,2011.
    [51] E. Best,R. De ville rs, J. Espa rza. Ge nera l re fine me nt a nd re c urs io n ope rato rsfo r the Pe tri bo x ca lc ulus In P.Enja lb ert, A. F inke l,a nd K.W.Wagner,eds,STACS.93, LNCS665, pp.30-140, Springer,1993.
    [52] T.Bo lo gnes i a nd E. Brinks ma. Introd uc tio n to the ISO spec ifica tio n la n-gua geLOTOS. Comp uter Ne twork s a nd IS DN Sys te ms,1987,14(1):25-59.
    [53] R. Brya nt Grap h-based Algorithms for Boo lea n F unctio ns Ma nip ulato in. IEEETra nsac tio n o n Co mp uters,1986,35(8):677-691.
    [54] J. R. Burhc,E.M.C lark e,K.L.McM llia n. D.L. Dill, a nd L. J.Hwa ng. S ymbo licMode l-che ck ing:1020sta tes a nd Be yo nd. Informa tio n a nd Co mp utatio n,1992,98(2):142-170.
    [55] L.Caste lla no, G. De M ie he lis, a nd L.Po me llo. Co nc urre nc y vs. interlea ving:An instruetive e xa mp le. Bull.Eur.Ass. Theo ret. Co mp ut.Sc i.,1987,31:12-15.
    [56] E.M.C la rke, E.A. Emesro ll, a nd A.P.S istla. Auto matc i veric fiato in o f finitestate co ne urre nt s yste ms us ing te mpo ra l lo gic spee ifieatio ns. ACMtra nsac tio n p ro gra mming La ngua ges a nd S ys te ms,1986,8(2):244-263.
    [57] E. M. C larke, O. Grumbe rg, M.M niea a nd D.Pe led. Sta te Space Red uctio nUs ing Pa rtia l Order Tec hniq ues. S TTT,1999,2(3):279-287.
    [58]魏新利,董卫刚,李培宁等.销钉机筒挤出机螺槽横截面内流体流动与混合的数值分析与实验研究[J].高校化学工程学报,2003,17(3):254-260.
    [59]杨光第.调制结构特性的定量描述[J].吉林大学自然科学学报,1992,4(1):89-96.
    [60]韩璐.新型介观晶体结构及形成机理的电子显微学研究[D].上海:上海交通大学,2011.
    [61]叶昶.用于小动物研究的数字X射线成像系统[D].武汉:华中科技大学,2004.
    [62]谢光忠.气敏薄膜及气体传感器阵列的制备及特性研究[D].成都:电子科技大学,2007.
    [63] P. De ga no,R. DeN ioc la,a nd U.Mo nta nari. Pa rtia l orderings descriptio ns a ndobservatio ns o f no nde termin istic co nc urre nt p roeesse s. In J.W. de Bakkere e ta l.[7]PP.438-466.
    [64] E. A.Emesro n a nd A.P. S is tla. S ymmetry a nd mode l c heck ing. In C. Co ureo u-betis ed. Proceed ings o f the5t hWorkshop o n Co mp uter-Aided verificato in,pp.463-478,1993.
    [65] H.Fec her, M. Ma jster-Cederba um, a nd J. Wu. Ac tio n re fine me nt for probab-ilis tic pro cesse s with true co nc urre nc y mode ls. LNCS2399,pp.77-94,2002.
    [66] P.Gode rfo id. Pa rtid and approac h to the order mode l fo r the verific atio n o fconc urre nt s ys te ms a n app roac h to the sta te e xp los io n prob le m. P hD thes is,Univers ite de Lie ge,1994.
    [67] R.Go rrieri,A. M are he tti, a nd U. Mo nta na ri. A2CSS:Ato mic actio ns for CCS.Theore tica l Co mp ut. Sc i.,1990,72:203-223.
    [68] C.A. R. Hoa re. Co mmunica ting seq ue ntia l pro cesses. P re ntice-Ha ll,1985.
    [69] M. Huhn. Ac tio n re fine me nt a nd p roperty inhe rita nce in s yste ms o f seq ue ntia lage nts. Co nc ur-re nc y Theo ry, LNCS pp.639-654, Springer,1996.
    [70] P. C. Bunc h. Performa nce charac teristics o f as ymmetric zero-cro sso ver sc ree n-film s yste ms. Proc SPIE,1992,1653:46-65.
    [71] C hriste nse n Do uglas A. Ultraso nic b io ninsrume ntatio n, Ne w York: JOHNWILEY&SONS,1988.
    [72] Xinhua Cao, H. K. Hua ng. C urre nt sta tus a nd future ad va nces o f d igita lrad io grap hy a nd PACS. IEEE Enginee ring in Med ic ine a nd Bio lo gy,2000,19:80-88.
    [73] J. T. Dobb ins III, D. L. Ergun, I. Rutz, et a l. DQ E(f) o f fo ur ge neratio nsof co mp uted rad io grap hy acq uis itio n de vices. Med P hys,1995,22:1581-1593.
    [74] W. Zhao, J. A. Rowla nds. Digita l rad io lo gy us ing ac tive matrix reado utofa mor-pho us se le nium: theo retica l a na lys is o f detective qua ntum e ffic ie nc y.MedPhys,1997,24:1819-1833.
    [75] U. Ne itze l, I. Ma ack, S. Gunther-Kohfa hl. Ima ge q ua lity o f a d igita l c hes trad io grap hy s yste m based o n a s e le nium de tecto r. Med P hys,1994,21:509-516.
    [76] P. J. Pap in, H. K. Hua ng. A pro totype a mo rp ho us se le nium ima ging p la tesys te mfor d igita l rad io grap hy. Med P hys,1987,14:322-329.
    [77] R. Fa hrig, J. A. Ro wla nd s, M. J. Ya ffe. X-ra y ima ging with a morp ho usse le nium: d etec tive q ua ntum e ffic ie nc y o f p ho toco nd uctive recepto rs fo rdigita l-ma mmo grap hy. M ed P hys,1995,22:153-160.
    [78] W. Q ue, J. A. Rowla nds. X-ra y ima ging us ing a mo rp ho us se le nium: inhere n-tspatia l reso lutio n. Med P hys,1995,22:365-374.
    [79] Ho ng Liu, L L. Fa jardo, B. Pe nny. S igna l-to-no ise ratio, no ise powe rspectrum a nd detec tive q ua ntum e ffic ie nc y a na lys is o f optica lly co up led C CDma mmo grap hy ima ging s yste ms. Acade mic Rad io lo gy,1996,3:799-805.
    [80] Fa ng Xu, Ho ng Liu, Ge Wa ng, a nd Be nnett A. Alford, Co mpariso n o fadaptive linear interpo latio n a nd co nve ntio na l linear interpo latio n for d igita lrad io grap hy s yste m. Jo urna l o f Elect ro nic Ima ging,2000,9:22-31.
    [81] G. Luo, J. H. K inne y a nd J. J. Ka ufma n et a l. Re la tio ns hip be twe e n p la inrad io grap hic pa tte rns a nd three-d ime ns io na l trabec ular arc hitecture in thehuma n ca lc a ne us. Osteopo ros. Int.1999,9:339-345.
    [82] F. Peyrin, M. Sa lo me-pate yro n a nd P. C loe te ns e t a l. M icro-CT exa minatio nsof trabec ular bo nesa mp les at d iffere nt reso lutio ns:14,7a nd2micro n le ve l.Tec hno l. Hea lth Care,1998,6:391-401.
    [83] A. M. Bad ger, D. E. Gris wo ld, R. Kapad ia e t a l. Disease-mod ifying activityof SB242235, a se lec tive inhib itor o f p38mito ge n-activated pro te in k ina se,in rat a djuva nt ind uced a rthritis. Arthritis Rhe um.2000,43:175-183.
    [84] L. Lu, K.K. Tho ng, M. Gupta. M g-based co mpos ite re inforced b y M gZS i[J].Compos ite s Sc ie nce a nd Tec hno lo gy,2003,63,627-632.
    [85] J ins ha n Zha ng, Ho ngwe i Du, We iLia ng, Chunxia ngXu, Binfe ng Lu Effec tof M n o n the forma tio n o f M g-based sp herica l ico sa hedra l q ua s ierysta lphase [J]. Jo urna l o f Allo ys a nd Co mpo unds.2007,427(1-2):244-25.
    [86] Ve se la go VG. The e lec trod yna mic s o f s ubs ta nce with s imu lta neo us ly ne ga tiveva lues o f a nd So v.P hys.UsP,1968,10(4):509-514.
    [87] La mb H. o n gro up-ve loc ity. Proc. Lo ndo n M ath.Soc,1904, l:473-479.
    [88] Ma nde ls hta m L.I. Lec tures o n so me prob le ms o f the theory o f osc illa tio ns,in Co mp le te Co llec tio n o f Works, vo l.5, Moseo w: Acad e my o f Sc ie nce,1950,5:428-467.
    [89] Pac he co J r J, Grze gorc zyk T M, a nd Ko ng J A, eta l.Powe r p ropa gatio n inho mo ge neo us isotrop ic freq ue nc y d ispers ive le ft-ha nded med ia.Phy. Re v.Lett,2002,89(25):257401(4).
    [90] Zio lko usk i R W. Pulsed a nd CW Ga us s ia n bea m inte ractio ns with do ub lene ga tive meta materia l s labs.OPt. ExPres s,2003,11(7):662-68.
    [91] Engheta N, a nd Zio lko wsk i R W. Me ta ma teria ls Phys ics a nd EngineeringExP lo ratio ns.2006IEEE Press.
    [92] B.YU,e ta l.,Na notec hno lo gy: Ro le in e merging na noe lee tro nies [J], So lid-State Elec tro nics,2006,50(4):536-544.
    [93] Anato ly V.Za yats, et a l, Nano-optics o f s urfac e P las mo n po la ritio ns [J],Phys ics Reports,2005,40853(3-4):131-134.
    [94] To ny J un Hua ng, Mo lec ula r Mac hine-Ba sed NEMS, Comp re he ns iveM icros yste ms,2008, C hapte r3.20, Pa ges:635-656.
    [95] Hyungk i Lee, e ta l, Bio-na no co mp le xe s: DNA/S urfacta nt/s ingle-wa lledcarbo n na notube Interac tio ns in e lec tric fie ld [J], Po lymer,2009,50(3):881-890.
    [96] M ike MIller,e ta l,Te mp late rep lica tio n fo r full wa fer imprint litho grap hy [J],M icroe lectro nic Engineering,200784(5-8):885-890.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700