甲氧基卟啉的合成及在金属离子和蛋白质分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卟啉及金属卟啉化合物广泛存在于自然界和生命体,在生命活动中起着非常重要的作用。卟啉作为显色剂已经广泛应用于单一金属离子的测定;卟啉化合物还可作为过氧化物模拟酶催化化学发光反应用于生物大分子的检测。
     本文首先详细叙述了卟啉化合物基本的合成方法及卟啉化合物在金属离子和生物大分子分析中的应用。论文主要包括以下几个方面:
     一、采用4-甲氧基苯甲醛、苯甲醛、吡咯为原料,通过经典的Alder-Longo合成法,得到了不对称甲氧基卟啉化合物及其金属配合物,并合成了Meso-四-(3-甲氧基-4-羟基苯基)卟啉及其锌、锰、铽金属配合物。产物经过红外、紫外、核磁等表征,确定其结构并将部分化合物应用到分析测定中。
     二、5,10-二苯基~(-1)5,20-二(4-甲氧基苯基)卟啉作为显色剂,结合光谱拟合软件对吸收光谱进行二阶求导,利用导数分光光度法同时测定了铜、镉、铅三种金属离子,考察了同时测定的最佳条件;铜、镉、铅三种金属离子分别在0.05 - 0.80、0.01 - 0.56、0.12 - 1.66μg·mL~(-1)线性范围内符合朗伯-比尔定律,摩尔吸光系数分别为2.10×10~5、3.95×10~5、3.36×10~5 L·mol~(-1)·cm~(-1),并将该方法用于实际样品中多种金属离子的同时测定。
     三、建立了Meso-四(3-甲氧基-4-羟基苯基)卟啉([T-(3-MO-4-HP)P])作为显色剂分光光度法同时测定铜、锌、镉、汞、铅的方法,考察了各个条件对测定的影响,铜、锌、镉、汞、铅五种金属离子分别在0 - 0.60、0 - 0.60、0 - 0.40、0 - 0.80、0 - 0.48μg·mL~(-1)线性范围内符合朗伯-比尔定律,显色体系的摩尔吸光系数分别为1.38×10~5、1.01×10~5、3.24×10~5、1.0~7×10~5、1.29×10~5 L·mol~(-1)·cm~(-1);并将其应用于多种实际样品中金属离子的同时测定。
     四、采用流动注射化学发光法以5-(4-甲氧基苯基)~(-1)0,15,20-三苯基锌卟啉为过氧化物模拟酶测定牛血清白蛋白,在最佳条件下,绘制牛血清白蛋白的工作曲线,线性范围为0.05 - 25.0μg·mL~(-1),检测限为2.73 ng·mL~(-1)。初步从理论上探讨了其作用机理,并采用荧光光谱研究了该锌卟啉与牛血清白蛋白之间的相互作用力、猝灭机理及其卟啉化合物对蛋白质构型变化的影响等。
     五、采用流动注射化学发光法以Meso-四(3-甲氧基-4-羟基苯基)锰卟啉为过氧化物模拟酶测定转铁蛋白,探讨该发光反应的最佳实验条件,在最佳条件下,绘制转铁蛋白的工作曲线,线性范围为0.04 - 20.0μg·mL~(-1),检测限为1.62 ng·mL~(-1)。并成功地将所建立的方法应用于血清样品中转铁蛋白含量的测定。
Porphyrin and metalloporphyrin existed in nature and life body widely, playing an important role in life activities. It has been used as chromogenic reagent for the determination of single metal ion in analytical chemistry. It also can be used as peroxidase mimic enzyme for the determination of biomacromolecule using the flow injection-chemiluminescence method.
     In this paper, the synthesis methods for porphyrin were discussed. Then the application of porphyrin in determination of metal ion and biomacromolecule were also mentioned. The main content of the study are provided as follows:
     1. Using 4-Methoxybenzaldehyde, benzaldehyde and pyrrole as raw materials, asymmetry methoxylporphyrin compounds and metal complexes were synthesized by classical Alder-longo method. The Meso-tetra (3-methoxyl-4-hydroxylphenyl)porphyrin and its metal complex was also obtained. All the products were characterized using infrared spectrum(IR), nuclear magnetic resonance (NMR), ultraviolet-visible absorption spectrum(UV-Vis).
     2. With the help of software on the second-order derivation of original absorption spectrum, Cu~(2+), Cd~(2+), Pb~(2+) could be determinated simultaneously by spectrophotometry method. 5,10-diphenyl~(-1)5,20-dimethoxylphenyl porphyrin was used as chromomeric reagent. The optimal conditions of this system have been investigated. The results showed that: measurements were available in the ranges of 0.05 - 0.80, 0.01 - 0.56, 0.12 - 1.66μg·mL~(-1) for Pb~(2+), Cd~(2+) and Cu~(2+), respectively. The molar absorptivity of these color systems were 2.10×10~5, 3.95×10~5 and 3.36×10~5 L·mol~(-1)·cm~(-1). Then this method was applied to simultaneous determination of real samples with satisfactory results.
     3. With the help of software on the second-order derivation of original absorption spectrum, Cu~(2+), Zn~(2+), Cd~(2+), Hg~(2+) and Pb~(2+) could be determinated simultaneously by spectrophotometry method. Meso-tetra (3-methoxyl-4-hydroxylphenyl)porphyrin was used as chromomeric reagent. The results showed that: measurements were available in the ranges of 0 - 0.60, 0 - 0.60, 0 - 0.40, 0 - 0.80 and 0 - 0.48μg·mL~(-1) for Cu~(2+), Zn~(2+), Cd~(2+), Hg~(2+) and Pb~(2+), respectively. The molar absorptivity of these color systems were 1.38×10~5, 1.01×10~5, 3.24×10~5, 1.0~7×10~5 and 1.29×10~5 L·mol~(-1)·cm~(-1). Then this method was applied to simultaneous determination of real samples with satisfactory results.
     4. The ability of bovine serum albumin(BSA) to reduce the chemiluminescence reaction of luminol-hydrogen peroxide(H2O2), catalyzed by 5-(4-methoxyl)phenyl~(-1)0,15,20-triphenyl zinc Porphyrin(ZnP) as mimetic enzyme of Peroxidase, has been exploited to develop a new flow injection chemiluminescence method for the determination of BSA. Under the optimum conditions, the linearity of the calibration curve for the determination of BSA was in the range of 0.05 - 25.0μg·mL~(-1). This method has been successfully applied to the determination metal ions in the real sample. The interaction of porphyrin and BSA were studied by fluorescence spectrum.
     5. The ability of transferrin(Tf) to reduce the chemiluminescence reaction of luminol-H_2O_2, catalyzed by Meso-tetra(3-methoxyl-4-hydroxyl)phenyl Manganese Porphyrin(MnP) as Mimetic Enzyme of Peroxidase, has been exploited to develop a new flow injection chemiluminescence method for the determination of transferrin. The linearity of the calibration curve for the determination of transferrin was in the range from 0.04 to 20.0μg·mL~(-1). The method has been successfully applied to the determination of transferrin in the serum samples.
引文
[1] Takagi S, Eguchi M, Tryk D.A, et al. Porphyrin photochemistry in inorganic/organic hybrid materials: Clays, layered semiconductors, nanotubes, and mesoporous materials. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2006, 7(2-3): 104-126.
    [2] Liu X.J, Feng J.K, Ren A.M, et al. Theoretical studies of the spectra and two-photon absorption cross sections for porphyrin and carbaporphyrins. Chemical Physics Letters, 2003, 373(1-2): 197-206.
    [3] Jaung J.Y. Synthesis of new porphyrins with dicyanopyrazine moiety and their optical properties. Dyes and Pigments, 2007, 72(3): 315-321.
    [4] Rothemund P. The synthesis of porphin. Journal of the American Chemical Society, 1936, 58 (4): 625-627.
    [5] Alder A.D. Longo F.R. Shergalis W. Mechanistic investigations of porphyrin syntheses(I): preliminary studies on meso-tetraphenylporphyrin. Journal of the American Chemical Society, 1964, 86(15): 3145-3149.
    [6]龙立平,聂伟安,钟桐生等.基于卟啉衍生物荧光熄灭的Pb2+光化学传感器.应用化学, 2007, 24(7): 806-809.
    [7]宋建新,郭灿城.四苯乙烯基卟啉的合成.化学通报, 2004, 67(11): 853-855.
    [8] Wagner R.W, Lawrence D.S, Lindsey J.S. An improved synthesis of tetramesitylporphyrin. Tetrahedron Letters, 1987, 28(27): 3069-3070.
    [9]郭灿城,何兴涛,邹纲要.合成四苯基卟啉及其衍生物的新方法.有机化学, 1991, 11(11): 416-419.
    [10]赵胜芳,陈年友,李早英. 5,10,15,20-四(4-甲氧羰基苯基)卟啉的微波合成.合成化学, 2005, 13(3): 298-300.
    [11]陈年友,赵胜芳,王桂林. 5-邻羟基苯基-10,15,20-三苯基卟啉的微波合成.武汉理工大学学报, 2003, 25(8): 16-18.
    [12]陈年友,赵胜芳,廖学红等.四苯基卟啉的微波合成.武汉大学学报(理学版), 2004, 50(2): 169-172.
    [13] Agarwala A, Bandyopadhyay D. The Radical versus non-radical reactive intermediates in the iron(III) porphyrin catalyzed oxidation reactions by hydroperoxides, hydrogen peroxide and iodosylarene. Catalysis Letters, 2008, 124(3-4): 256-261.
    [14]颜梅,陈欣,张丽娜等. Meso-四(3,5-二溴-4-羟基苯基)卟啉褪色光度法测定蛋白质的研究与应用.光谱学与光谱分析, 2008, 28(5): 1149-1152.
    [15]何永志,刘东志,周雪琴.卟啉衍生物的合成及抗肿瘤活性研究.天津理工大学学报, 2008, 24(4): 54-57.
    [16] Ladomenou K, Charalambidis G, Coutsolelos A.G. A strategic approach for the synthesis of new porphyrin rings, attractive for heme model purpose. Tetrahedron Letters, 2007, 63(13): 2882-2887.
    [17]李东红,刁俊林,刘建仓.载光敏剂磁性纳米粉的制备及其光敏活性.应用化学, 2008, 25(9): 1065-1068.
    [18] Gong F.C, Wu D.X, Cao Z, He X.C. A fluorescence enhancement-based sensor using glycosylated metalloporphyrin as a recognition element for levamisole assay. Biosensors and Bioelectronics, 2006, 22(3): 423-428.
    [19]丁静,孙舒婷,张诺等.卟啉类显色剂在重金属离子分析中的研究及应用.分析测试技术与仪器, 2008, 14(1): 3-9.
    [20]吕艳卓,徐岩,陆天虹等. CoTPP-Pt/C作直接甲醇燃料电池阴极催化剂.应用化学, 2007, 24(8): 974-976.
    [21] Liu J.H, Itoh J. Kinetic determination of cysteine on flow injection system by utilizing catalytic complexation reaction of Cu(II) with 5,10,15,20-tetrakis(4-N-trimethylammino-phenyl) porphyrin. Talanta, 2006, 70(4): 791-796.
    [22] Banks C.V, Bisque R.E. Spectrophotometric determination of zinc and other metals with alpha, beta, gamma, delta-Tetraphenytporphine. Analytical Chemistry, 1957, 29(4): 522-526.
    [23]潘教麦,李在均,张其颖等.新显色剂及其在光度分析中的应用.北京:化学工业出版社, 2003.
    [24] Biesaga M, Pyrzyńska K, Trojanowicz M. Porphyrins in analytical chemistry: A review. Talanta, 2000, 51(2): 209-224.
    [25]丁静,陈欣,孙舒婷等. 5,10,15-三吡啶基-20-苯基卟啉荧光猝灭法测定镉.冶金分析, 2009, 29(9): 48-51.
    [26]王涛,郝晓玲,常旭等.卟啉分光光度法测定豆类微量Cu(Ⅱ)含量. 2009, 24(10): 131-134.
    [27] Hu S, Mao H.S, Wang Y. Optical sensing of heavy metal ions in anionic micellar solution using a Pd porphyrin phosphorescent probe. Journal of Photochemistry and Photobiology A: Chemistry, 2009, 204(1): 1-6.
    [28] Li C.Y, Zhang X.B, Dong Y.Y, et al. A porphyrin derivative containing 2-(oxymethyl)pyridine units showing unexpected ratiometric fluorescent recognition of Zn2+ with high selectivity. Analytica Chimica Acta, 2008, 616(2): 214-221.
    [29]夏爱清,于双江,高岩松等.新型显色剂Meso-四(4-羟基-3-乙氧基苯基)卟啉的合成及其应用.高等学校化学学报, 2009, 30(4): 651-654.
    [30]张景会,张发亮,冯世龙等.银(Ⅱ)与meso-四(4-三甲铵苯基)卟啉显色反应的研究.河南科技大学学报(自然科学版), 2008, 29(1): 102-104.
    [31]王涛,韩士田. Meso-四(4-甲氧基-3-磺酸钠基苯基)卟啉测定Pb(Ⅱ)的实际应用研究.河北科技大学学报, 2007, 28(3): 206-208.
    [32]王涛,韩士田. Meso-四(4-氯-3-磺酸钠苯基)卟啉快速测定痕量铅.环境监测管理与技术, 2008, 20(1): 33-34.
    [33]周连文. Meso-四(4-氯苯基)卟啉测定小麦面粉中痕量铅的研究.食品工业科技, 2008, 29(4): 277-278.
    [34] Han Z.X, Luo H.Y, Zhang X.B, et al. A ratiometric chemosensor for fluorescent determination of Hg2+ based on a new porphyrin-quinoline dyad. Spectrochimica Acta Part A, 2009, 72(5): 1084-1088.
    [35]高焕君,韩士田,刘彦钦.溴化5-[(4-N-正丁基)吡啶基]10,15,20-(4-N-吡啶基)卟啉的合成及其与铜(Ⅱ)显色反应的研究.冶金分析, 2007, 27(9): 35-38.
    [36]侯振雨,朱冬梅. Meso-四-(邻氯对磺酸苯基)卟啉分光光度法测定蔬菜中锌的研究.广东微量元素科学, 2006, 13(4): 61-64.
    [37]杨凤霞,陶建中,侯振雨等. Meso-四-(邻氯对磺酸苯基)卟啉荧光熄灭光度法测定银.理化检验-化学分册, 2006, 42(10): 853-854.
    [38]陈文宾,马卫兴,徐国想等.二溴羟基卟啉光度法测定微量铂.冶金分析, 2007, 27(6): 73-75.
    [39]杨会琴,张红兵,戴翠萍等.铅与meso-四(4-磺酸苯基)卟啉的显色系统研究及其在食品中铅的检测应用.食品科学, 2006, 27(8): 217-220.
    [40]姜沛灵,李德良,李科林.四对磺酸苯基卟啉的微波合成及其在高效液相色谱法分离测定铜、铬、镍的应用.冶金分析, 2009, 29(5): 16-19.
    [41] Igarashi S, Aihara T, Yotsuyanagi T. Flow injection spectrophotometric determination of ng·mL?1 levels of cobalt(II) using the photochemical decomposition of a cadmium(II)-water-soluble porphyrin complex. Analytical Chimica Acta, 1996, 323(1-3): 63-67.
    [42]段彩虹,丁玉龙,牟宗刚等.卟啉类显色剂的研究与应用.济南大学学报(自然科学版), 2005, 19(1): 32-35.
    [43]丁玉龙,李贺,杜斌等.卟啉试剂合成的研究进展.济南大学学报(自然科学版), 2005, 19(3): 215-218.
    [44] Yang G.Y, Fen W.B, Lei C, et al. Study on solid phase extraction and graphite furnace atomic absorption spectrometry for the determination of nickel, silver, cobalt, copper, cadmium and lead with MCI GEL CHP 20Y as sorbent. Journal of Hazardous Materials, 2009, 162(1): 44-49.
    [45] Liu R, Liang P. Determination of trace lead in water samples by graphite furnace atomic absorptio spectrometry after preconcentration with nanometer titanium dioxide immobilized on silica gel. Journal of Hazardous Materials, 2008, 152(1): 166-171.
    [46]倪永年.化学计量学在分析化学中的应用.北京:科学出版社, 2004.
    [47] Ghavami R, Najafi A, Hemmateenejad B. Chemometrics-assisted spectrophotometric methods for simultaneous determination and complexation study of Fe(III), Al(III) and V(V) with morin in micellar media. Spectrochimical Acta part A: Molecular and Biomolecular Spectroscopy, 2008, 70(4): 824-834.
    [48] Ensafi A.A, Khayamiana T, Benvidia A, et al. Simultaneous determination of copper, lead and cadmium by cathodic adsorptive stripping voltammetry using artificial neural network. Analytica Chimica Acta, 2006, 561(1-2): 225-232.
    [49] Abbaspour A, Baramakeh L. Application of principle component analysis–artificial neural network for simultaneous determination of zirconium and hafnium in real samples. Spectrochimical Acta part A: Molecular and Biomolecular Spectroscopy, 2006, 64(2): 477-482.
    [50] Ghasemi J, Niazi A. Simultaneous determination of cobalt and nickel. Comparison of prediction ability of PCR and PLS using original, first and second derivative spectra. Microchemical Journal, 2001,68(1): 1-11.
    [51] Madrakian T, Afkhami A, Moein R, et al. Simultaneous spectrophotometric determination of Sn(II) and Sn(IV) by mean centering of ratio kinetic profiles and partial least squares methods. Talanta, 2007, 72(5): 1847-1852.
    [52] Ni Y.N, Huang C.F, Kokot S. Simultaneous determination of iron and aluminium by differential kinetic spectrophotometric method and chemometrics. Analytica Chimica Acta, 2009, 599(2): 209-218.
    [53] Ghasemi J, Shahabadi N, Seraji H.R. Spectrophotometric simultaneous determination of cobalt, copper and nickel using nitroso-R-salt in alloys by partial least squares. Analytica Chimica Acta, 2004, 510(1): 121-126.
    [54] Afkhami A, Abbasi-Tarighat M, Khanmohammadi H. Simultaneous determination of Co2+, Ni2+, Cu2+ and Zn2+ ions in foodstuffs and vegetables with a new Schiff base using artificial neural networks. Talanta, 2009, 77(3): 995-1001.
    [55]雷亚春.卟啉及金属卟啉对生物分子识别作用的研究[硕士学位论文].太原:山西大学, 2004.
    [56]张红芬,潘景浩.卟啉及金属卟啉的应用.化学教育, 2005, 26(4): 3-6.
    [57]安文汀.卟啉及金属卟啉与生物大分子相互作用的光谱表征[硕士学位论文].太原:山西大学, 2005.
    [58]魏琴,李燕,段彩虹等.微乳液增敏高灵敏荧光光谱探针测定蛋白质的研究.光谱学与光谱分析, 2006, 26(1): 109-112.
    [59]张丽娜,陈欣,夏阳等.荧光光谱法研究四苯基-锌金属卟啉与蛋白质的相互作用机理.光谱学与光谱分析, 2009, 29(3): 773-776.
    [60] Yu J.H, Weng Y.X, Wang X.S, et al. The triplet excited state changes of amphiphilic porphyrins with different side-chain length in AOT reverse micelles. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 156(1-3): 139-144.
    [61] Borissevitch I.E, Tania Tominaga T, Imasato H, et al. Resonance light scattering study of aggregation of two water soluble porphyrins due to their interaction with bovine serum albumin. Analytica Chimica Acta, 1997, 343(3): 281-286.
    [62] Abhay S.C. Interaction of porphyrins with heme proteins-a brief review. Molecular and Cellular Biochemistry, 2003, 253(1-2): 49-54.
    [63] Suzana M.A, S?lvia M.B.C. Spectroscopic studies on the interaction of a water soluble porphyrin and two drug carrier proteins. Biophysical Journal, 2002, 82(3): 1607-1619.
    [64] Tang Y.J, Chen Y, Chen Z, et al. Adsorption of a protein–porphyrin complex at a liquid–liquid interface studied by total internal reflection synchronous fluorescence spectroscopy. Analytica Chimica Acta, 2008, 614(1): 71-76.
    [65] An W.T, Jiao Y, Dong C, et al. Spectroscopic and molecular modeling of the binding of meso-tetrakis(4-hydroxyphenyl)porphyrin to human serum albumin. Dyes and Pigments, 2009, 81(1): 1-9.
    [66] Andrade S.M, Costa S.M.B. Spectroscopic studies on the interaction of a water soluble porphyrin and two drug carrier proteins. Biophysical Journal, 2002, 82(3): 1607-1619.
    [67] Li Q, Seeger S. Deep UV sensing of the interaction of porphyrin with bovine serum albumin protein. Sensors and Actuators B: Chemical, 2009, 139(1): 118-124.
    [68]胡天喜.发光分析与医学.上海:华东师范大学出版社, 1990.
    [69]张华山,王红,赵媛媛.分子探针与检测试剂.北京:科学出版社, 2002.
    [70]袁世芳.超氧化物岐化酶模拟物的合成及化学模拟[硕士学位论文].太原:山西大学, 2004.
    [71]周立山.新型卟啉模拟酶的合成研究[硕士学位论文].天津:天津大学, 2002.
    [72]帖建科,常文保,慈云祥.金属卟啉作为过氧化物模拟酶在分析化学中的应用.分析化学, 1996, 22(5): 216-522.
    [73] Ikarlyama Y, Suzuki S, Alzawa M. Luminescence immunoassay of human serum albumin with hemin as labeling catalyst. Analytical Chemistry, 1982, 54(7): 1126.
    [74] Hara T, Toriyama M, Miyoshi H, et al. Immunoassay using a metal-complex compound as a chemiluminescent catalyst IV the investigation of a metal porphine complex as a labeling reagent. Bulletin of the Chemical Society of Japan, 1984, 57(10): 3009-3010.
    [75] Hara T, Toriyama M, Kitamura K, et al. The determination of a small amount of biological constituent by the use of chemiluminescence V an iron-dyestuff complex as a catalyst. Bulletin of the Chemical Society of Japan, 1985, 58(7): 2135-2136.
    [76] Ci Y.X, He H.B, Chang W.B, et al. Study of the mimetic peroxidase-catalysed chemiluminescence reaction. Analytica Chimica Acta, 1990, 237(3): 497-501.
    [77] Ci Y.X, Zheng Y.G, Tie J.K, et al. Catalytic behavior of iron (II)-oxide complexes in the chemicuminescence reaction. Analytica Chimica Acta, 1993, 282(3): 695-701.
    [78] Ci Y.X, Tie J.K, Wang Q.W, et al. Flow injection and liquidchromatographic postcolumn detection of aminoacids by nfimetic peroxidase-catalysed chemiluminescence reaction. Analytica Chimica Acta, 1992, 269(1): 109-114.
    [79] Ci Y.X, Chen Y, Li Y.Z, et al. The use of Mn-TPPS4 mimetic peroxidase in a DNA hybridization assay. Microchemical Journal, 1995, 52(3): 257-262.
    [80] Komagoe K, Katsu T. Porphyrin-induced photogeneration of hydrogen peroxide determined using the luminol chemiluminescence method in aqueous solution: a structure–activity relationship study related to the aggregation of porphyrin. Analytical Sciences, 2006, 22(2): 255-258.
    [81] Rana S, Tamagake K. A chemiluminescence method for the detection of electrochemically generated H2O2 and ferryl porphyrin. Bioelectrochemistry, 2006, 68(1): 31-39.
    [82] Takamura K, Matsumoto T. Characterization of a titanium(IV)-porphyrin complex as a highly sensitive and selective reagent for the determination of hydrogen peroxide: a computational chemistry approach and a critical review. Analytical and bioanalytical chemistry, 2008, 391(3): 951-961.
    [83] Iqbal M, Saeed A, Zafar S.I. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. Journal of Hazardous Materials, 2009, 164(1): 161-171.
    [84] Prathish K.P, James D, Jaisy J, et al. Dual optoelectronic visual detection and quantification of spectroscopically silent heavy metal toxins: A multi-measurand sensing strategy based on Rhodamine 6G as chromo or fluoro ionophore. Analytica Chimica Acta, 2009, 647(1): 84- 89.
    [85] Balderas-Hernández P, Rojas-Hernández A, Galván M, et al. Determination of the complexation constants of Pb(II) and Cd(II) with thymol blue using spectrophotometry, SQUAD and the HSAB principle. Spectrochim. Acta. A, 2007, 66(1): 68-73.
    [86] Khajeh M. Optimization of microwave-assisted extraction procedure for zinc and copper determination in food samples by Box-Behnken design. Journal of Food Composition and Analysis, 2009, 22(4): 343-346.
    [87] Afzali D, Mostafavi A, Taher M.A, et al. Flame atomic absorption spectrometry determination of traceamounts of copper after separation and preconcentration onto TDMBAC-treated analcime pyrocatechol-immobilized. Talanta, 2007, 71(2): 971-975.
    [88] Guo L. A novel pH-controlled transfer process of 5,10,15-tri(4-hydroxyphenyl)-20-(4-hexadecyloxyphenyl) porphyrin in CTAB micelles. Journal of Colloid and Interface Science, 2006, 302(2): 620-624.
    [89] Rana S, Tamagake K. A chemiluminescence method for the detection of electrochemically generated H2O2 and ferryl porphyrin. Bioelectrochemistry, 2006, 68(1): 31-39.
    [90]王富芝.铷铯金属卟啉配合物的荧光性质研究.武汉大学学报(自然科学版), 1989, (4): 128-128.
    [91] Ware W.R. Oxygen quenching of fluorescence in solution: an experimental study of the diffusion process. Joural of Physical Chemistry, 1962, 66(3): 455-455.
    [92]杨曼曼,杨频,张立伟.荧光法研究咖啡酸类药物与白蛋白的相互作用.科学通报, 1994, 39(1): 31-35.
    [93] Ross D.P, Subramanian S. Theromodynamics of porphyrin of protein association reaction: forces contributing to stability. Biochemistry, 1981, 20(11): 3096-3102.
    [94] Ma C.Q, Li K.A, Zhao F.L, et al. A Study on the Reaction Mechanism between Chrome-Azurol S and Bovine Serum Albumin. Acta Chimica Sinica, 1999, 57(4): 389-395.
    [95] Wu Y.F, Zhuang Y.F, Liu S.Q, et al. Phenylboronic acid immunoaffinity reactor couple with flow injection chemiluminescence for determination ofα-fetoprotein. Analytica Chimica Acta, 2008, 630(2): 186-193.
    [96] Fletcher P, Andrew K.N, Calokerinos A.C, et al. Analytical applications of flow injection with chemiluminescence detection - a review. Luminescence, 2001, 16(1): 1-2.
    [97] Zhu Q.Y. A novel chemiluminescent flow injection analysis of trace amounts of rutin by its inhibition of the luminol-hydrogen peroxide reaction catalyzed by tetrasulfonated colbalt phthalocyanine. Luminescence, 2009, 24(4): 250-254.
    [98]李永新.四磺基锰酞菁在分子发光分析中的应用研究[硕士学位论文].芜湖:安徽师范大学, 2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700