Bi_2S_3、PbS敏化TiO_2纳米管阵列的制备及其光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和环境问题是当前人类社会所面临的两个重大问题,利用可再生资源制备清洁、可持续的可再生能源是解决上述问题的有效途径之一。二氧化钛(Ti02)是一种重要的宽禁带半导体材料,在能源转换利用领域引起了广泛的关注,例如光催化降解有机污染物、光电化学裂解水制氢以及太阳能电池等。随着纳米科学的进步,研究人员开发出了许多不同形态的Ti02纳米材料。相比于传统多孔Ti02薄膜,高度有序的Ti02纳米管阵列(TiO2NAs)具有取向性更好、比表面积更大等特点,同时可为光生载流子提供一个快速有效的输运通道。然而,由于Ti02存在带隙宽、量子效率低等缺点,限制其在太阳能电池领域的实际应用。锐钛矿型Ti02的禁带宽度乓达到3.2eV,以致于Ti02只能利用太阳光谱中占极少部分的紫外光。因此,寻找一种改性Ti02的有效途径,拓宽其光谱响应范围,从而提高其在太阳能电池领域的应用是本论文研究的主要目的。该论文工作的主要内容如下:
     1、以含有NH4F的乙二醇溶液为电解液,在宽温度范围内(10~70℃)对纯Ti表面进行阳极氧化,制得形貌可控的Ti02纳米结构。随着电解液温度的变化,纳米Ti02的形貌得到控制,可形成Ti02纳米管阵列及纳米管阵列/纳米线复合结构,温度40~50℃为转折温区。在该温度区间内,Ti02开始由非晶态向锐钛矿发生转变。重点了考察电解液温度在阳极氧化过程中的作用。
     2、与窄禁带半导体复合是拓展Ti02光响应范围的重要方式。Bi2S3的禁带宽度只有1.3eV,且具有大光吸收系数,是Ti02光敏剂的一种理想选择。选择非晶态a-Ti02NAs和锐钛矿型TiO2NAs薄膜作为初始材料,通过传统水热法在薄膜上沉积纳米Bi2S3,形成Bi2S3敏化的TiO2NAs,考察不同晶体结构TiO2NAs对水热合成Bi2S3/Ti02NAs异质结构光电性能的影响。结果表明,虽然Bi2S3/Ti02NAs中Bi2S3的含量更少,造成其光吸收和表面光电压响应均弱于Bi2S3/a-TiO2NAs,但Bi2S3/Ti02NAs中Bi2S3的颗粒更细小,且集中在管内部及管隙之间,未覆盖在纳米管阵列表面,使得Bi2S3/TiO2界面电场更强,从而获得更高的光电化学性能。Bi2S3/Ti02NAs的短路电流密度Jsc及光电转换效率η分别为4.54mA/cm2和1.86%。
     3、通过改变水热反应前驱体溶液的浓度,调控纳米结构Bi2S3在锐钛矿型TiO2NAs中的负载量。相比于其他情况,当Bi2S3将Ti02纳米管刚好完全填充满的时候,即前驱体溶液(Bi(NO3)3)的浓度为5mmol/L时,Bi2S3敏化TiO2NAs的光吸收及表面光电压响应均达到最强,光电化学性能得到进一步的提高,此时光电转换效率η达到2.65%。
     4、由于PbS能够充分利用太阳光,其常被用于太阳能电池。通过调控PbS的尺寸,其第一激子峰的吸收波长易拓展至红外区。采用连续离子层吸附与反应方法在TiO2NAs中沉积PbS纳米颗粒(PbS/TiO2NAs),并在沉积过程中引入超声辅助(PbS(u)/TiO2NAs),比较两种不同工艺制得的PbS敏化TiO2NAs的形貌、结构及光电化学性能。TiO2NAs经PbS纳米颗粒改性后,光吸收范围拓宽至可见光区甚至近红外区。与无超声辅助情况下形成大尺寸纳米颗粒将纳米管阵列覆盖的PbS/TiO2NAs不同,引入超声辅助制得的PbS纳米颗粒尺寸更小,且只分布在Ti02纳米管内部和管隙之间。最终使PbS(u)/TiO2NAs具有更强的光生载流子分离效率,从而获得更高的光电化学性能。
     5、利用超声辅助连续离子层吸附与反应方法制备PbS纳米颗粒改性TiO2NAs, PbS纳米颗粒的负载量及尺寸可通过改变连续离子层吸附与反应的循环次数来调控。当循环次数为15次时,PbS纳米颗粒完全将Ti02纳米管填充满,且未形成大颗粒堆积在纳米管表面。此时PbS纳米颗粒的粒径分布是不均匀的,从小于4nm直至25nm。紫外-可见光漫反射光谱和表面光电压谱的结果表明,经PbS纳米颗粒改性的Ti02NAs的光吸收范围被拓宽至可见光区,PbS纳米颗粒与TiO2NAs之间形成异质结,都有助于其光电化学性能的提升。当循环次数为15次时,即Ti02纳米管完全被PbS纳米颗粒填充满时,PbS纳米颗粒敏化的TiO2NAs表现出最好的光电化学性能,其短路电流密度Jsc、开路电压Voc和光电转换效率η分别达到9.55mA/cm2,0.95V和2.83%。
     6、尝试利用无机半导体PbS和Bi2S3共敏化TiO2NAs,最终获得的光电转换效率η仅为1.13%。
Nowadays, the world is facing serious energy and environmental problems, so it is very urgent to produce a clean, sustainable and renewable energy source to solve such problems. Titanium dioxide (TiO2) is one of the most important wide gap semiconductors and has been attracted the attention in energy conversion, such as photocatalytic degradation of pollutants in water, hydrogen production from photoelectrocatalytic water splitting, and solar cells. With advances in nanoscience, development of various forms of TiO2nanomaterials has made great progress. Compared with the traditional mesoporous TiO2film, the highly ordered TiO2nanotube arrays (TiO2NAs) has better alignment characteristics and larger specific surface area. Simltaneously, TiO2NAs allows a fast and efficient transfer of the photogenerated charge carriers. Unfortunately, TiO2is restricted in the application as solar cell materials due to its wide band gap and low quantum efficiency. The band gap of anatase TiO2is3.2eV, which is too large for efficient absorption of energy from sunlight. Therefore, we try to seek an efficiently approach of modifying TiO2to improve the overlap of the absorption spectrum with the solar spectrum. The main content in this work is as follows:
     1. Morphology controllable TiO2nanostructures were fabricated on the Ti substrate in an ethylene glycol solution of0.25wt%NH4F via anodic oxidation method at different temperatures (10~70℃). The morphology of TiO2nanostructures can be controlled by varying temperature of the electrolyte, such as TiO2nanotube array or nanotube/nanowire composite film. Temperature between40℃and50℃is the turning area of changing nanotube to nanowire. In the above-mentioned temperature range, the amorphous TiO2begins to change into anatase. The effect of temperature of the electrolyte during the anodic oxidation process was mainly studied.
     2. Compositing with narrow bandgap semiconductor is an important way to expand the TiO2light response range. Bismuth sulfide (Bi2S3) has a narrow band gap (1.3eV) and a large absorption coefficient. It is an ideal candidate for the photosensitization of TiO2. Amorphous a-TiO2NAs and anatase TiO2NAs were chose as templates to synthesis nanocomposite. A novel heterostructure of nanoscale Bi2S3-sensitized TiO2NAs was fabricated by a conventional hydrothermal method. The result shows that the coverage of Bi2S3in Bi2S3/a-TiO2NAs is larger than corresponding coverage in Bi2S3/TiO2NAs, leading to stronger light absoption and surface photovoltage response are obtained from Bi2S3/a-TiO2NAs than Bi2S3/TiO2NAs. However, in the case of Bi2S3/TiO2NAs, the Bi2S3distributed both the inside and outside rather than the top surface of TiO2nanotubes, and the size of Bi2S3is much smaller than that in Bi2S3/a-TiO2NAs. Thus, the interfacial electric field in Bi2S3/Ti02NAs is stronger than that in the case of Bi2S3/a-TiO2NAs. The results demonstrate that photoelectrochemical solar cells based on Bi2S3/TiO2NAs has short-circuit current JSc of4.54mA/cm2and photoelectric conversion efficiency η of1.86%.
     3. The coverage of Bi2S3in TiO2NAs can be tuned by concentration of precursor solution in hydrothermal process. Bi2S3fill the TiO2nanotubes in and do not accumulate on the top of nanotubes when the concentration of precursor solution (Bi(NO3)3) is5mmol/L. Compared with other cases, its light absoption and surface photovoltage response are strongest. And then the photoelectric conversion efficiency η of2.65%is obtained.
     4. Lead sulfide (PbS) is a good candidate for solar cells, because it can be made to overlap the solar spectrum optimally. By controlling its size, the absorption wavelength of the first exciton peak can easily be extended into the infrared. PbS-sensitized TiO2heterostructure nanotube arrays were synthesised by Successive Ionic Layer Adsorption and Reaction (SILAR) method. Ultrasound (PbS(u)/TiO2NAs) has an important function for the formation of PbS nanoparticles. Compared with non-ultrasound PbS/TiO2NAs, PbS(u)/TiO2NAs have small PbS nanoparticles uniformly distributed on both the outside and inside rather than the top surface of TiO2NAs. A stronger separate efficiency of photogenerated charge carriers is found in PbS(u)/TiO2NAs than that in PbS/TiO2NAs, resulting in a better photoelectrochemical property is obtained.
     5. PbS nanoparticles as an efficient sensitizer for TiO2nanotube arrays (TiO2NAs) were fabricated by the SILAR method under ultrasound. The coverage and size of PbS nanoparticles can be tuned by changing the repeated cycles (n) of SILAR process. UV-vis diffuse-reflectance spectra and surface photovoltage spectra were used to investigate the light absorption properties and the transfer behavior of photogenerated charges in PbS-modified TiO2NAs heterostructures. The results show that the absorption range of TiO2NAs is widened from ultraviolet to the visible region by PbS nanoparticles modifying. And a heterojunction is formed between PbS nanoparticles and TiO2NAs, which facilitates the separation of photogenerated charge carriers. TiO2NAs can be fully covered with PbS NPs with size from below4nm to25nm and large aggregates inside and outside of nanotubes when the repeated cycles (n) reach15, which exhibits the best photoelectrochemical performance in all PbS-sensitized TiO2NAs electrodes. With AM1.5G illumination at100mW/cm2, its short-circuit current density Jsc, open-circuit voltage Foe and photoelectric conversion efficiency η is9.55mA/cm2,0.95V and2.83%, respectively.
     6. PbS and Bi2S3co-sensitized TiO2NAs electrode was fabricated. The photoelectric conversion efficiency η is only1.13%.
引文
[1]IEA. World Energy Outlook 2011[M]. International Energy Agency:Paris, France, 2011.
    [2]Rajeshwar K, McConnell R, Harrison K, and Licht S. Renewable Energy and the Hydrogen Economy[M]. Solar Hydrogen Generation. Springer:New York,2008.
    [3]Chu S, and Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature,2012,488(7411):294-303.
    [4]Nelson J. The physics of solar cells[M]. Imperial College Press:London,2003.
    [5]Williams R. Becquerel photovoltaic effect in binary compounds[J]. J. Chem. Phys., 1960,32(5):1505-1514.
    [6]Yoshida A, Agui T, Katsuya N, Murasawa K, Juso H, Sasaki K, and Takamoto T. Development of InGaP/GaAs/InGaAs inverted triple junction solar cells for concentrator application[C].21st International Photovoltaic Science and Engineering Conference (PVSEC-21), Fukuoka, Japan 2011.
    [7]Zhao J, Wang A, Green M A, and Ferrazza F. Novel 19.8%efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells[J]. Appl. Phys. Lett., 1998; 73:1991-1993.
    [8]Schultz O, Glunz S W, and Willeke G P. Short Communication:Accelerated Publication:Multicrystalline silicon solar cells exceeding 20% efficiency[J]. Prog. Photovolt:Res. Appl.,2004,12(7):553-558.
    [9]Benagli S, Borrello D, Vallat-Sauvain E, Meier J, Kroll U, Hotzel J, Spitznagel J, Steinhauser J, Castens L, and Djeridane Y High-efficiency amorphous silicon devices on LPCVD-ZnO TCO prepared in industrial KAI-M R&D Reactor[C].24th European Photovoltaic Solar Energy Conference, Hamburg,2009:21-25.
    [10]Song M Y, Ahn Y R, Jo S M, Kim D Y, and Ahn J-P. TiO2 single-crystalline nanorod electrode for quasi-solid-state dye-sensitized solar cells[J]. Appl. Phys. Lett.,2005,87: 113113-113116.
    [11]Nair A S, Jose R, Shengyuan Y, and Ramakrishna S. A simple recipe for an efficient TiO2 nanofiber-based dye-sensitized solar cell[J]. J. Colloid. Interf. Sci.,2011,353(1): 39-45.
    [12]Kayes B M, Nie H, Twist R, Spruytte S G, Reinhardt F, Kizilyalli I C, and Higashi G S. 27.6% conversion efficiency, a new record for single-junction solar cells under 1 sun illumination[C]. Photovoltaic Specialists Conference (PVSC),2011 37th IEEE. IEEE,2011: 000004-000008.
    [13]Repins I, Contreras M A, Egaas B, DeHart C, Scharf J, Perkins C L, To B and Noufi R. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor[J]. Prog. Photovolt: Res. Appl.,2008,16(3):235-239.
    [14]Green M A, Emery K, Hishikawa Y, Warta W and Dunlop E D. ACCELERATED PUBLICATION:Solar cell efficiency tables (version 41)[J]. Prog. Photovolt:Res. Appl., 2013; 21:1-11.
    [15]Tan B, and Wu Y. Dye-sensitized solar cells based on anatase TiO2 nanoparticle/nanowire compo sites [J]. J. Phys. Chem. B,2006,110(32):15932-15938.
    [16]Kim J Y, Lee K, Coates N E, Moses D, Nguyen T-Q, Dante M, and Heeger A J. Efficient tandem polymer solar cells fabricated by all-solution processing[J]. Science,2007, 317(5835):222-225.
    [17]de Carvalho V A N, Luz R A S, Lima B H, Crespilho F N, Leite E R, and Souza F L. Highly Oriented Hematite Nanorods Arrays for Photoelectrochemical Water Splitting[J]. J. Power Sources,2012,205:525-529.
    [18]Palmas S, Pozzo A D, Delogu F, Mascia M, Vacca A, and Guisbiers G. Characterization of TiO2 Nanotubes Obtained by Electrochemical Anodization in Organic Electrolytes[J]. J. Power Sources,2012,204:265-272.
    [19]Yang J, Wang K Q, Liang L, Feng L G, Zhang Y W, Sun B, and Xing W. A Hybrid Photoelectrochemical Biofuel Cell Based on the Photosensitization of a Chlorophyll Derivative on TiO2 Film[J]. Catal.Commun.,2012,20:76-79.
    [20]Zhang Z H, and Wang P. Optimization of Photoelectrochemical Water Splitting performance on Hierarchical TiO2 Nanotube Arrays[J]. Energy Environ. Sci.,2012,5(4): 6506-6512.
    [21]Gratzel M. Photoelectrochemical cells[J]. Nature,2001,414(6861):338-344.
    [22]Fujishima A, and Honda K. Electrochemical photolysis of water on a semiconductor electrode[J]. Nature,1972,238:37-38.
    [23]狄大卫,曹昭阳,李秀文,谢鸿礼.太阳能电池:工作原理、技术和系统应用[M].上海:上海交通大学出版社,2010.
    [24]O'Regan B, Schwartz D T, Zakeeruddin S M, and Graltzel M. Electrodeposited Nanocomposite n-p Heterojunctions for Solid-State Dye-Sensitized Photovoltaics[J]. Adv. Mater.,2000,12(17):1263-1267.
    [25]Perera V P S. An Efficient Dye-sensitized Photoelectrochemical Solar Cell Made from Oxides of Tin and Zinc[J]. Chem.Commun.,1999,1:15-16.
    [26]Guo P, and Aegerter M A. RU(II) Sensitized Nb2O5 Solar Cell Made by the Sol-gel Process[J]. Thin Solid Films,1999,351(1-2):290-294.
    [27]Gratzel M. The Advent of Mesoscopic Injection Solar Cells [J]. Prog. Photovolt:Res. Appl.,2006,14:429-442.
    [28]O'regan B, and Gratzel M. A low cost high efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature,1991,353:737-740.
    [29]Komiya R, Fukui A, Murofushi N, Koide N, Yamanaka R, and Katayama H. Improvement of the conversion efficiency of a monolithic type dye-sensitized solar cell module[C]. Technical Digest,21st International Photovoltaic Science and Engineering Conference(PVSEC-21), Fukuoka, Japan.2011:2C-5O-08.
    [30]Zaban A, Micic O I, Gregg B A, and Nozik A J. Photosensitization of Nanoporous TiO2 Electrodes with InP Quantum Dots[J]. Langmuir,1998,14(12):3153-3156.
    [31]Nozik A J. Quantum dot solar cells[J]. Physica E,2002,14(1):115-120.
    [32]Trupke T, Green M A, and Wfirfel P. Improving solar cell efficiencies by down-conversion of high-energy photons [J]. J. Appl. Phys.,2002,92(3):1668-1674.
    [33]Schaller R D, and Klimov V I. High efficiency carrier multiplication in PbSe nanocrystals, Implications for solar energy conversion[J]. Phys. Rev. Lett.,2004,92(18): 186601-1-4.
    [34]Calogero G, and Marco G D. Red Sicilian orange and purple eggplant fruits as natural sensitizers for dye-sensitized solar cells[J]. Sol. Energy Mater. Sol. Cells,2008,92(11): 1341-1346.
    [35]Nazeeruddin M K, Pechy P, Renouard T, Zakeeruddin S M, Humphry-Baker R, Comte P, Liska P, Cevey L, Costa E, Shklove V, Spiccia L, Deacon G B, Bignozzi C A, and Graltzel M. Engineering of Efficient Panchromatic Sensitizers for Nanocrystalline TiO2-Based Solar Cells[J]. J. Am. Chem. Soc.,2001,123(8):1613-1624.
    [36]Hashimoto K, Irie H, and Fujishima A. TiO2 photocatalysis:A historical overview and future prospects[J]. Jpn. J. Appl. Phys.,2005,44(12):8269-8285.
    [37]Kralchevska R, Milanova M, Tsvetkov M, Dimitrov D, and Todorovsky D. Influence of gamma-irradiation on the photocatalytic activity of Degussa P25 TiO2[J]. J. Mater. Sci., 2012,47(12):4936-4945.
    [38]Lin H-M, Keng C-H, and Tung C-Y. Gas-sensing properties of nanocrystalline TiO2[J]. Nanostructured Materials,1997,9(1-8):747-750.
    [39]Rengarajan R. Jiang P. Colvin V L, and Mittleman D. Optical properties of a photonic crystal of hollow spherical shells[J]. Appl. Phys. Lett.,2000,77:3517-3519.
    [40]林峰,李缵轶,王山鹰.Ti02纳米管的力学和电子学性质[J].物理学报,2009,58(12):8544-8548.
    [41]杨柯,刘阳,尹红.纳米二氧化钛的制备技术研究[J].中国陶瓷,2004,40(4):8-12.
    [42]Sclafani A, and Herrmann J M. Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions[J]. J. phys. Chem. B,1996,100(32):13655-13661.
    [43]刘守新,刘鸿.光催化及光电催化基础与应用[M].北京:化学工业出版社,2006.[44]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M].北京:化学工业出版社.2002.
    [45]陈敬中,刘剑洪.纳米材料科学导论[M].北京:高等教育出版社,2006.
    [46]Chen X, and Mao S S. Titanium Dioxide Nanomaterials:Synthesis, Properties, Modifications, and Applications[J]. Chem. Rev.,2007,107(7):2891-2959.
    [47]Iijima S. Helical microtubules of graphitic carbon[J]. Nature,1991,354(6348):56-58.
    [48]Lieber C M. One-dimensional nanostructures:Chemistry, physics & applications[J]. Solid State Commun.,1998,107,607-616.
    [49]Rao C N R, Muller A, and Cheetham A K. The Chemistry of Nanomaterials[M]. Wiley. com,2006.
    [50]Weisbuch C, and Vinter B. Quantum Semiconductor Structures:Fundamentals and Applications [M]. Academic press,1991.
    [51]Hoffmann M R, Martin S T, Chot W, and Bahnemann D W. Environmental Applications of Semiconductor Photocatalysis [J]. Chem. Rev.,1995,95(1):69-96.
    [52]Varghese O K, Gong D W, Paulose M, Ong K O, Dickey E C, and Grimes C A. Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure[J]. Adv. Mater.,2003,15(7-8):624-627.
    [53]Varghese O K, Gong D W, Paulose M, Ong K G, and Grimes C A. Hydrogensensing using titania nanotubes[J]. Sens. Actuators B:Chem.,2003,93(1-3):338-344.
    [54]Adachi M, Okasa I, Ngamsinlapasathian S, Murata Y, and Yoshikawa S. Dye-sensitized solar cells using semiconductor thin film compared of titania nanotubes[J]. Electrochem.,2002,70(6):449-452.
    [55]Ohsaki Y, Masaki N, Kitamura T, Wada Y, Okamoto T, Sekino T, Niiharab K, and Yanagida S. Dye-sensitized TiO2 nanotube solar cells:fabrication and electronic characterization[J]. Phys. Chem. Chem. Phys.,2005,7(24):4157-4163.
    [56]Liu S M, Gan L M, Liu L H, Zhang W D, and Zeng H C. Synthesis of Single-Crystalline TiO2 Nanotubes[J]. Chem. Mater.,2002,14(3):1391-1397.
    [57]Chu S Z, Wada K, Inoue S, and Todoroki S I. Synthesis and Characterization of Titania Nanostructures on Glass by A1 Anodization and Sol-Gel Process[J]. Chem. Mater.,2002, 14(1):266-272.
    [58]Chen Y, Crittenden J C, Hackney S, Sutter L, and Hand D W. Preparation of a Novel TiO2-Based p-n Junction Nanotube Photocatalyst[J]. Environ. Sci. Technol.,2005,39(5): 1201-1208.
    [59]Kasuga T, Hiramatsu M, Hoson A, Sekino T, and Niihara K. Formation of Titanium Oxide Nanotube[J]. Langmuir,1998,14(12):3160-3163.
    [60]Bavykin D V, Friedrich J M, and Walsh F C. Protonated Titanates and TiO2 Nanostructured Materials:Synthesis, Properties, and Applications [J]. Adv. Mater.,2006, 18(21):2807-2824.
    [61]Gong D, Grimes C A, Varghese O K, Hu W, Singh R S, Chen Z, and Dickey E C. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. J. Mater. Res.,2001, 16(12):3331-3334.
    [62]Macak J M, Tsuchiya H, Taveira L, Aldabergerova S, and Schmuki P. Smooth Anodic TiO2 Nanotubes[J]. Angew. Chem. Int. Ed.,2005,44(45):7463-7465.
    [63]Grimes C A, and Mor G K. TiO2 Nanotube Arrays:Synthesis, Properties, and Applications[M]. Springer,2009.
    [64]Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin M Y, and Aucouturier M. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy[J]. Surf. Interface Anal.,1999,27(7):629-637.
    [65]Patermarakis G, and Moussoutzanis K. Mathematical models for the anodization conditions and structural features of porous anodic Al2O3 films on aluminum[J]. J. Electrochem. Soc.,1995,142(3):737-743.
    [66]Ghicov A, Tsuchiya H, Macak J M, and Schmuki P. Titanium oxide nanotubes prepared in phosphate electrolytes[J]. Electrochem. Commun.,2005,7(5):505-509.
    [67]Cai Q Y, Paulose M, Varghese O K, and Grimes C A. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation[J]. J. Mater. Res.,2005,20(1):230-235.
    [68]Cai Q, Yang L, Yu Y. Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization[J]. Thin Solid Films,2006,515(4):1802-1806
    [69]Taveira L V, Macak J M, Tsuchiya H, Dick L F P, and Schmuki P. Initiation and growth of self-organized TiO2 nanotubes anodically formed in NH4F/(NH4)2SO4 electrolytes[J]. J. Electrochem. Soc.,2005,152(10):B405-B410.
    [70]Paulose M, Shankar K, Yoriya S, Prakasam H E, Varghese O K, Mor G K, Latempa T J, Fitzgerald A, and Grimes C A. Anodic growth of highly ordered TiO2 nanotube arrays to 134 μm in length[J]. J. Phys. Chem. B,2006,110(33):16179-16184.
    [71]Shankar K, Mor G K, Fitzgerald A, Grimes C A. Cation effect on the electrochemical formation of very high aspect ratio TiO2 nanotube arrays in formamide-water mixtures[J]. J. Phys. Chem. C,2007,111(1):21-26.
    [72]Prakasam H E, Shankar K, Paulose M, and Grimes C A. A new benchmark for TiO2 nanotube array growth by anodization[J]. J. Phys. Chem. C,2007,111(20):7235-7241.
    [73]Oguzie E E, Okolue B N, Ebenso E E, Onuoha G N, and Onuchukwu A I. Evaluation of the inhibitory effect of methylene blue dye on the corrosion of aluminium in hydrochloric acid[J]. Mater. Chem. Phys.,2004,87(2):394-401.
    [74]Paulose M, Prakasam H E, Varghese O K, Peng L, Popat K C, Mor G K, Desai T A, and Grimes C A. TiO2 nanotube arrays of 1000 μm length by anodization of titanium foil: phenol red diffusion[J]. J. Phys. Chem. C,2007,111(41):14992-14997.
    [75]Hahn R, Macak J M, and Schmuki P. Rapid anodic TiO2 and WO3 nanotubes in fluoride free electrolytes [J]. Electrochem. Commu.,2007,9(5):947-952.
    [76]Chen X B, Schriven M, Suena T, and Mao S S. Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium anodization[J]. Thin Solid Film,2007,515(24):8511-8514.
    [77]Habazaki H, Oikawa Y, Fushimi K, Shimizu K, Nagata S, Skeldon P, and Thompson G E. Formation of porous anodic films on Ti-Si alloys in hot phosphate-glycerol electrolyte[J]. Electrochim. Acta,2007,53(4):1775-1781.
    [78]Oh H J, Lee J H, Kim Y J, Suh S J, Lee J H, and Chi C S. Surface characteristics of porous anodic TiO2 layer for biomedical applications[J]. Mater. Chem. Phys.,2008,109(1): 10-14.
    [79]Onoda K, and Yoshikawa S. Effect of pre-nitridation treatment on the formation of anatase TiO2 films by anodization[J]. Ceram. Int.,2008,34(6):1453-1457.
    [80]Macak J M, Tsuchiya H, Ghicov A, and Schmuki P. Dye-sensitized anodic TiO2 nanotubes[J]. Electrochem. Commun.,2005,7(11):1133-1137.
    [81]Shankar K, Mor G K, Prakasam H E, Yoriya S, Paulose M, Varghese O K, and Grimes C A. Highly-ordered TiO2 nanotube arrays up to 220 μm in length:use in water photoelectrolysis and dye-sensitized solar cells[J]. Nanotechnology,2007,18(6): 065707-1-11.
    [82]Chen C C, Jehng W D, Li L L, and Ciau E W-G. Enhanced efficiency of dye-sensitized solar cells using anodic titanium oxide nanotube arrays [J]. J. Electrochem. Soc.,2009, 156(9):C304-C312.
    [83]Kim D, Ghicov A, Albu S P, and Schmuki P. Bamboo-type TiO2 nanotubes:Improved conversion efficiency in dye-sensitized solar cells[J]. J. Am. Chem. Soc.,2008,130(49): 16454-16455.
    [84]Roy P, Kim D, Paramasivam I, and Schmuki P. Improved efficiency of TiO2 nanotubes in dye sensitized solar cells by decoration with TiO2 nanoparticles[J]. Electrochem. Commun.,2009,11(5):1001-1004.
    [85]Albu S P, Ghicov A, Macak J M, Hahn R, and Schmuki P. Self-Organized, Free-Standing TiO2 Nanotube Membrane for Flow-through Photocatalytic Applications[J]. Nano Lett.,2007,7(5):1286-1289.
    [86]Lin C-J, Yu W-Y, Lu Y-T, and Chien S-H. Fabrication of open-ended high aspect-ratio anodic TiO2 nanotube films for photocatalytic and photoelectrocatalytic applications[J]. Chem. Commun.,2008,45:6031-6033.
    [87]Krishna K, and Losic D. A simple approach for synthesis of TiO2 nanotubes with through-hole morphology[J]. Phys. Status Solidi (RRL)-Rapid Research Letters,2009,3(5): 139-141.
    [88]Jo Y, Jung I, Lee I, Choi J, and Tak Y Fabrication of through-hole TiO2 nanotubes by potential shock[J]. Electrochem. Commun.,2010,12(5):616-619.
    [89]Zhang W Y, Li G Z, Li Y N, Yu Z T, and Xi Z P. Fabrication of TiO2 nanotube arrays on biologic titanium alloy and properties[J]. Trans. Nonferrous Met. Soc. China,2007, 17(S1):S692-S695.
    [90]Liu S K, Fu W Y, Yang H B, Li M H, Sun P, Luo B M, Yu Q J, Wei R H, Yuan M X, Zhang Y Y, Ma D, Li Y X, and Zou G T. Synthesis and Characterization of Self-organized Oxide Nanotube Arrays via a Facile Electrochemical Anodization[J]. J. Phys. Chem. C, 2008,112(50):19852-19859.
    [91]Kim D, Fujimoto S, Schmuki P, and Tsuchiya H. Nitrogen doped anodic TiO2 nanotubes grown from nitrogen-containing Ti alloys[J]. Electrochem. Commun.,2008, 10(6):910-913.
    [92]李静,云虹,林昌健.铁掺杂Ti02纳米管阵列对不锈钢的光生阴极保护[J].物理化学学报,2007,23(12):1886-1892.
    [93]Shankar K, Paulose M, Mor G K, Varghese O K, and Grimes C A. A study on the spectral photoresponse and photoelectrochemical properties of flame-annealed titania nanotube-arrays[J]. J. Phys. D:Appl. Phys.,2005,38(18):3543-3549.
    [94]Vitiello R P, Macak J M, Ghicov A, Tsuchiya H, Dick L F P, and Schmuki P. N-Doping of anodic TiO2 nanotubes using heat treatment in ammonia[J]. Electrochem. Commun., 2006,8(4):544-548.
    [95]Hahn R, Ghicov A, Salonen J, Lehto V-P, and Schmuki P. Carbon doping of self-organized TiO2 nanotube layers by thermal acetylene treatment[J]. Nanotechnology, 2007,18(10):105604-105607.
    [96]Tang X H, and Li D Y. Sulfur-Doped Highly Ordered TiO2 Nanotubular Arrays with Visible Light Response[J]. J. Phys. Chem. C,2008,112 (14):5405-5409.
    [97]Su Y L, Zhang X W, Han S,-Chen X Q, and Lei L C. F-B-codoping of anodized TiO2 nanotubes using chemical vapor deposition [J]. Electrochem. Commun.,2007,9(9): 2291-2298.
    [98]Ghicov A, Schmidt B, Kunze J, and Schmuki P. Photoresponse in the visible range from Cr doped TiO2 nanotubes[J]. Chem. Phys. Lett.,2007,433(4-6):323-326.
    [99]Ghicov A, Macak J M, Tsuchiya H, Kunze J, Haeublein V, Frey L, and Schmuki P. Ion Implantation and Annealing for an Efficient N-Doping of TiO2 Nanotubes[J]. Nano Lett., 2006,6(5):1080-1082.
    [100]Hou Y, Li X Y, Zou X J, Quan X, and Chen G H. Photoeletrocatalytic Activity of a Cu2O-Loaded Self-Organized Highly Oriented TiO2 Nanotube Array Electrode for 4-Chlorophenol Degradation[J]. Environ. Sci. Technol.,2009,43(3):858-863.
    [101]Kontos A I, Likodimos V, Stergiopoulos T, Tsoukleris D S, and Falaras P. Self-Organized Anodic TiO2 Nanotube Arrays Functionalized by Iron Oxide Nanoparticles[J]. Chem. Mater.,2009,21(4):662-672.
    [102]Kang Q, Liu S, Yang L, Cai Q, and Grimes C A. Fabrication of PbS nanoparticles-sensitized TiO2 nanotube arrays and their photoelectrochemical properties[J]. ACS Appl. Mater. Interfaces,2011,3(3):746-749.
    [103]Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, and Peng L M. CdS Quantum Dots Sensitized TiO2 Nanotube-Array Photoelectrodes[J]. J. Am. Chem. Soc.,2008,130(4): 1124-1125.
    [104]Lee W, Kang S H, Min S K, Sung Y-E, and Han S-H. Co-sensitization of vertically aligned TiO2 nanotubes with two different sizes of CdSe quantum dots for broad spectrum [J]. Electrochem. Commun.,2008,10(10):1579-1582.
    [105]Wang Q, Zhu K, Neale N R, and Frank A J. Constructing Ordered Sensitized Heterojunctions:Bottom-Up Electrochemical Synthesis of p-Type Semiconductors in Oriented n-TiO2 Nanotube Arrays[J]. Nano Lett.,2009,9(2):806-813.
    [106]Roy P, Berger S, and Schmuki P. TiO2 Nanotubes:Synthesis and Appli cations [J]. Angew. Chem. Int. Ed.,2011,50(13):2904-2940.
    [107]Mor G K, Shankar K, Paulose M, Varghese O K, and Grimes C A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells[J]. Nano Lett.,2006,6(2): 215-218.
    [108]Zhu K, Neale N R, Miedaner A, and Frank A J. Enhanced charge-collection efficiencies and light scattering in dye-sensitized solar cells using oriented TiO2 nanotubes arrays[J]. Nano Lett.,2007,7(1):69-74.
    [109]Ghicov A, Albu S P, Hahn R, Kim D, Stergiopoulos T, Kunze J, Schiller C-A, Falaras P, and Schmuki P. TiO2 Nanotubes in Dye-Sensitized Solar Cells:Critical Factors for the Conversion Efficiency[J]. Chem.-An Asian J.,2009,4(4):520-525.
    [110]Park J H, Lee T W, and Kang M G. Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays:Use in dye-sensitized solar cells[J]. Chem. Commun., 2008,25:2867-2869.
    [111]Paulose M, Shankar K, Varghese O K, Mor G K, and Grimes C A. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells[J]. J. Phys. D:Appl. Phys.,2006,39(21):2498-2503.
    [112]Kongkanand A, Tvrdy K, Takechi K, Masaru K, and Kamat P V. Quantum dot solar cells. Tuning photo response through size and shape control of CdSe-TiO2 architecture[J]. J. Am. Chem. Soc.,2008,130(12):4007-4015.
    [113]Hodes G. Comparison of dye- and semiconductor-sensitized porous nanocrystalline liquid junction solar cells[J]. J. Phys. Chem. C,2008,112(46):17778-17787.
    [114]梁骏吾.太阳电池:材料、制备工艺及检测[M].北京:机械工艺出版社,2009.
    [115]张鉴清.电化学测试技术[M].北京:化学工业出版社.2010.
    [116]Natu G, Huang Z, Ji Z, and Wu Y. The effect of an atomically deposited layer of alumina on NiO in P-type dye sensitized solar cells. Langmuir,2012,28(1):950-956.
    [117]Han L, Koide N, Chiba Y, Islam A and Mitate T. Modeling of anequivalent circuit for dye-sensitized solar cells:improvement of efficiency of dye-sensitized solar cells by reducing internal resistance[J]. Comptes Rendus Chimie,2006,9(5-6):645-651.
    [118]Ondersma J W, Hamann T W. Impedance Investigation of Dye-Sensitized Solar Cells Employing Outer-Sphere Redox Shuttles[J]. J. Phys. Chem. C,2010,114(1),638-645.
    [119]Zhao J L, Wang X H, Chen R Z, and Li L T. Fabrication of titanium oxide nanotube arrays by anodic oxidation[J]. Solid State Commun.,2005,134(10):705-710.
    [120]Albu S P, Ghicov A, Macak J M, and Schmuki P.250 μm long anodic TiO2 nanotubes with hexagonal self-ordering[J]. Phys. Stat. Sol.,2007,1(2):R65-R67.
    [121]赖跃坤,孙岚,左娟,林昌健.氧化钛纳米管阵列制备及形成机理[J].物理化学学报,2004,20(9):1063-1066.
    [122]宁成云,王玉强,郑华德,谭帼馨,邓春林,刘绪建.阳极氧化法制备二氧化钛纳米管阵列的研究[J].化学研究与应用,2010,22(1):14-17.
    [123]梁建鹤,肖秀峰,刘榕芳,俞佳,吴婷婷.宽电压范围下阳极氧化制备Ti02纳米管阵列及其热稳定性[J].无机化学学报,2010,26(1):112-119.
    [124]柯川.TiO2纳米管阵列的制备、改性及其光电性能的研究.西南交通大学博士学位论文,2012,博士.
    [125]Mor G K, Oomman K, and Grimes C A. Varghese. Fabrication of tapered, conical-shaped titania nanotubes [J]. J. Mater. Res.,2003,18(11):2588-2593.
    [126]Mor G K, Varghese O K, Paulose M, and Grimes C A. Transparent highly ordered TiO2 nanotube arrays via anodization of titanium thin films[J]. Adv. Funct. Mater.,2005, 15(8):1291-1296.
    [127]Hwang B J, and Hwang J R. Kinetic-model of anodic-oxidation of titanium in sulfuric acid[J]. J. Appl. Electrochem.,1993,23(10):1056-1062.
    [128]Raja K S, Misra M, and Paramguru K. Formation of self-ordered nanotubular structure of anodic oxide layer on titanium [J]. Eletrochim. Acta,2005,51(1):154-165.
    [129]Mor G K, Varghese O K, Paulose M, Ong K G, and Grimes C A. Fabrication of hydrogen sensors with transparent titanium oxide nanotube-array thin films as sensing elements[J]. Thin Solid Films,2006,496(1):42-48.
    [130]蔡芳共,杨峰,赵勇,程翠华.温度控制TiO2纳米管及管/线复合阵列的制备[J].无机化学学报,2011,27(3):504-508.
    [131]Lim J H, and Choi J. Titanium Oxide Nanowires Originating from Anodically Grown Nanotubes:The Bamboo-Splitting Model[J]. small,2007,3(9):1504-1507.
    [132]Xie Y, Zhou L, and Huang H. Enhanced photoelectrochemical current response of titania nanotube array[J]. Mater. Lett.,2006,60(29-30):3558-3560.
    [133]Sul Y-T, Johansson C B, Petronis S, Krozer A, Jeong Y, Wennerberg A, and Albrektsson T. Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown::the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition[J]. Biomaterials,2002,23(2):491-501.
    [134]Xiao X, Ouyang K, Liu R, and Liang J. Anatase type titania nanotube arrays direct fabricated by anodization without annealing[J]. Appl. Surf. Sci.,2009,255(6):3659-3663.
    [135]Weller H. Quantized Semiconductor Particles:A novel state of matter for materials science[J]. Adv. Mater.,1993,5(2):88-95.
    [136]Huang L, Zhang S, Peng F, Wang H, Yu H, Yang J, Zhang S, and Zhao H. Electrodeposition preparation of octahedral-Cu2O-loaded TiO2 nanotube arrays for visible light-driven photocatalysis[J]. Scr. Mater.,2010,63(2):159-161.
    [137]Ratanatawanate C, Xiong C, Balkus K J, and Jr. Fabrication of PbS Quantum Dot Doped TiO2 Nanotubes[J]. ACS Nano,2008,2(8):1682-1688.
    [138]Vougioukalakis G C, Philippopoulos A I, Stergiopoulos T, and Falaras P. Contributions to the development of ruthenium-based sensitizers for dye-sensitized solar cells[J]. Coord. Chem. Rev.,2011,255(21):2602-2621.
    [139]Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors [J]. J. Phys. Chem.,1994,98(12):3183-3188.
    [140]Peter L M, Wijayantha K G U, Riley D J, Waggett J P. Band-edge tuning in self-assembled layers of Bi2S3 nanoparticles used to photosensitize nanocrystalline TiO2[J]. J. Phys. Chem. B,2003,107(33):8378-8381.
    [141]Byrappa K, Yoshimura M. Handbook of hydrothermal technology:A technology for Crystal Growth and Materials Processing[M]. Access Online via Elsevier,2001.
    [142]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社,2001.
    [143]Suchanek W, and Yoshimura M. Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. J. Mater. Res.,1998,13:94-117.
    [144]Shi W, Song S, Zhang H. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures[J]. Chemical Society Reviews,2013,42:5714-5743.
    [145]Liu B, and Aydil E S. Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells[J]. J. Am. Chem. Soc., 2009,131(11):3985-3990.
    [146]黄晖,罗宏杰,杨明,刘江.水热沉淀法制备Ti02纳米粉体的研究[J],硅酸盐通报,2000,19(4):8-17.
    [147]Zhou X, Zhang D, Zhu Y, Shen Y, Guo X, Ding W, and Chen Y. Mechanistic Investigations of PEG-Directed Assembly of One-Dimensional ZnO Nanostructures[J]. J. Phys. Chem. B,2006,110(51):25734-25739.
    [148]Ko S H, Lee D, Kang H W, Nam K H, Yeo J Y, Hong S J, Grigoropoulos C P, and Sung H J. Nanoforest of Hydrothermally Grown Hierarchical ZnO Nanowires for a High Efficiency Dye-Sensitized Solar Cell[J]. Nano Lett.,2011,11(2):666-671.
    [149]Ohgi H, Maeda T, Hosono E, Fujihara S, and Imai H. Evolution of Nanoscale SnO2 Grains, Flakes, and Plates into Versatile Particles and Films through Crystal Growth in Aqueous Solutions[J]. Cryst. Growth Des.,2005,5(3):1079-1083.
    [150]Wu C, Xie Y, Wang D, Yang J, and Li T W. Selected-Control Hydrothermal Synthesis of γ-MnO2 3D Nanostructures[J]. J. Phys. Chem. B,2003,107(49):13583-13587.
    [151]Xiao L.S, Li J, Brougham D F, Fox E K, Feliu N, Bushmelev A, Schmidt A, Mertens N, Kiessling F, Valldor M, Fadeel B, and Mathur S. Water-Soluble Superparamagnetic Magnetite Nanoparticles with Biocompatible Coating for Enhanced Magnetic Resonance Imaging[J]. ACS Nano,2011,5(8):6315-6324.
    [152]Luo Y, Duan G, Ye M, Zhang Y, and Li G. Poly(ethylene glycol)-Mediated Synthesis of Hollow ZnS Microspheres[J]. J. Phys. Chem. C,2008,112(7):2349-2352.
    [153]Hu J Q, Deng B, Zhang W X, Tang K B, and Qian Y T. Synthesis and Characterization of CdIn2S4 Nanorods by Converting CdS Nanorods via the Hydrothermal Route[J]. Inorg. Chem.,2001,40(13):3130-3133.
    [154]Jiang J, Yu S-H, Yao W-T, Ge H, and Zhang G-Z. Morphogenesis and crystallization of Bi2S3 nanostructures by an ionic liquid-assisted templating route:Synthesis, formation mechanism, and properties [J]. Chem. Mater.,2005,17(24):6094-6100.
    [155]Shi W, Huo L, Wang H, Zhang H, Yang J, and Wei P. Hydrothermal growth and gas sensing property-of flower-shaped SnS2 nanostructures[J]. Nanotechnology,2006,17(12): 2918-2924.
    [156]Peng Q, Dong Y, and Li Y, ZnSe Semiconductor Hollow Microspheres[J]. Angew. Chem. Int. Ed.,2003,42(26):3027-3030.
    [157]Li M L, Yao Q Z, Zhou G T, and Fu S Q. Microwave-assisted synthesis of flower-like B-FeSe microstructures[J]. CrystEngComm.,2010,12(10):3138-3144.
    [158]Shi W, Yu J, Wang H, and Zhang H. Hydrothermal synthesis of single-crystalline antimony telluride nanobelts[J]. J. Am. Chem. Soc.,2006,128(51):16490-16491.
    [159]Wang D, Liu L, Zhang F, Tao K, Pippel E, and Domen K. Spontaneous Phase and Morphology Transformations of Anodized Titania Nanotubes Induced by Water at Room Temperature[J]. Nano Lett.,2011,11:3649-3655
    [160]Cai F-G, Yang F, Jia Y-F, Ke C, Cheng C-H, Zhao Y. Bi2S3-modified TiO2 nanotube arrays:easy fabrication of hetero structure and effective enhancement of photoelectrochemical property[J]. J. Mater. Sci.,2013,48(17):6001-6007.
    [161]Yang L, Luo S, Liu R, Cai Q, Xiao Y, Liu SH, Su F, and Wen L. Fabrication of CdSe Nanoparticles Sensitized Long TiO2 Nanotube Arrays for Photocatalytic Degradation of Anthracene-9-carbonxylic Acid under Green Monochromatic Light[J]. J. Phys. Chem. C, 2010,114(11):4783-4789.
    [162]Bessekhouad Y, Robert D, and Weber J V. Bi2S3/Ti02 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant[J]. J. Photochem. Photobiol. A Chem.,2004,163(3):569-580.
    [163]Chen Y-H, Huang K-C, Chen J-G, Vittal R, and Ho K-C. Titanium flexible photoanode consisting of an array of TiO2 nanotubes filled with a nanocomposite of TiO2 and graphite for dye-sensitized solar cells[J]. Electrochimica. Acta,2011,56(23): 7999-8004.
    [164]Chen Q, and Xu D. Large-scale, noncurling, and free-standing crystallized TiO2 nanotube arrays for dye-sensitized solar cells[J]. J. Phys. Chem. C,2009,113(15): 6310-6314.
    [165]R. Kern, R. Sastrawan, J. Ferber, R. Stangl, J. Luther. Modeling and interpretation of electrical impedance spectra of dye solar cells operated under open-circuit conditions[J]. Electrochimica. Acta,2002,47(26):4213-4225.
    [166]Hyun B-R, Zhong Y-W, Bartnik A C, Sun L, Abruna H D, Wise F W, Goodreau J D, Matthews J R, Leslie T M, and Borrelli N F. Electron Injection from Colloidal PbS Quantum Dots into Titanium Dioxide Nanoparticles[J]. ACS Nano,2008,2(11): 2206-2212.
    [167]Wise F W. Lead salt quantum dots:the limit of strong quantum confinement[J]. Ace. Chem. Res.,2000,33(11):773-780.
    [168]Lazzeri M, Vittadini A, and Selloni A. Structure and energetics of stoichiometric TiO2 anatase surfaces[J]. Phys Rev. B,2001,63(15):155409-1-9.
    [169]Peterson J J, and Krauss T D. Fluorescence Spectroscopy of Single Lead Sulfide Quantum Dots[J]. Nano Lett.,2006,6:510-514.
    [170]Ellingson R J, Beard M C, Johnson J C, Yu P, Micic O I, Nozik A J, Shabaev A, and Efros A L. Highly Efficient Multiple Exciton Generation in Colloidal PbSe and PbS Quantum Dots[J]. Nano Lett.,2005,5:865-871.
    [171]Kang Q, Liu S, Yang L, Cai Q, and Grimes C A. Fabrication of PbS nanoparticles-sensitized TiO2 nanotube arrays and their photoelectrochemical properties[J]. ACS Appl. Mater. Interfaces,2011,3(3):746-749.
    [172]Pattantyus-Abraham A G, Kramer I J, Barkhouse A R, Wang X, Konstantatos G, Debnath R, Levina L, Raabe I, Nazeeruddin M K, Gratzel M, and Sargent E H. Depleted-Heterojunction Colloidal Quantum Dot Solar Cells[J]. ACS Nano,2010,4(6): 3374-3380.
    [173]Etgar L, Park J H, Barolo C, Nazeeruddin M K, Viscardi G, and Gratzel M. Design and Development of Novel Linker for PbS Quantum Dots/TiO2 Mesoscopic Solar cell[J]. ACS Appl. Mater. Interfaces,2011,3:3264-3267.
    [174]Etgar L, Zhang W, Gabriel S, Hickey S G, Nazeeruddin M K, Eychmuller A, Liu B, and Gratzel M. High Efficiency Quantum Dot Heterojunction Solar Cell Using Anatase (001) TiO2 Nanosheets[J]. Adv. Mater.,2012,24:2202-2206.
    [175]Pal B N, Robel I, Mohite A, Laocharoensuk R, Werder D J, and Klimov V I. High-Sensitivity p-n Junction Photodiodes Based on PbS Nanocrystal Quantum Dots[J]. Adv. Funct. Mater.,2012,22:1741-1748.
    [176]Zhu J J, Xu S, Wang H, Zhu J M, and Chen H-Y. Sonochemical Synthesis of CdSe Hollow Spherical Assemblies Via an In-Situ Template Route[J]. Adv. Mater.,2003,15(2): 156-159.
    [177]Safarifard V, and Morsali A. Sonochemical syntheses of a nano-sized copper(Ⅱ) supramolecule as a precursor for the synthesis of copper(II) oxide nanoparticles[J]. Ultrason. Sonochem.,2012,19(4):823-829.
    [178]Wang H, Zhu J-J, Zhu J-M, and Chen H-Y. Sonochemical Method for the Preparation of Bismuth Sulfide Nanorods[J]. J. Phys. Chem. B,2002,106(15):3848-3854.
    [179]Xie Y, Ali G, Yoo S Ha, and Cho S O. Sonication-Assisted Synthesis of CdS Quantum-Dot-Sensitized TiO2 Nanotube Arrays with Enhanced Photoelectrochemical and Photocatalytic Activity[J]. ACS Appl. Mater. Interface,2010,2(10):2910-2914.
    [180]Cai F-g, Yang F, Xi J-f, Jia Y-f, Cheng C-h, and Zhao Y. Ultrasound effect: Preparation of PbS/TiO2 heterostructure nanotube arrays through successive ionic layer adsorption and the reaction method[J]. Mater. Lett.,2013,107:39-41.
    [181]Zhang Y, Xie T, Jiang T, Wei X, Pang S, Wang X, and Wang D. Surface photovoltage characterization of a ZnO nanowire array/CdS quantum dot heterogeneous film and its application for photovoltaic devices[J]. Nanotechnology,2009,20:155707-1-6.
    [182]Jiang T, Xie T, Zhang Y, Chen L, Peng L, Li H, and Wang D. Photoinduced charge transfer in ZnO/Cu2O heterostructure films studied by surface photovoltage technique[J]. Phys. Chem. Chem. Phys.,2010,12:15476-15481.
    [183]Brus L E. Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites:The Size Dependence of the Lowest Excited Electronic State[J]. J. Chem. Phys.,1984,80:4403-4409.
    [184]Jung S W, Park J-H, Lee W, Kim J-H, Kim H, Choi C-J, and Ahn K-S. Enhanced electron lifetime in CdS quantum dot-sensitized solar cells with nanoporous-layer-covered TiO2 nanotube arrays[J]. J. Appl. Phys.,2011,110:054301-1-5.
    [185]Wang Y, Suna A, Mahler W, and Kawaki R. PbS in polymers. From molecules to bulk solids[J]. J. Chem. Phys.,1987,87(12):7315-7322.
    [186]Nosaka Y. Finite Depth Spherical Well Model for Excited States of Ultrasmall Semiconductor Particles. An Application[J]. J. phys. Chem.,1991,95(13):5054-5058.
    [187]Zheng Y-Z, Tao X, Wang L-X, Xu H, Hou Q, Zhou W-L, and Chen J-F. Novel ZnO-Based Film with Double Light-Scattering Layers as Photoelectrodes for Enhanced Efficiency in Dye-Sensitized Solar Cells[J]. Chem. Mater.,2010,22:928-934.
    [188]Jia Y, Yang F, Cai F, Cheng C, and Zhao Y. Photoelectrochemical and Charge Transfer Properties of SnS/TiO2 Heterostructure Nanotube Arrays[J]. Electron. Mater. Lett., 2013,9(3):287-291.
    [189]Hou Y, Li X Y, Zhao Q D, Quan X, and Chen G H. Fabrication of Cu2O/TiO2 nanotube heterojunction arrays and investigation of its photoelectrochemical behavior. Appl. Phys. Lett.,2009,95:093108-093110.
    [190]Gomes W P, and Vanmaekelbergh D. Impedance spectroscopy at semiconductor electrodes:review and recent developments[J]. Electrochim. Acta,1996,41(7):967-973.
    [191]Popescu V, Bester G, Hanna M C, Norman A G, and Zunger A. Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In, Ga)As/Ga(As, P) quantum dot solar cells[J]. Phys. Rev. B,2008,78(20):205321-1-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700