生物活性玻璃强化骨质疏松椎弓根螺钉稳定性的生物力学及界面组织学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前椎弓根螺钉内固定技术已经成为脊柱外科的核心技术之一。椎弓根螺钉固定的稳定性取决于钉道对螺钉的把持力。在骨质疏松患者,由于骨小梁变薄、断裂,骨密度(bone mineral density,BMD)降低,钉道对螺钉的把持力明显下降,容易出现椎弓根螺钉松动、拔出等并发症从而导致内固定失败。如何提高骨质疏松条件下椎弓根螺钉内固定的稳定性成为骨科临床研究的重点和难点。目前国内外研究主要是将骨水泥类材料填充至钉道内,以强化螺钉固定。临床上常用聚甲基丙烯酸甲酯骨水泥(polymethylmethacry- late,PMMA)解决这一问题。PMMA虽然能显著增强椎弓根螺钉的稳定性,但它在体内无法吸收,在钉骨之间可形成二次界面,取钉极为困难,生物相容性差,放热反应等,临床医师对其应用持谨慎态度。45S5生物活性玻璃是美国Hench教授在1971年发现的一种新型生物活性材料,研究发现它能与骨形成骨键结合,具有很好的生物相容性和生物降解性,并能引导骨生长和诱导骨再生。生物活性玻璃已应用于骨修复领域,取得了很好的临床效果。国内外尚无学者将生物玻璃应用于强化螺钉固定的研究中。
     研究目的:评价骨质疏松绵羊体内生物活性玻璃强化椎弓根螺钉稳定性的力学效果,并观察螺钉-骨质界面组织学变化。
     研究方法:1.建立骨质疏松绵羊模型。8只成年雌性小尾寒羊,采用去势联合激素注射的方法建立骨质疏松动物模型,双能X线吸收法检测去势前和去势12月后绵羊腰椎骨密度,比较建模前后绵羊腰椎骨密度变化。2.取每只绵羊腰1-腰6双侧椎弓根为研究对象,将每只绵羊的12侧椎弓根随机分为3组:A组:空白组,对制备好的钉道不做任何处理,直接拧入椎弓根螺钉;B组:PMMA组,将配置好的骨水泥0.5ml注入钉道后拧入椎弓根螺钉;C组:BG组,将45S5生物玻璃约0.5g填入钉道后拧入椎弓根螺钉。分别饲养3个月和6个月后取材,轴向拔出实验评价3种方法强化螺钉稳定的力学效果。3、应用Micro-CT三维重建技术,荧光双标记方法和硬组织切片染色技术,观察BG组与空白组螺钉-骨界面骨生长、组织学等情况。
     研究结果:
     1、去势12个月后绵羊腰椎BMD(0.828±0.032g/cm~2),较去势前的绵羊腰椎BMD(1.015±0.037 g/cm~2)显著降低,平均下降22.70%,完成了建模。
     2、生物力学结果显示:BG组在3个月和6个月时Fmax(分别为1083.09±86.48N、1175.20±134.84N)和E值(分别为1.8741±0.1724J、2.0375±0.2383J )显著高于空白组在相同时间点的Fmax (分别为871.76±79.03N、902.30±115.80N )和E值(分别为1.3058±0.1492J、1.4440±0.1759J),而显著低于PMMA组在相同时间点的Fmax(分别为1411.58±171.54N、1445.52±231.79N)和E值(分别为2.8418±0.2435J、3.0986±0.1599J),各组间差异有统计学意义(P<0.05)。不同时间点相同组间比较Fmax及E值差异无统计学意义(P>0.05)。
     3、Micro-CT三维重建结果显示:BG组在3个月及6个月时其螺钉周围骨小梁数量较空白组显著增多,骨小梁结构更紧密,骨质情况优于空白组。骨计量学结果显示:3个月及6个月时BG组螺钉周围骨质参数中TMD、BVF、Tb.Th、Tb.N均显著高于空白组,而BS/BV、Tb.Sp显著低于空白组,差异均有统计学意义(P<0.05)。
     4、荧光显微镜下观察结果显示:BG组在3个月时伴行的黄绿条带间的距离较宽,明显高于空白组及BG6个月组伴行的黄绿条带间距离。BG组在3个月时矿化沉积率(mineralization apposition rate,MAR)(11.94±1.26μm/d)显著高于空白组相同时间点的MAR(4.85±0.83μm/d),差异有统计学意义(P< 0.05 ),前者比后者增加了146.19%。而BG组在6个月时的MAR(4.86±1.12μm/d)与空白组相同时间点的MAR(4.74±0.72μm/d)无统计学差异(P>0.05)。荧光结果表明BG组在3月点时骨的生长矿化速度最快。
     5、丽春红三色显微镜下观察结果显示:3个月时BG组螺钉周围骨量增多,骨小梁更密集,且对螺钉包裹紧密,螺钉-骨界面骨质情况明显优于空白组。6个月时BG组螺钉周围骨小梁结构更完善,骨小梁相对空白组增厚,结构密集,骨小梁对螺钉的包裹紧密,界面的骨质情况明显优于空白组。在两个时间点,均有少量BG存在螺钉周围骨质中,与骨结合紧密,6月组BG的量更少,降解的更完全。
     结论:1、BG能增强OP条件下椎弓根螺钉固定的稳定性,且这种稳定性能长期维持。2、BG强化螺钉稳定性的力学效果不如PMMA。3、BG强化椎弓根螺钉稳定的机制是通过促进螺钉周围骨质生长,改善螺钉-骨界面骨质结构,提高界面对螺钉的把持作用而实现的。因此,BG可以成为临床上OP条件下提高骨螺钉界面强度进而提高椎弓根螺钉固定把持力的一种材料选择。
Currently pedicle screw fixation technique has already been one of the nucleus techniques in spinal column surgery. The pedicle screw fixing stationary stability is decided by the holding force of the screw pass vs. the screw. At osteoporosis patients, bone trabecula became thin and split, bone mineral density (BMD) stepped - down, the holding force of the screw pass vs. the screw obviously decreased, and the pedicle screw loosed and drawn out could easily appear, which would result in internal fixation failure. How to raise the stability of the pedicle screw fixation in OP condition becomes a key point and difficult point in orthopedics clinical research. Study mainly at home and abroad currently is filling the bone cement materials into the nail pass so as to enhance pedicle screw stability. In clinical we usually use the polymethylmethacrylate (PMMA) bone cement to resolve this problem. Although PMMA can obviously enhance the stability of pedicle screw fixation, it can not absorb in the body, forming two interfaces between screw and bone, taking out the screw extremely difficult, its biocompatibility is bad, exothermic reaction etc. clinical doctors had a careful attitude towards its application. 45S5 bioactive glass is a kind of new bioactive material discovered by Professor Hench from United States in 1971. Studies showed that BG could bond to the bone, had good biocompatibility and biodegradability, could lead bone growth and induce bone regeneration. Bioactive glass had already been used in bone repair realm, and obtained good clinical effect. At home and abroad there is nobody got bioactive glass into pedicle screw fixation study.
     Objective: To evaluate the mechanical effect of pedicle screw augmentation using bioactive glass (BG) in osteoporosis sheep and observe the change of histology in the interface between bone and screw.
     Methods: 1. An OP sheep model was established. Osteoporosis sheep models were established by ovariectomy combined with methylprednisolone injection in 8 adult female sheep, the BMD of the lumber of the sheep before and 12 months after OVX was detected by dual energy X-ray absorptiometry (DXA), and the BMD changes were compared. 2. Took L1-L6 bilateral pedicles of each as object of study, all 12 pedicles were randomly divided into 3 groups. Group A: control group, the pedicles were implanted with pedicle screws without any transactions; Group B: PMMA group, the pedicles were implanted with pedicle screws after the augmentation with PMMA (about 0.5ml); Group C: BG group, the pedicles were implanted with pedicle screws after the augmentation with 45S5 bioglass (about 0.5g). Got materials after 3 months or 6 months feeding respectively, and axial pull-out-test was taken to evaluate the mechanical effect of pedicle screw augmentation in 3 groups. 3. Apply a 3D reconstruction technique of Micro-CT, fluorescence double label method and sclerous tissue section dye technique, to observe the bone growth and the change of histology in the interface of bone and screw.
     Result:
     1. The bone mineral density (BMD) of the lumbar of the sheep 12 months after OVX (0.828±0.032g/cm~2) was significance decreased by 22.70% compared with that before OVX (1.015±0.037 g/cm~2), and the OP sheep model was completed.
     2. The biomechanics result showed that the Fmax and E of BG group in 3 month and 6 month (1083.09±86.48N, 1175.20±134.84N respectively and 1.8741±0.1724.K 2.0375±0.2383J respectively ) was much higher than the Fmax and E of the control group in the same time stamp (871.76±79.03N、902.30±115.80 respectively and 1.3058±0.1492K 1.4440±0.1759J respectively), and was much lower than the Fmax and E of the PMMA group in the same time stamp (1411.58±171.54N, 1445.52±231.79N respectively and 2.8418±0.2435K 3.0986+0.1599J respectively), and significant difference was found in each group (P<0.05). The Fmax and E in the same group of different time stamp had no significant difference (P>0.05).
     3. The 3D reconstruction result of Micro-CT showed that the mass of the bone trabecular around the screw was much more and the structure was close-packed in BG group in 3 month and 3 month time stamp, and its bone substance surpassed the control group. The bone metrology result showed that the TMD, BVF, Tb.Th, Tb.N in BG group in 3 and 6 month stamp was much higher than that of the control group, and the BS/BV、Tb.Sp of the BG group was much lower than that of the control group, and significant difference was found (P< 0.05).
     4. The fluorescence result under fluorescence microscope showed that the distance of the yellow and green fluorescence band of BG group in 3 month stamp was much bigger than that of the control group and BG group in 6 month stamp. The mineralization apposition rate (MAR) of BG group in 3 month time stamp (11.94±1.26um/d ) was much higher than the MAR of the control group in the same time stamp (4.85±0.83 um/d), significant different was found (P<0.05), and the former was increased by 146.19% compared whit the latter. The MAR of BG group in 6 month time stamp (4.86±1.12um/d) had no significant difference compared whit the control group in the same time stamp(4.74±0.72um/d) (P> 0.05). The fluorescence results indicated that the bone in the BG group in 3 month time stamp had a rapid growth rate.
     5. Ponceau staining under microscope showed that the bone mass around the screw was much more and the bone trabecular was close-packed and wrapped the screws tightly in BG group of 3 month time stamp, the bone substance of the bone-screw interface surpassed the control group. In BG group of 6 month time stamp, the trabecular around the screw had a better bone structure and was thicker than that of the control group, the bone structure was close-packed and the trabecular wrapped the screws tightly, the bone substance of the interface surpassed the control group. In two time stamps, there were some BG found in the bone substance around the screw and combined with the bone well. In 6 month time stamp, the BG existed in the bone was much fewer, and had almost degradation completely.
     Conclusion: 1. BG could enhance the stability of pedicle screw fixation in OP condition, and it could maintain the stability over a long term. 2. The mechanics effect of BG in pedicle screw augmentation was not equal to PMMA. 3. The mechanism of pedicle screw augmentation with BG was that the BG could induce growth of the bone around the screw, improve the bone structure of screw- bone interface, and enhance the holding force of the interface vs. the screw. Therefore, BG can be one of materials choosing in pedicle screw augmentation through improving bone-screw interface intensity and enhancing the hoding force of pedicle screw under OP condition.
引文
[1] kuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H. Stability of transpedicle screwing for the osteoporotic spine, an in vitro study of the mechanical stability. Spine, 1993, 18(15): 2240-2245
    [2]邑晓东,卢海霖,陈明.医用骨水泥在骨质疏松患者行椎弓根钉固定中的作用.中国脊柱脊髓杂志, 2005, 15(2):95-97
    [3] Hench LL, Splinter RJ, Allen WC. Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 1971, 2(1): 117-141.
    [4] O’Donnell MD, Hill RG. Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration[J]. Acta Biomaterialia, 2010, 6: 2382-2385
    [5]范颂鸣,陈鸿辉,谭建伟.新型骨修复生物活性材料―固骼生的应用体会[J].中国矫形外科杂志, 2004, 12(23,24):1819-1821.
    [6] Hench LL, Xynos I, Edgar A, Buttery L, Polak J,钟吉品,刘宣勇,常江.激活基因的玻璃.无机材料学报, 2002, 17(5): 897-909.
    [7]杨玉生,孙俊英,朱国兴.生物活性玻璃对鼠成骨细胞体外增殖的形态学研究.生物医学工程研究,2007, 2:146-173
    [8]陈文瑶,李新志.骨水泥强化椎弓根螺钉固定的研究进展.中国矫形外科杂志, 2010, 18(3): 226-229.
    [9] Law M, Tencer AF, Anderson PA. Caudo-cephalad loading of pedicle screws: mechanisms of loosening and methods of augmentation. Spine, 1993, 3: 2438-2443.
    [10] Takigawa T, Tanaka M, Konishi H, Ikuma H, Misawa H, Sugimoto Y,Nakanishi K, Kuramoto K, Nishida K, Ozaki T. Comparative biomechanical analysis of an improved novel pedicle screw with sheath and bone cement.J Spinal Disord Tech,2007,20(6):462-467.
    [11] Hashemi A, Bednar D, Ziada S. Pullout strength of pedicle screws augmented with particulate calcium phosphate: an experimental study. Spine J, 2009, 9(5): 404-410.
    [12] Inceoglu S,Ferrara L,McLain RF.Pedicle screw fixation strength:pullout versus insertional torque. Spine J, 2004, 4(5): 513-518.
    [13] Renner SM, Lim TH, Kim WJ, Katolik L, An HS, Andersson GB. Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method. Spine, 2004, 29(11): 212-216.
    [14] Yazu M, Kin A, Kosaka R, Kinoshita M, Abe M. Efficacy of novel-concept pedicle screw fixation augmented with calcium phosphate cement in the osteoporotic spine. J Orthop Sci, 2005, 10(1): 56-61.
    [15] Okuyama K, Sato K, Abe E, Inaba H, Shimada Y, Murai H. Stability of transpedicle screwing for the osteoporosis:an in vitro study of the mechanical stability. Spine, 1993, 18(15): 2240-2245.
    [16] Okuyama K, Abe E, Suzuki T, Tamura Y, Chiba M, Sato K. Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J, 2001, 1(6): 402-407.
    [17] Hirano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, Sugiura T, Yokaichiya M, Ikeda M. Structural characteristics of the pedicle and its role in screw stability. Spine, 1997, 22(21): 2504-2509.
    [18] Wernstern JN, Rydenik BL, Rausehing WR. Anatomical and technicalconsiderations of pedicle screws fixation. Clin Orthop, 1992, 284(1): 34-46.
    [19] Pfeifer BA, Krag MH, Johnson C.Repair of failed transpedicle screw fixation. A biomechanical study comparing polymethylmethacrylate, milled bone, and matchstick bone reconstruction. Spine, 1994, 19(3):350- 353.
    [20] Wittenberg RH, Lee KS, Shea M, White AA 3rd, Hayes WC. Effect of screw diameter, insertion technique, and bone cement augmentation of pedicular screw fixation strength. Clin Orthop, 1993, (296):278-287.
    [21] Sarzier JS, Evans AJ, Cahill DW. Increased pedicle screw pullout strength with vertebroplasty augmentation in osteoporotic spines. J Neurosurg, 2002, 96(3 Supp1):309-312.
    [22]樊仕才,江振华,朱青安,赵卫东,金大地,赵有春,万黎.聚甲基丙烯酸甲酯强化椎弓根螺钉内固定对骨质疏松不稳定性胸腰椎损伤稳定性的影响.中华创伤杂志, 2003,19(6):358-361.
    [23]樊仕才,朱青安,王柏川,赵卫东,周燕莉,金大地,刘大庸.聚甲基丙稀酸甲酯强化骨质疏松椎弓根螺钉固定的生物力学作用.中华骨科杂志,2001,21(2):93-96.
    [24]章筛林,石志才,张晔,管俊杰,喻林,杨晓明.骨水泥椎体强化在骨质疏松患者行椎弓根钉内固定中的应用.脊柱外科杂志, 2008, 6(2): 95-98.
    [25] Hamblen DL, Carter RL. Sarcoma and total hip replacement. J Bone Joint Surg(Br), 1986, 66(5):625-627.
    [26] Konno S, Olmaker K, Byrod G. The European Spine Society Aero Med Prize 1994: acute thermal nerve root injury.Eur SpineJ, 1994,3(1):299-302.
    [27] Knaack D, Goad ME, Aiolova M, Rey C, Tofighi A, Chakravarthy P, Lee DD. Resorbable calcium phosphate bone substitute. J Biomed Mater Res, 1998, 43(4): 399-409.
    [28] Moore DC, Maitra RS, Farjo LA, Graziano GP, Goldstein SA. Restorationof pedicle screw fixation with an in situ setting calcium phosphate cement. Spine, 1997, 22(15): 1696-1705.
    [29] Renner SM, Lim TH, Kim WJ, Katolik L, An HS, Andersson GB. Augmentation of pedicle screw fixation strength using an injectable calcium phosphate cement as a function of injection timing and method. Spine,2004,29(11):E212-216.
    [30] Taniwaki Y, Takemasa R, Tani T, Mizobuchi H, Yamamoto H. Enhancement of pedicle screw stability using calcium phosphate cement in osteoporotic vertebrae:in vivo biomechanical study. J Orthop Sci, 2003, 8(3): 408-414.
    [31] Yerby SA, Toh E, McLain RF. Revision of failed pedicle screws using hydroxyapatite cement. A biomechanical analysis. Spine, 1998, 23(15): 1657-1661.
    [32] Hasegawa T, Inufusa A, Imai Y, Mikawa Y, Lim TH, An HS. Hydroxyapatite-coating of pedicle screws improves resistance against pull-out force in the osteoporotic canine lumbar spine model: a pilot study. Spine J. 2005, 5(3):239-243.
    [33] Watson JT. The use of an injectable bone graft substitute in tibial metaphyseal fractures. Orthop, 2004, 27(1):103-107.
    [34] Urban RM, Turner TM, Hall DJ, Infanger SI, Cheema N, Lim TH, Moseley J, Carroll M, Roark M. Effect of altered crystalline structure and increased initial compressive strength of calcium sulfate bone graft substitute pellets on new bone formation. Orthop, 2004, 27(1):s113-118.
    [35] Rohmiller MT,Schwalm D,Glattes RC, Elalayli TG, Spengler DM. Evaluation of calcium sulfate paste for augmentation of lumbar pedicle screw pullout strength. Spine J, 2002, 2(4):255-260.
    [36]卢海霖,邑晓东,王宇,郑辉.可注射硫酸钙在椎弓根螺钉固定中的生物力学研究.中国脊柱脊髓杂志,2006,2(16):73-75.
    [37]卢海霖,郑辉,邑晓东,王宇.可注射硫酸钙MIIGX3与医用骨水泥对椎弓根螺钉固定作用的比较研究.中国矫形外科杂志,2006,10(14):760 -761.
    [38]刘达,雷伟,吴子祥,万世勇,张伟,秦为径,战策.硫酸钙骨水泥强化椎弓根螺钉稳定性的体内实验研究.中国脊柱脊髓杂志, 2009, 6: 446-450.
    [39]刘达,雷伟,吴子祥,王军,万世勇,高明暄,付索超,李丹.硫酸钙骨水泥强化“钉-骨”界面的三维CT和组织学研究.实用骨科杂志, 2010, 16(4): 270-273.
    [40]王春,刘卫军.脊柱椎弓根螺钉内固定的生物力学评价.医用生物力学,1998,3(3):179-184.
    [41] Krag MH, Beynnon BD, Pope MH, DeCoster TA. Depth of insertion of transpedicular vertebral screws into human vertebrae: effect upon screw- vertebra interface strength. J Spinal Disord, 1988, 1(4):287-294.
    [42] Zdeblick TA, Kunz DN, Cooke ME, McCabe R. Pedicle screw pullout strength. Correlation with insertional torque. Spine, 1993, 18(12):1673- 1676.
    [43] Hriano T, Hasegawa K, Takahashi HE, Uchiyama S, Hara T, Washio T, Sugiura T, Yokaichiya M, Ikeda M. Structural characteristics of the pedicle and its role in screw stability. Spine, 1997, 22(21):2504-2510.
    [44] Hriano T, Hasegawa K, Washio T, Hara T, Takahashi H. Fracture risk during pedicle screw insertion in osteoporotic spine. J Spine Disord, 1998, 11(6):493-497.
    [45] Lonstein JE, Denis F, Perra JH, Pinto MR, Smith MD, Winter RB. Complications associated with pedicle screws. The Journal of Bone and Joint Surgery, 1999, 81(11):1519-1528.
    [46]杜心如,叶启彬.经椎弓根胸腰椎内固定应用解剖学研究的进展.中国矫形外科杂志,1998,5(5):446-448.
    [47] Von Strempel A, Seidel T, Plitz W. Stability of pedicle screws. Maximum pullout force with reference to bone density. Z Orthop Ihre Grenzgeb,1994,132(1):82-86.
    [48] Cook SD, Barbera J, Rubi M, Salkeld SL, Whitecloud TS 3rd. Lumbosacral fixation using expandable pedicle screws. an alternative in reoperation and osteoporosis. Spine J, 2001, 1(2):109-114.
    [49] McKoy BE, An YH. An injectable cementing screw for fixation in osteoporotic bone. J Biomed Mater Res, 2000, 53(3): 216-220.
    [50]杨述华,胡勇,陈中海,杜靖远.杨操,许伟华,肖宝均,邵增务,李进,胡天喜,汪岚.空心侧孔椎弓根螺钉添加聚甲基丙烯酸甲酯骨水泥的生物力学研究.中华创伤杂志,2002,18(1):17-22.
    [51]吴子祥,雷伟,李明全,崔庚.膨胀式椎弓根螺钉翻修作用的生物力学效应.中国临床康复,2004,8(14):2668-2669.
    [52]雷伟,吴子祥,李明全,崔庚.膨胀式脊柱椎弓根螺钉固定的生物力学研究.中国脊柱脊髓杂志,2004,14(11):669-672.
    [53]吴子祥,雷伟.膨胀式椎弓根螺钉抗旋出性能的生物力学测试.中国矫形外科杂志,2004,12(9):695-697.
    [54]吴子祥,雷伟,孙明林,崔庚,于良.膨胀式椎弓根螺钉脊柱后路内固定的生物力学测试.医用生物力学,2004,19(2):98-102.
    [55] Lei W, Wu Z. Biomechanical evaluation of an expansive pedicle screw in calf vertebrae. Eur Spine J, 2006, 15(3):321-326.
    [56] Lei W, Wu ZX. Biomechanical evaluation of an expansive pedicle screw in calf vertebrae.Chin J Traumatol, 2005, 8(1):39-45.
    [57]万世勇,雷伟,吴子祥,吕荣,王军,李波,付索超,战策.膨胀式椎弓根螺钉在骨螺钉界面的显微CT评价及组织学分析.中华外科杂志,2007,45 (18):1271-1273.
    [58]万世勇,雷伟,吴子祥,吕荣,王军,李波,付索超.膨胀式椎弓根螺钉在骨质疏松绵羊体内界面的观察研究.中国骨质疏松杂志,2007,13 (11):769-772.
    [59] Wilson J, Low S J. Bioactive ceramics for periodontaltreatment:comparative studies in the Patus monkey. J Appl Biomater, 1992, (3): 123—129.
    [60] Anderson OH, Yli-Urpo A.Bioceramics.Oxford:Butterworth-Helinemann, 1994.
    [61] Ohtsuki C, Kokubo T, Yamamuro T.Mechanism of apatite formation on CaO-Si02-P205 glasses in a simulated body fluid.J Non-crystal Solids,1992,(143):84-92.
    [62] Peitl O, Zanotto ED, Hench LL.Highly bioactive P2O5-Na20-CaO-SiO2 glass-ceramics.J Non-crystal Solids,2001,(292):115-126.
    [63] Hench LL. The story of Bioglass?. J Mater Sci Mater Med. 2006, 17(11): 967-978.
    [64] Xynos ID, Hukkanen MV, Batten JJ, Buttery LD, Hench LL, Polak JM. Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif Tissue Int. 2000, 67(4): 321-329.
    [65] Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factorⅡmRNA expressions and protein synthesis. Biochem Biophys Res Commun. 2000, 276(2): 461-465.
    [66] Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM. Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass 45S5 dissolution. J Biomed Mater Res. 2001, 55(2): 151-157.
    [67]杨玉生.生物活性玻璃对体外人成骨细胞生长周期的影响.中国组织工程研究与临床康复, 2008, 12(45) : 8810-8814.
    [68] Valimaki VV, Yrjans JJ, Vuorio El. Molecular biological evaluation of bioactive ass microspheres and adjunct bone morphogenetic protein 2 gene transfer in the enhancement of new bone formation. Tissue Eng, 2005, l I(3-4): 387-394.
    [69] Yuan Hui-pin, de Bruijn JD, Zhang Xing-dung. Bone induction by porous glass ceramic made from Bioglass(45S5). J Biomed Mater Res, 2001, 58(3): 270-276.
    [70]刘宏伟,孙俊英,王勇,杨兴,朱二山.生物活性玻璃复合自体骨髓移植修复良性骨肿瘤术后骨缺损.中国修复重建外科杂志, 2008,22(11): 1349-1353.
    [71]杨玉生,孙俊英.生物活性玻璃:促进骨修复的骨移植替代材料.中国临床康复,2005,9(42): 108-112.
    [72] Oonishi H, Kushitani S, Yasukawa E, Iwaki H, Hench LL, Wilson J, Tsuji E, Sugihara T. Particulate bioglass compared with hydroxyapatite as a bone graft substitute.Clin Orthop Relat Res, 1997, (334): 316—325.
    [73] Day RM, Maquet V, Boccaccini AR, Jér?me R, Forbes A. In vitro and in vivo analysis of macroporous biodegradable poly (D, L-lactid-co-glycolide) scaffolds containing bioactive glass.J Biomed Mater Res A, 2005, 75(4): 778—787.
    [74]张建新,徐展望,常峰.组织工程化人工骨修复骨缺损的实验研究.中国矫形外科杂志, 2009, (16): 1258-1261.
    [75] Stoor P, Soderling E, Grenman R. Interactions between the bioactiveglass S53P4 and the atrophic rhinitis-associated microorganism klebsiella ozaenae. J Biomed Mater Res, 1999, 48(6): 869—874.
    [76] Allan I, Newman H, Wilson M. Antibacterial activity of particulate bioglass against supra-and subgingival bacteria. Biomaterials, 2001, 22(12): 1683—1687.
    [77] Leventouri T, Kis AC, Thompson JR. Structure, microstructure, and magnetism in ferrimagnetic bioceramics. Biomaterials, 2005, 26(24): 4924-4931.
    [78]杨家宽,王梅,何归丽,杨述华,肖波. Fe20-CaO-SiO2体系铁磁微晶玻璃的磁性及生物活性,应用科学学报,2005,23(2):209-213.
    [79]催露阳.骨质疏松症防治药物迎来上市高峰.世界临床药物, 2004, 25(9): 51。
    [80]林丹,刘毅,吴术红.不同剂量左旋精氨酸对骨质疏松大鼠血生化的影响.贵州医药,2010,34(7): 589-591.
    [81] Wen Q,Ma L,A rabbit model of hormone-induced early avascular necrosis of the femoral head. Biomed Environ Sci 2008,Oct,21(5):398—4O3.
    [82] Fukuda S, Lida H. Effects of orchidectomy on bone metabolism in beagle dogs. J Vet Med Sci, 2000, 62(1):69-73.
    [83] Newman E, Turner AS, Wark JD. The potential of sheep for the study of osteo penia: Current status and comparison with other animal models. Bone, 1995, 16(4):277-284.
    [84]王立童,詹红生.国内继发性骨质疏松动物模型研究概论.中华骨质疏松和骨矿盐疾病杂志, 2009, 2(3):194-197.
    [85]刘素彩,李恩.糖皮质激素诱导骨质疏松的细胞及分子学机制.国外医学内分泌学分册, 2000, 20: 11-13.
    [86] Augat P, Schorlemmer S, Gohl C, Iwabu S, Ignatius A, Claes L.Glucocorticoid-treated sheep as a model for osteopenic trabecular bone in biomaterials reseach. J Biomed Mater Res A. 2003, 66(3): 457-462.
    [87] Lill CA, Fluegel AK, Schneider E. Effect of ovariectomy, malnutrition and glucocorticoid application on bone properties in sheep: a pilot study. Osteoporticoid International. 2002, 13(6): 441-447.
    [88]刘忠厚.中国人原发性骨质疏松症诊断标准(试行).中国骨质疏松杂志,1999, 5(1): 1-3.
    [89]万世勇.胸椎膨胀式椎弓根螺钉的研制及其在骨质疏松体内生物力学和钉道界面组织学的研究.第四军医大学博士学位论文, 2010, 56.
    [90] Ghannam AEL, Ducheyne P, Shapiro IM. Formation of surface reaction products on bioactive glass and their effects on the expression of the osteoblastic phenotype and the deposition of mineralized extracellular matrix. Biomaterials, 1997, 18(4):295-303
    [91] Lusvardi G, Malavasi G, Menabue L, Aina V, Morterra C. Fluoride-containing bioactive glasses: Surface reactivity in simulated body fluids solutions. Acta Biomaterialia, 2009, 5(9): 3548-3562
    [92] Mariappan CR, Yunos DM, Boccaccini AR, Roling B. Bioactivity of electro-thermally poled bioactive silicate glass. Acta Biomaterial, 2009, 5(4): 1274-1283
    [93] Daniel A, Maria VR. Sol-gel silica-based biomaterials and bone tissue regeneration. Acta Biomaterialia, 2010, (6): 2874-2888
    [94] Larry LH. Genetic design of bioactive glass. Journal of the European Ceramic Society, 2009, 29(7): 1257-1265
    [95]殷浩,孙俊英,赖震,李喜功,宋兵华,王志岩.生物活性玻璃结合椎弓根钉翻修术治疗腰椎内固定失败.中国骨与关节损伤杂志, 2008,23(1): 4-6.
    [96]桂建保,胡战利,周颖,郑海荣.高分辨显微CT进展. CT理论与应用研究. 2009, 18(2): 106-133.
    [97] Ford NL, Thornton MM, Holdsworth DW. Fundamental image quality limits for micro-computed tomography in small animals. MED Phys. 2003, 30(11): 2869-2877.
    [98] Jones C, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt MA. Assessment of bone ingrowth into porous biomaterials using Micro-CT. Biomaterials. 2007, 8(15): 2491-2504.
    [99] Ho ST, Hutmacher DW. A comparison of micro CT with other techniques used in the characterization of scaffolds. Biomaterials. 2006, 27(8): 1362-1376.
    [100]陈莉莉,段银钟,王珍,李俊梅.快速上颌扩弓后局部应用二磷酸盐对腭中缝复发率的影响.临床口腔医学杂志. 2005, 21(3): 150-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700