水稻籽粒中锌生物有效性与调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌是人体必需的微量元素之一,据报道世界上超过20亿人口存在不同程度缺锌问题。稻米是世界上50%人群的主粮,因此,研究稻米锌营养强化对人体健康具有重要意义。目前的稻米锌营养强化的研究大多数只报道了稻米锌含量,对于稻米锌生物有效性的报道较少。为了全面衡量稻米的锌营养价值,本研究建立了体外消化/Caco.2细胞模型应用于稻米锌生物有效性的评价。采用该模型评价了基因型、施肥措施(叶面喷施不同形态锌肥、磷锌互作、硫锌互作)、加工工艺(发芽和锌强化)对稻米籽粒锌生物有效性的影响。结果如下:1.对本试验条件下建立的Caco.2模型的生长状态和模型性能进行监测,并采用该模型研究膳食成分对锌吸收的影响。结果表明,在本试验条件下Caco-2细胞跨膜电阻值稳定在630Ωcm2:Caco-2顶膜碱性磷酸酶活性显著高于基底侧,表明本实验室条件下构建的Caco-2模型已形成类似小肠上皮细胞的形态学结构,细胞已形成紧密连接并产生良好极性,可作为肠道营养物质吸收的体外模型。分析不同浓度锌(0-50μmol/L)在Caco-2模型中的吸收结果表明,锌吸收量在5-50μmol/L浓度范围随着浓度增加直线上升。膳食成分对锌吸收率的影响表明,随着植酸/锌摩尔比值的增加锌吸收率明显下降。当铁/锌摩尔比值为为10:1时,铁对锌有一定的抑制效果。钙对锌吸收无影响。维生素C对锌吸收无影响。半胱氨酸和蛋氨酸对锌吸收量具有一定促进作用。
     2.对大田条件下统一种植收获的15个供试水稻品种的锌含量、营养品质组分、锌生物有效性、生物可利用锌总量进行研究。结果表明,供试水稻品种精米锌含量和锌生物有效性存在显著基因型差异。对稻米营养品质组分与锌生物有效性的相关性分析,结果表明,稻米锌生物有效性与锌含量呈现无相关,与植酸呈负相关,与硫含量和半胱氨酸含量成显著正相关。稻米生物可利用锌含量也存在显著基因型差异。稻米生物可利用锌含量与锌含量呈正比,与硫含量呈正比,与半胱氨酸和蛋氨酸成正比。植酸呈弱的负相关。因此,在生产实践中可以通过提高稻米锌含量,减低稻米植酸含量,增加含硫氨基酸含量来实现稻米生物可利用锌总量的增加。本试验中,IR68144和Bing91185都表现较高的稻米生物可利用锌总量,可作为今后水稻锌营养强化的研究材料。
     3.研究大田条件下,叶面喷施不同形态锌肥(氨基酸锌肥、硫酸锌、柠檬酸锌、EDTA螯合锌)对稻米锌生物有效性的影响。结果表明,叶面喷施锌肥对水稻产量无影响,但是显著提高了三个品种的糙米和精米锌含量。糙米和精米锌含量存在显著性正相关,说明叶面喷施锌肥对精米锌含量的提高来自于糙米部分提高的锌。四种形态锌肥的稻米锌富集效果分析表明,氨基酸锌肥和硫酸锌优于柠檬酸锌和EDTA螯合锌。分析原因是可能与氨基酸锌肥和硫酸锌分子量小有利于叶面供应的锌渗透进入水稻体内发挥作用有关。叶面喷施锌肥对水稻精米营养品质分析表明,叶面喷施锌肥显著降低了水稻精米植酸含量;对精米蛋白质含量、钙和铁含量无影响。精米锌生物有效性和生物可利用锌总量分析表明,叶面喷施锌肥提高了精米锌生物有效性(增幅4.8-35.3%)和生物可利用锌总量(增幅13.9-68.4%)。效果最佳的是氨基酸锌肥和硫酸锌。分析认为叶面喷施锌肥对稻米锌含量的提高,同时降低了植酸含量是造成稻米生物可利用锌总量提高的主要原因。
     4.研究盆栽条件下,不同施磷水平、叶面喷施锌肥对水稻籽粒锌生物有效性的影响。结果表明,随着土壤施磷量的增加,水稻产量呈现明显上升趋势,锌肥对水稻产量的影响较小。在0-100mk/kg土施磷量范围内,稻米锌含量随着磷的增加而增加,在150-200mg/kg土施磷量范围内,稻米锌含量随之磷的增加而降低。磷肥施用结合锌肥能促进稻米锌含量提高。磷肥施用明显提高了植酸含量。喷锌能降低稻米植酸含量。土壤施用磷肥和喷锌肥对稻米锌生物有效性影响表明,不施磷和高磷肥(磷施用量超过>150mg/kg)的锌生物有效性与稻米可吸收锌总量均有低于其他磷施用量(50mg/kg土、100mg/kg土),特别是在200mg/kg土施磷量时对稻米锌生物有效性和稻米可吸收锌总量抑制效果最明显。而施用磷时,结合叶面喷施锌肥对精米锌生物有效性和稻米生物可利用锌含量均具有促进作用。以上结果说明,合理的施用磷肥,辅以叶面锌肥有利于稻米锌生物有效性的提高。
     5.研究盆栽条件下,不同水平硫肥和锌肥施用对稻米锌生物有效性的影响。结果表明,硫肥对水稻产量具有增加效果,锌肥对水稻产量无影响。硫肥的施用提高了对水稻籽粒锌含量,且辅以锌肥后,水稻籽粒锌含量随着硫肥施用量的增加而增加。对稻米营养品质分析表明,施硫肥对水稻精米植酸含量无影响,对水稻硫含量有显著提高,对半胱氨酸有显著提高。锌肥降低了植酸含量,对蛋白质含量、硫含量、半胱氨酸含量无显著影响。精米锌生物有效性和生物可利用锌总量分析表明,单独施硫肥和锌肥对锌生物有效性和生物可利用锌总量影响较小。但硫肥和锌肥配合施用后,精米锌生物有效性和生物可利用锌总量获得明显提高,30mg/kg土硫肥和5mg/kg土锌肥组合时效果最佳。本研究表明,硫肥和锌肥配合施用降低了稻米植酸含量,增加了含硫氨基酸含量,来提高稻米锌生物有效性,同时也增加了稻米锌含量,从而促进了稻米生物可利用锌总量的积累。
     6.研究发芽和硫酸锌强化对三个供试品种(两优培九、Bing91185、秀水110)糙米锌生物有效性的影响,试验结果表明,发芽糙米锌含量随着锌强化浓度(25-250mg/L)增加而增加,在<150mg/L硫酸锌强化浓度处理对糙米的发芽率无显著影响,发芽和锌发芽过程对植酸含量影响分析表明,发芽和锌强化处理都能显著降低了糙米植酸含量,但两者之间无显著性差异。但是锌发芽糙米锌强化的植酸/锌摩尔比值显著低于发芽糙米。糙米锌生物有效性和生物可利用锌总量的影响分析表明,发芽处理对糙米锌生物有效性和生物可利用锌总量无影响,而锌强化处理提高了糙米糙米锌生物有效性和生物可利用锌总量。本研究表明,发芽虽然一定程度降低了植酸含量,但是残留的植酸仍能干扰锌在肠道的吸收。而锌强化过程,降低了植酸含量,使植酸/锌摩尔比值大幅度下降,通过提高了锌含量,提高了稻米生物可利用锌总量。因此,仅仅靠发芽加工工艺对糙米锌生物有效性无影响,需要结合锌强化过程能明显提高糙米锌生物有效性。本试验中,三个供试水稻品种的发芽糙米锌生物有效性存在显著性差异,这与锌强化后,三个供试水稻品种糙米锌积累和糙米植酸含量的差异有关。本研究表明,推荐100mg/L硫酸锌用于制备锌强化发芽糙米,此时锌强化发芽糙米的锌含量符合推荐的每日锌摄入量15mg,并且具有最佳的生物可利用锌总量。
Zinc (Zn) deficiency is a well documented global public health problem, affecting nearly half of the world population, particular in developing countries, where high proportion of cereal crops consumed as a staple food. Rice (Oryza stavia L.), is one of the leading staple crop for half of the world's population and, hence, is the main source of Znto human. Therefore, it's important to investigate the mechanisms of rice gain Zn bioavailability in term of human nutritioa The current study was aimed to establish Caco-2cell model to assess the Znbioavailability from rice grain. Using this model we evaluate the effect of genotype, different agricutrual practices (foliar Zn ferilization, application of phosphorus and foliar Zn ferilizaion, application of sulfur and Zn ferilization) and grain processing technology (germination and zinc fortification) on Zn bioavailability. The main results are summarized as below:
     1. The performance of Caco-2cell cultured in our laboratory was assessed, and using this model we investigate the effect of dietary ligands on Zn uptake by cell line. Caco-2cells50000cells/cm2were seeded in to the polycarbonate microporal mebrane in transwell bichambers. After21days of culture, the transepithelial electrical resistance value was630Q. cm2. The activity of alkaline phosphatase in apical side of Caco-2cell layer was significantly higher than that of basolateral side. These results indicated that Caco-2cells cultured in our laboratory had similar to the intestinal epithelial cells in morphologically, formed well tight junctions and produced polarity, and could be used as an in vitro model to investigate absorption mechanisms of nutrients. Using this Caco-2cell model we investigate the Zn solution (0-50μmol/L) to Zn uptake, the results indicated that Zn uptake increased by increasing Zn level (0-50μmol/L). Generally, the uptake of Zn in Caco-2cell model was increased by Zn supplementation. In the current study, the effects of inhibitors and/or promoter on Zn uptake in Caco-2cell model were also investigated. The results were as follows: Phytic acid was inhibited Zn transport, and finally inhibited Zn uptake in Caco-2cell, especially in phytic acid/Zn molar ratio=1:10, maximal the inhibition of Zn uptake was found. Iron has no effect on Zn uptake in lower iron/zinc molar value, only in iron/zinc molar value=1:10, Zn uptake was decreased. Calcium had no effect on zinc uptake in Caco-2cell modeL Vitamin C also had no effect on Zn uptake in Caco-2cell model. Zinc uptake was enhanced by cysteine, methinonine.
     2. Zinc bioavailability of polished rice among15rice varieties was evaluated. Significant difference on Zn concentration and Zn bioavailability was found among15tested rice cultivars (T<0.05). Analysis of the relationship between grain biochemical properties and Zn bioavailability indicated that no significant correlation between Zn concentration and Zn bioavailability (P>0.05). Phytic acid was negatively related to Zn bioavailability (P<0.05). A significant positive correlation was found between sulfur and cystein content, and Zn bioavailability (P<0.05). Significant difference on amount of bioavailable Zn among15genotypes was observed. The variation on amount of bioavailable Zn might be attributed from the combined effect of Zn concentration, phytic acid (P<0.05), sulfur and cysteine content in polished rice (P<0.05). According to current study, IR68144and Bing91185contain the highest amount of bioavailable Zn, thus IR68144and Bing91185were observed as promising rice genotypes for ongoing Zn biofortification program.
     3. Four different Zn forms were applied as a foliar treatment among three rice cultivars under field condition. Foliar Zn fertilization was an effective way to promoting grain Zn concentration and Zn bioavailability among three cultivars, especially, in case of Zn-amino acid and ZnSO4. On average, Zn-amino acid and ZnSO4increased Zn concentration in polished rice. Generally, Zn-amino acid and ZnSO4increased Zn bioavailability more effectively than Zn-EDTA and Zn-Cirate. The effectiveness of foliar applied Zn-amino acid and ZnSO4was higher than Zn-EDTA and Zn-Citrate on improvement of Zn concentration, and reduction of phytic acid, as a results higher accumulation of bioavailable Zn in polished rice. Moreover, foliar Zn application could maintain grain yield, the protein and minerals (Fe and Ca) content in polished rice. Foliar application of Zn in rice offers a practical and useful approach to improve bioavailable Zn in polish rice. According to current study, Zn-amino acid and ZnSO4are recommended as excellent foliar Zn forms to ongoing agronomic biofortification.
     4. We investigate the interaction effects of phosphorus and foliar Zn fertilization on rice grain Zn content and bioavailability. Grain yield was increased with phosphorus fertilization, but no changed by foliar Zn fertilization. Zn content in rice grain increased with the increase phosphorus fertilizer dose from0to100mg/kg and above this dose150-200mg/kg significantly reduces the grain Zn content. The phosphorus application combined with foliar Zn fertilizer can significantly increase rice Zn concentration (P<0.05). Phosphorus application significantly improved the phytic acid content (P<0.05). Application of foliar Zn fertilizers significantly reduce grain phytic acid content (P<0.05). No phosphorus application and high phosphorus application (more than150mg/kg) contain lower Zn bioavailability and amount of bioavailable Zn than those of other phosphorus treatments (50mg/kg,100mg/kg) especially in the level of200mg/kg, the bioavailability of Zn from polished rice was the lowest. When phosphorus fertilizer combined with foliar Zn fertilizer could improve the and Zn bioavailability and amount of bioavailable Zn of polished rice. Thus, regulation of phosphorus level, and combined with folair Zn fertilization should be considered to improvement the amount of bioavailable Zn.
     5. A soil pot experiment was conducted to evaluate the effect of sulfur and Zn fertilization on Zn content and bioavailability in rice. The results show that sulfur fertilizer had a positive effect on rice grain yield, while Zn fertilization had no effect on rice grain yield. The Zn concentration in polished rice was significant increased by application of sulfur and Zn fertilization. Sulfur fertilization had no effect on phytic acid content, but increased grain total sulfur, cysteine and methinonine content. Zn fertilization has negative effect on phytic acid, but no effect on contents of total sulfur, cysteine and methionine content. Supply of sulfur fertilization alone had no effect on grain Zn bioavailability, when combined with Zn fertilization, and significantly increased Zn bioavailability. The reason might be attributed from the decrease of phytic acid, improvement of Zn content by sulfur fertilization combined with Zn fertilization, as a result increased the bioavailable Zn.
     6. We investigated the effect of germination and Zn fortification treatment on Zn bio availability of brown rice of three widely grown cultivars using Caco-2cell model to find a suitable fortification level for producing germinated brown rice. The results showed that Zn content in brown rice increased significantly (P<0.05) as the external Zn supply increased from25to250mg/L. In contrast, no significant influence (P>0.05) on germination percentage of rice was observed when Zn supply was lower than150mg/L. Zn fortification during germination process has significant impact on the Zn content and finally Zn bioavailability. These results might be attributed from the lower molar ratio of phytic acid to Zn and higher Zn content in Zn fortified germinated brown rice, leading to more bioavailable Zn. Likewise, significant difference (P<0.05) was found among cultivars with respect to the capacity for Zn accumulation and Zn bioavailability, this results might be attributed from the differences in molar ratio of phytic acid to Zn and concentration of Zn among the cultivars evaluated. Based on Zn intake among the world population, we recommend germinated brown rice fortified with100mg/L ZnSO4as a suitable concentration to use in the germination process, which contain high Zn concentration and bioavailable Zn. In the current study, the cultivar Bing91185fortified with Zn through germination process contain high amount as well as bioavailable Zn, which was identified as the most promising cultivar for further evaluation to determine its efficiency as a improved sources of Zn for target populations.
引文
Adams CL, Hambidge M, Raboy V (2002) Zinc absorption from a low-phytic acid maize. The American journal of clinical nutrition 76(3):556-559
    Afify A E M.MR, El-Beltagi HS, El-Salam SMA, Omran AA (2011) Bio availability of iron, zinc, phytate and phytase activity during soaking and germination of white sorghum varieties. PloS one 6(10):e25512
    Alamdari MG, Rajurkar N, Patwardhan A, Mobasser H (2007) The Effect of Sulfur and Sulfate-Fertilizers on Zn and Cu Uptake by the Rice Plant (Oryza sativa L.). Asian Journal of Plant Sciences 6:407-410
    Alloway B (2009) Soil factors associated with zinc deficiency in crops and humans. Environmental geochemistry and health 31(5)537-548
    Artursson P, Palm K, Luthman K (2012) Caco-2 monolayers in experimental and theoretical predictions of drug transport. Advanced drug delivery reviews 46(1-3)27-43
    Artursson P, Ungell AL, Lofroth JE (1993) Selective paracellular permeability in two models of intestinal absorption:cultured monolayers of human intestinal epithelial cells and rat intestinal segments. Pharmaceutical research 10(8): 1123-1129
    Aulakh M,Wassmann R, Bueno C, Kreuzwieser J, Rennenberg H (2001) Characterization of root exudates at different growth stages often rice (Oryza sativa L.) cultivars. Plant Biology 3(2):139-148
    Azeke MA, Egielewa SJ, Eigbogbo MU, Ihimire IG (2011) Effect of germination on the phytase activity phytate and total phosphorus contents of rice (Oryza sativa):maize (Zea mays):millet (Panicum miliaceum):sorghum (Sorghum bicolor) and wheat (Triticum aestivum). Journal of Food Science and Technology 48(6):724-729
    Banchuen J,Thammarutwasik P, Ooraikul B,WuttijumnongP, Sirivongpaisal P (2009). Effect of germinating processes on bioactive component of Sangyod Muang Phatthalung rice. Thai Journal agricultural Scicence 42:191-199
    Bohn L. Meyer A. S, Rasmussen S. K. (2008) Phytate:impact on environment and human nutrition. A challenge for molecular breeding. Journal of Zhejiang University-Science B 9(3):165-191
    Brinch-Pedersen H. Borg S, Tauris B. Holm P. B. (2007) Molecular genetic approaches to increasing mineral availability and vitamin content of cereals. Journal of cereal science 46(3):308-326
    Brinch-Pedersen H. Hatzack F. Stoger E. Arcalis E. Pontopidan K. Holm P. B. (2006) Heat-stable phytases in transgenic wheat (Triticum aestivum L.):deposition pattern thermostability and phytate hydrolysis. Journal of agricultural and food chemistry 54(13):4624-4632
    Brown K. H. Wuehler S E, Peerson J M (2001) The importance of zinc in human nutrition and estimation of the global prevalence of zinc deficiency. Food Nutrition Bulletin 22(2):113-125
    Bryce J. Boschi-Pinto C, Shibuya K. Black RE (2005) WHO estimates of the causes of death in childre. The Lancet 365(9465):1147-1152
    Buerkert A. Haake C. Ruckwied M, Marschner H (1998) Phosphorus application affects the nutritional quality of millet grain in the Sahel. Field Crops Research 57(2):223-235
    Cakmak I (2008a) Enrichment of cereal grains with zinc:Agronomic or genetic biofortification? Plant and Soil 302(1):1-17
    Cakmak I (2008b) Zinc deficiency in wheat in Turkey. Micro nutrient deficiencies in global crop production 181-200
    Cakmak I (2009) Enrichment of fertilizers with zinc:An excellent investment for humanity and crop production in India. Journal of Trace Elements in Medicine and Biology 23(4)281-289
    Cakmak I, Kalayci M, Kaya Y, Torun A, Aydin N, Wang Y, Arisoy Z, Erdem H, Yazici A, Gokmen O (2010) Biofortification and localization of zinc in wheat grain. Journal of agricultural and food chemistry 58(16) 5092-9102
    Cakmak I, P feiffer WH, McClafferty B (2010) Review:biofortification of durum wheat with zinc and iron. Cereal Chemistry 87(1):10-20
    Cakmak I, Torun B, Erenoglu B, Ozturk L, Marschner H, Kalayci M. Ekiz H, Yilmaz A (1998) Morphological and physiological differences in the response of cereals to zinc deficiency. Euphytica 100(1) 349-357
    Camara F, Barbera R, Amaro M, Farre R (2007) Calcium iron zinc and copper transport and uptake by Caco-2 cells in school meals:Influence of protein and mineral interactions. Food Chemistry 100(3):1085-1092
    Caulfield L E, Zavaleta N, Shankar A H, Merialdi M (1998) Potential contribution of maternal zinc supplementation during pregnancy to maternal and child survival. The American journal of clinical nutrition 68(2):499S-508S
    Cavagnaro TR (2008) The role of arbuscular mycorrhizas in improving plant zinc nutrition under low soil zinc concentrations:a review. Plant and Soil 304(1): 315-325
    Ciliberto MA, Sandige H, Ndekha M, Ashorn P, Briend A,Cilierto H,Manary MJ (2005) Comparison of home-based therapy with ready-to-use therapeutic food with standard therapy in the treatment of malnourished Malawian children:a controlled, clinical effectiveness trial. American journal of clinical nutrition 81:864-870
    Coelho CMM, Santos JC P, Tsai SM, Vitorello VA (2002) Seed phytate content and phosphorus uptake and distribution in dry bean genotypes. Brazilian Journal of Plant Physiology 14(1):51-58
    Colle C, Madoz-Escande C, Leclerc E (2009) Foliar transfer into the biosphere: review of translocation factors to cereal grains. Journal of environmental radioactivity 100(9):683-689
    Cook J D, Reddy MB (2001) Effect of ascorbic acid intake on nonheme-iron absorption from a complete diet. The American journal of clinical nutrition 73(1):93-98
    Cousins R.J. Liuzzi JP. Lichten L A. (2006) Mammalian zinc transport trafficking and signals. Journal of Biological Chemistry 281(34):24085-24089
    Cragg R, Phillips S. Piper J. Varma J, Campbell F, Mathers J, Ford D (2005) Homeostatic regulation of zinc transporters in the human small intestine by dietary zinc supplementation. Gut 54(4):469-478
    Cui Y, Wang Q (2005) Interaction effect of zinc and elemental sulfur on their uptake by spring wheat. Journal of plant nutrition 28(4):639-649
    Dai F, Wang J, Zhang S, Xu Z, Zhang G (2007) Genotypic and environmental variation in phytic acid content and its relation to protein content and malt quality in barley. Food Chemistry 105(2):606-611
    Dawson-Hughes B, Seligson FH, Hughes VA(1986) Effects of calcium carbonate and hydroxyapatite on zinc and iron retention in postmenopausal women. The American journal of clinical nutrition 44(1):83-88
    Dixit V, Parihar AKS, Shukla G (2012) Effect of sulphur and zinc on yield quality and nutrient uptake of hybrid rice in sodic soil Journal of Agricultural Science Technology 1(2)26-30
    Dobermann A, Fairhurst T. (2000) Rice:Nutrient disorders nutrient management. International Rice Research Institute 1
    Dorsch JA, Cook A, Young KA, Anderson JM, Bauman AT, Volkmann CJ, Murthy PPN, Raboy V (2003) Seed phosphorus and inositol phosphate phenotype of barley tow phytic acid genotypes. Phytochemistry 62(5):691-706
    Erdal I, Yilmaz A, Taban S, Eker S, To run B, Cakmak Ⅰ (2002) Phytic acid and phosphorus concentration in seeds of wheat cultivars grown with and without zinc fertilization. Journal of plant nutrition 25(1):113-127
    Etcheverry P, Wallingford J,Miller D, Glahn R (2004) Calcium zinc and iron bioavailabilities from a commercial human milk fortifier:a comparison study. Journal of dairy science 87(11) 3629-3637
    Eyupoglu F, Kurucu N, Sanise U (1994) Status of plant available micronutrients in Turkish soils. Annual Report N° R 11825-32
    Faa G, Nurchi VM, Ravarino A, Fanni D, Nemolato S,Gerosa C, Van Eyken P, Geboes K (2008) Zinc in gastrointestinal and liver disease. Coordination Chemistry Reviews 252(10):1257-1269
    Fageria V (2001) Nutrient interactions in crop plants. Journal of plant nutrition 24(8):1269-1290
    Fairweather-Tait S, Lynch S, Hotz C. Hurrell R, Abrahamse L, Beebe S, Bering S. Bukhave K, Glahn R, Hambidge M (2005) The usefulness of in vitro models to predict the bioavailability of iron and zinc:a consensus statement from the HarvestPlus expert consultation International Journal for Vitamin and Nutrition Research 75(6):371-374
    Falk MC, Chassy BM, Harlander SK, Hoban TJ, McGloughlin MN, Akhlaghi AR (2002) Food biotechnology:Benefits and concerns. The Journal of nutrition 132(6):1384-1390
    Fang Y, Wang L, Xin Z, Zhao L, An X, Hu Q (2008) Effect of foliar application of zinc selenium and iron fertilizers on nutrients concentration and yield of rice grain in China. Journal of agricultural and food chemistry 56(6) 2079-2084
    Ficco D, Riefolo C. Nicastro G, De Simone V, Di Gesu A, Beleggia R, Platani C, Cattivelli L, De Vita P (2009) Phytate and mineral elements concentration in a collection of Italian durum wheat cultivars. Field Crops Research 111(3): 235-242
    Finley J. Johnson PE (1992) Relative influence of amount of dietary zinc and infusion of protein into the duodenum on the amount of zinc in biliary/pancreatic secretions. Nutrition research 12(10):1217-1228
    Finley JW, Briske-Anderson M, Reeves PG, Johnson LAK (1995) Zinc uptake and transcellular movement by CACO-2 cells:studies with media containing fetal bovine serum. The Journal of Nutritional Biochemistry 6(3):137-144
    Fitzgerald M A, McCouch SR, Hall RD (2009) Not just a grain of rice:the quest for quality. Trends in plant science 14(3):133-139
    Frontela C, Scarino ML, Ferruzza S, Ros G, Martinez C (2009) Effect of dephytinization on bioavailability of iron calcium and zinc from infant cereals assessed in the Caco-2 cell model. World journal of gastroenterology:WJG 15(16):1977-1984
    Frossard E, Bucher M, Machler F, Mozafar A, Hurrell R (2000) Potential for increasing the content and bioavailability of Fe Zn and Ca in plants for human nutritioa Journal of the Science of Food and Agriculture 80(7):861-879
    Gao X, Kuyper TW, Zou C, Zhang F, Hoffland E (2007) Mycorrhizal responsiveness of aerobic rice genotypes is negatively correlated with their zinc uptake when nonmycorrhizal. Plant and Soil 290(1)283-291
    Gao X, Zou C, Fan X, Zhang F, Hoffland E (2006) From flooded to aerobic conditions in rice cultivation:Consequences for zinc uptake. Plant and Soil 280(1):41-47
    Gautam S, Platel K, Srinivasan K (2010) Higher bioaccessibility of iron and zinc from food grains in the presence of garlic and onion. Journal of agricultural and food chemistry 58(14):8426-8429
    Gianquinto G, Abu-Rayyan A, Di Tola L, Piccotino D, Pezzarossa B (2000) Interaction effects of phosphorus and zinc on photosynthesis growth and yield of dwarf bean grown in two environments. Plant and Soil 220(1) 219-228
    Gibson RS (2006). Zinc:the missing link in combating micronutrient malnutrition in developing countries. Proceedings of the Nutrition Society 65(1) 51-60
    Gibson RS, Hotz C (2001) Dietary diversification/modification strategies to enhance micronutrient content and bioavailability of diets in developing countries. British Journal of Nutrition 85(S2):S159-S166
    Graham R, Senadhira D, Beebe S, Iglesias C, Monasterio I (1999) Breeding for micronutrient density in edible portions of staple food crops:conventional approaches. Field Crops Research 60(1):57-80
    Gregorio G, Senadhira D, Htut T, Graham R (1999) Improving iron and zinc value of rice for human nutrition. Agriculture et development 23(9):77-81
    Gregorio GB (2002) Progress in breeding for trace minerals in staple crops. The Journal of nutrition 132(3):500S-502S
    Guttieri M, BowenD, Dorsch JA, Raboy V, Souza E(2004) Identification and characterization of a low phytic acid wheat. Crop Scicence 44:418-424
    Hajiboland R, Aliasgharzad N, Barzeghar R (2009) Influence of arbuscular mycorrhizal fungi on uptake of Zn and P by two contrasting rice genotypes. Plant Soil Environment 55(3)93-100
    Hambidge KM, Chavez MN, Brown RM, Walravens PA 1979. Zinc nutritional status of young middle-income children and effects of consuming zinc-fortified breakfast cereals. The American journal of clinical nutrition 32(12): 2532-2539
    Hambidge K M, Krebs NF (2007) Zinc deficiency:a special challenge. The Journal of nutrition 137(4):1101-1105
    Hambidge M (2000) Human zinc deficiency. The Journal of nutrition 130(5) 1344S-1349S
    Hamid A, Ahmad N (2001) Paper at regional workshop on Integrated Plant Nutrition System (IPNS). Development and Rural Poverty Alleviation. September 18-21
    Haslett B S, Reid RJ, Rengel Z (2001) Zinc mobility in wheat:uptake and distribution of zinc applied to leaves or roots. Annals of Botany 87(3):379-386
    Hemalatha S, Platel K, Srinivasan K (2006) Influence of germination and fermentation on bioaccessibility of zinc and iron from food grains. European journal of clinical nutrition 61(3)342-348
    Hempe JM, Cousins RJ (1992) Cysteine-rich intestinal protein and intestinal metallothionein:an inverse relationship as a conceptual model for zinc absorption in rats. The Journal of nutrition 122(1):89-95
    Hotz C (2005) Evidence for the usefulness of in vitro dialyzability Caco-2 cell models animal models and algorithms to predict zinc bioavailability in humans. International journal for vitamin and nutrition research 75(6):423-435
    Hotz C, Brown K H (2004). Assessment of the risk of zinc deficiency in populations and options for its control:International nutrition foundation:for UNU. Food and Nutrition Bulletin 25(1):S94-S200
    Hotz C, McClafferty B (2007) From harvest to health:Challenges for developing bio fortified staple foods and determining their impact on micronutrient status. Food Nutrition Bulletin 28 (Supplement 2)271S-279S
    House WA (1999) Trace element bioavailability as exemplified by iron and zinc. Field Crops Research 60(1):115-141
    House WA, Van Campen DR, Welch RM (1996) Influence of dietary sulfur-containing amino acids on the bioavailability to rats of zinc in corn kernels. Nutrition research 16(2)225-235
    House WA, Welch RM, Beebe S, Cheng Z (2002) Potential for increasing the amounts ofbioavailable zinc in dry beans (Phaseolus vulgaris L) through plant breeding. Journal of the Science of Food and Agriculture 82(13):1452-1457
    House WA, Welch RM, Van Campen DR (1982) Effect of phytic acid on the absorption distribution and endogenous excretion of zinc in rats. The Journal ofnutrition 112(5) 941-953
    Hurrell RF (2002) Fortification:overcoming technical and practical barriers. The Journal of nutrition 132(4):806S-812S
    Hussain D, Haydon M J, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16(5):1327-1339
    Ishimaru Y, Bashir K, NishizawaNK (2011) Zn uptake and trans location in rice plants. Rice 4(1) 21-27
    Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe S, Matsuhashi S, Takahashi M (2006) Rice plants take up iron as an Fe3+- phytosiderophore and as Fe2+. The Plant Journal 45(3) 335-346
    Jackson M. (1997) The assessment of bioavailability of micronutrients:introduction. European journal of clinical nutrition 51:S1-S2
    Jiang W, Struik P, Lingna J, Van Keulen H, Ming Z, Stomph T (2007) Uptake and distribution of root-applied or foliar-applied 65Zn after flowering in aerobic rice. Annals of Applied Biology 150(3) 383-391
    Jiao A, Yang C, Cao G, Li D, Guo J,Jin Z, Jin H, Li G, Han L (2008) Progress in Genetic Research on Protein Content of Rice. Zhongguo Nongye Kexue (Agricultural Sciences in China) 41(1):1-8
    Jondreville C, Schlegel P, Hillion S, Chagneau AM, Nys Y (2007) Effects of additional zinc and phytase on zinc availability in piglets and chicks fed diets containing different amounts of phytates. Livestock Science 109(1):60-62
    Joshi A, Crossa J, Arun B, Chand R, Trethowan R, Vargas M, Ortiz-Monasterio I (2010) Genotypex environment interaction for zinc and iron concentration of wheat grain in eastern Gangetic plains of India. Field Crops Research 116(3) 268-277
    Johnson AAT,Kyriacoub, Callahan DL,Carruthers L, Stangoulis J, Lombi E, Tester M (2011) Constitutive overecpression of the OsNAS gene iamily reveals sigle-gene strtegies for effective iron- and zinc- bio fortification of rice endosperm.PLOS One 6:e24476
    Jou M Y, Du X, Hotz C, Lonnerdal B (2012) Bio fortification of rice with zinc: assessment of the relative bioavailability of zinc in a caco-2 cell model and suckling rat pups. Journal of agricultural and food chemistry 60(14) 3650-3657
    Jovani M, Barbera R, Farre R, Aguilera EM (2001) Calcium iron and zinc uptake from digests of infant formulas by Caco-2 cells. Journal of agricultural and food chemistry 49(7):3480-3485
    Kambe T, Yamaguchi-Iwai Y, Sasaki R, Nagao M. (2004) Overview of mammalian zinc transporters. Cellular and molecular life sciences 61(1):49-68
    King J C, Shames DM, Woodhouse LR (2000) Zinc homeostasis in humans. The Journal of nutrition 130(5) 1360S-1366S
    Kruger C, Berkowitz O, Stephan UW, Hell R (2002) A Metal-binding Member of the Late Embryogenesis Abundant Protein Family Transports Iron in the Phloem of Ricinus communis L. Journal of Biological Chemistry 277(28): 25062-25069
    Krebs NF (2000) Overview of zinc absorption and excretion in the human gastrointestinal tract. The Journal of nutrition 130(5):13745-13775.
    Krishnan S, Dayanandan P (2003) Structural and histochemical studies on grain-filling in the caryopsis of rice (Oryza sativa L.) Journal of biosciences 28(4):455-469
    Kutman UB, Yildiz B, Cakmak I (2011) Improved nitrogen status enhances zinc and iron concentrations both in the whole grain and the endosperm fraction of wheat. Journal of cereal science 53(1) 118-125
    Lonnerdal B (2000) Dietary factors influencing zinc absorption. The Journal of nutrition 130(5):1378S-1383S
    Lachat CK,Van Camp JH, Mamiro PS,Wayua FO, Opsomer AS, Roberfroid DA, Kolsteren PW (2006) Processing of complementary food does not increase hair zinc levels and growth of infants in Kilosa district rural Tanzania. British Journal of Nutrition 95(1) 174-180
    Lee S, Jeong HJ, Kim SA, Lee J. Guerinot ML, An G (2010) OsZIP5 is a plasma membrane zinc transporter in rice. Plant molecular biology 73(4):507-517
    Lee S, Persson DP, Hansen TH, Husted S, Schjoerring JK, Kim YS, Jeon US, Kim YK, Kakei Y, Masuda H (2011a) Bio-available zinc in rice seeds is increased by activation tagging of nicotianamine synthase. Plant biotechnology journal 9(8): 865-873
    Li H, Huang G, Meng Q, Ma L, Yuan L, Wang F, Zhang W, Cui Z, Shen J, Chen X (2011) Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant and Soil 349(1):157-167
    Liang J, Han BZ, Han L, Nout M, Hamer RJ (2007) Iron zinc and phytic acid content of selected rice varieties from China. Journal of the Science of Food and Agriculture 87(3):504-510
    Liang J, Han BZ, Nout M, Hamer RJ (2008) Effects of soaking germination and fermentation on phytic acid total and in vitro soluble zinc in brown rice. Food Chemistry 110(4):821-828
    Liang J, Han BZ, Nout MJR. Hamer RJ (2010) In vitro solubility of calcium iron and zinc in relation to phytic acid levels in rice-based consumer products in China. International Journal of Food Sciences and Nutrition 61(1):40-51
    Liang J, Li Z, Tsuji K, Nakano K, Nout M, Hamer RJ (2008) Milling characteristics and distribution of phytic acid and zinc in long-medium-and short-grain rice. Journal of cereal science 48(1):83-91
    Lindsay WL (1979) Chemical equilibria in soils:John Wiley and Sons Ltd.449P
    Liu CS, Glahn RP, Liu RH (2004) Assessment of carotenoid bioavailability of whole foods using a Caco-2 cell culture model coupled with an in vitro digestion. Journal of agricultural and food chemistry 52(13):4330-4337
    Liu Z, Cheng F, Zhang G (2005) Grain phytic acid content in japonica rice as affected by cultivar and environment and its relation to protein content. Food Chemistry 89(1):49-52
    Lombi E, Scheckel K, Pallon J, Carey A. Zhu YG, Meharg AA (2009) Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytologist 184(1):193-201
    Loneragan J F, Webb M J (1993) Interactions between zinc and other nutrients affecting the growth of plants. Developments in Plant and Soil Sciences 55: 119-121.
    Lucca P. Hurrell R, Potrykus I (2001) Approaches to improving the bioavailability and level of iron in rice seeds. Journal of the Science of Food and Agriculture 81(9):828-834
    Ma G, Jin Y, Piao J, Kok F, Guusje B, Jacobsen E (2005) Phytate, calcium, iron, and zinc contents and their molar ratios in foods commonly consumed in China. Journal of agricultural and food chemistry,53(26):10285-10290
    MacDonald GK, Bennett EM, Potter PA, Ramankutty N (2011) Agronomic phosphorus imbalances across the world's croplands. Proceedings of the National Academy of Sciences 108(7):3086-3091
    Malakouti M (2007) Zinc is a neglected element in the life cycle of plants:a review. Mddle Eastern and Russian Journal of Plant Science and Biotechnology 1: 1-12
    Masuda H, Usuda K, Kobayashi T, Ishimaru Y, Kakei Y, Takahashi M.Higuchi K,Nakanishi H, Mori S, Nishizawa NK (2009) Overexpression of the barley nicotianamine synthase gene HvNASl increases iron and zinc Concentrations in Rice Grains.Rice 2:155-166
    Marschner H, Cakmak Ⅰ (1986) Mechanism of phosphorus induced zinc deficiency in cotton Ⅱ. Evidence for impaired shoot control of phosphorus uptake and translocation under zinc deficiency. Physiology Plant.68:491-496
    Mayer JE, Pfeiffer WH, Beyer P (2008) Biofortified crops to alleviate micronutrient malnutritio. Current Opinion in Plant Biology 11:166-170
    Moongngarm A, Saetung N (2010) Comparison of chemical compositions and bioactive compounds of germinated rough rice and brown rice. Food Chemistry 122(3):782-788
    Moraghan T, Sims A, Smith L (1999) Zinc in wheat grain as affected by nitrogen fertilization and available soil zinc. Journal of plant nutrition 22(4-5):709-716
    Moughan P, Birtles M, Cranwell P, Smith W, Pedraza M (1992) The piglet as a model animal for studying aspects of digestion and absorption in milk-fed human infants. World review of nutrition and dietetics 67:41-98.
    Nishiyama R, Kato M, Nagata S, Yanagisawa S, Yoneyama T (2012) Identification of Zn- Nicotianamine and Fe-2'-Deoxymugineic Acid in the Phloem Sap from Rice Plants (Oryza sativa L.). Plant and Cell Physiology 53(2):381-390
    Ockenden I, Dorsch JA, Reid MM, Lin L, Grant LK, Raboy V, Lott JNA (2004). Characterization of the storage of phosphorus, inositol phosphate and cations in grain tissues of four barley low phytic acid genotypes. Plant Science 167(5): 1131-1142
    Ozturk L, Yazici M., Yucel C, Torun A, Cekic C, Bagci A (2006).Concentration and localization of zinc during seed development and germination in wheat. Physiologia Plantarum 128:144-152
    Palmgren MG, Clemens S, Williams L E,Kramer U. Borg S, Schjorring JK, Sanders D (2008) Zinc bio fo rtification of cereals:problems and solutions. Trends in plant science 13(9):464-473
    Patil SB, Khan MK (2011) Germinated brown rice as a value added rice product:A review. Journal of Food Science and Technology 48(6):661-667.
    Phattarakul N, Rerkasem B, Li L, Wu L, Zou C, Ram H, Sohu V, Kang B, Surek H, Kalayci M (2012) Bio fortification of rice grain with zinc through zinc fertilization in different countries. Plant and Soil 1-11
    Prasad AS (2009) Impact of the discovery of human zinc deficiency on health. Journal of the American College of Nutrition 28(3):257-265
    Prom-u-thai C, Rerkasem B, Cakmak I, Huang L (2010) Zinc fortification of whole rice grain through parboiling process. Food Chemistry 120(3):858-863
    Raboy V, Dickinson DB (1984) Effect of phosphorus and zinc nutrition on soybean seed phytic acid and zinc. Plant physiology 75(4):1094-1098
    Raboy V, Gerbasi PF, Young KA, Stoneberg SD, Pickett SG, Bauman AT, Murthy PPN, Sheridan WF, Ertl DS (2000) Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant physiology 124(1):355-368
    Rehman H, Aziz T, Farooq M, Wakeel A, Rengel Z (2012) Zinc nutrition in rice production systems:a review. Plant and Soil 1-24
    Riceman D, Jones G (1958) Distribution of zinc in subterranean clover (Trifolium subterraneum L.) grown to maturity in a culture solution containing zinc labelled with the radioactive isotope 65Zn. Crop and Pasture Science 9(6): 730-744
    Rosado JL, Hambidge KM, Miller LV, Garcia OP, Westcott J, Gonzalez K, Conde J, Hotz C, Pfeiffer W, Ortiz-Monasterio I (2009) The quantity of zinc absorbed from wheat in adult women is enhanced by biofortificatioa The Journal of nutrition 139(10):1920-1925
    Rosado JL, Munoz E, Lopez P, Allen LH (1993) Absorption of zinc sulfate methionine and polyascorbate in the presence and absence of a plant-based rural Mexican diet. Nutrition research 13(10):1141-1151
    Ryan MH, McInerney JK, Record IR, Angus JF (2008) Zinc bioavailability in wheat grain in relation to phosphorus fertiliser crop sequence and mycorrhizal fungi. Journal of the Science of Food and Agriculture 88(7):1208-1216
    Saenchai C, Prom-u-thai C, Jamjod S, Dell B, Rerkasem B (2012) Genotypic variation in milling depression of iron and zinc concentration in rice grain. Plant and Soil 1-8
    Salgueiro MJ, Zubillaga M, Lysionek A, Sarabia MI, Caro R, De Paoli T, Hager A, Weill R, Boccio J (2000) Zinc as an essential micronutrient:a review. Nutrition research 20(5):737-755
    Salunke R, Rawat N, Tiwari VK, Neelam K, Randhawa GS, Dhaliwal HS, Roy P (2011) Determination of bioavailable-zinc from biofortified wheat using a coupled in vitro digestiorn/Caco-2 reporter-gene based assay. Journal of Food Composition and Analysis 25(2):149-159
    Sandstead HH (2000) Causes of iron and zinc deficiencies and their effects on brain. The Journal of nutrition 130(2):347S-349S
    Sandstrom B, Davidsson L, Cederblad A, Lonnerdal B (1985) Oral iron dietary ligands and zinc absorptio. The Journal of nutrition 115(3):411-414
    Sian L, Mingyan X, Miller LV, Tong L, Krebs NF, Hambidge, KM (1996) Zinc absorption and intestinal losses of endogenous zinc in young Chinese women with marginal zinc intakes. The American journal of clinical nutrition,63(3): 348-353
    Sillanpaa M. (1982) Micronutrients and the nutrient status of soils:A global study. FAO Soils Bulletin 48
    Singh MV (2008) Micronutrient deficiencies in crops and soils in India. Micronutrient deficiencies in global crop production 93-125
    Solomons NW (1986) Competitive interaction of iron and zinc in the diet: consequences for human nutrition. The Journal of nutrition,116(6):927-935
    Sreenivasulu K, Raghu P, Ravinder P, Nair KM (2008) Effect of dietary ligands and food matrices on zinc uptake in Caco-2 cells:Implications in assessing zinc bioavailability. Journal of agricultural and food chemistry,56(22): 10967-10972
    Suzuki M, Tsukamoto T, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant molecular biology 66(6): 609-617
    Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E,Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. The Plant Cell Online 15(6):1263-1280
    Todd WR, Elvejheim CA, Hart EB (1934) Zinc in the nutrition of the rat. American Journal of Physio logy107:146-156
    Van Campen DR, Glahn RP (1999) Micronutrient bioavailability techniques:accuracy problems and limitations. Field Crops Research 60(1):93-113
    Viadel B. Barbera R, Farre R (2006) Uptake and retention of calcium iron and zinc from raw legumes and the effect of cooking on lentils in Caco-2 cells. Nutrition research 26(11):591-596
    Wada T, Lott JN A(1997) Light and electron microscopic and energy dispersive X-ray microanalysis studies of globoids in protein bodies of embryo tissues and the aleurone layer of rice (Otyza sativa L.) grains. Canadian journal of botany 75(7):1137-1147
    Walker CLF, Ezzati M, Black R (2008) Global and regional child mortality and burden of disease attributable to zinc deficiency. European journal of clinical nutrition 63(5):591-597
    Welch RM (2002) Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. The Journal of nutrition 132(3): 495S-499S
    Welch RM, Graham RD (1999) A new paradigm for world agriculture:meeting human needs:productive sustainable nutritious. Field Crops Research 60(1): 1-10
    Welch RM, Graham RD (2002) Breeding crops for enhanced micronutrient content. Plant and Soil 245(1):205-214
    Welch RM, Graham RD (2004) Breeding for micro nutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany 55(396): 353-364
    Welch RM, Shuman DL (1995) Micronutrient nutrition of plants. Critical Reviews in plant sciences 14(1):49-82
    Welch RM, William A, Ortiz-Monasterio I, Cheng Z (2005) Potential for improving bioavailable zinc in wheat grain (Triticum species) through plant breeding. Journal of agricultural and food chemistry,53(6):2176-2180
    White MC, Baker, FD, Chaney RL. Decker AM (1981) Metal complexation in xylem fluid Ⅱ. Theoretical equilibrium model and computational computer prograM, Plant physiology 67(2):301-310
    White, PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends in plant science 10(12):586-593
    White PJ, Broadley MR (2009) Bio fortification of crops with seven mineral elements often lacking in human diets-iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytologist 182(1):49-84
    WHO (2006) World health report 2002. Reducing risks, promoting healthy life. Geneva:WHO,2002. World Health Organizatio.
    Wissuwa M, Ismail AM, Graham RD (2008) Rice grain zinc concentrations as affected by genotype native soil-zinc availability and zinc fertilization. Plant and Soil 306(1):37-48
    Wopereis-Pura M, Watanabe H, Moreira J, Wopereis M (2002) Effect of late nitrogen application on rice yield grain quality and profitability in the Senegal River valley. European Journal of Agronomy 17(3):191-198
    Wu C, Lu L, Yang X, Feng Y,Wei Y, Hao H, Stoffella P, He Z (2010) Uptake, trans location, and remobilization of zinc absorbed at different growth stages by rice genotypes of different Zn densities. Journal of agricultural and food chemistry 58(11):6767-6773
    Yamaji S, Tennant J, Tandy S, Williams M, Singh Srai SK, Sharp P (2001) Zinc regulates the function and expression of the iron transporters DMT1 and IREG1 in human intestinal Caco-2 cells. FEBS letters 507(2):137-141
    Yan L, Prentice A, Dibba B, Jarjou L, Stirling DM, Fairweather-Tait S (1996) The effect of long-term calcium supplementation on indices of iron zinc and magnesium status in lactating Gambian women. British Journal of Nutrition 76(06):821-831
    Yang L, Yang X, Piao J, Tian Y, Li P, Wang Y, Wang J (2005) Studies on zinc bioavailability from a representative diet in Chinese urban women of childbearing age using a double label stable isotope technique. Journal of Trace Elements in Medicine and Biology 19(2):159-164
    Yang X, Li T, Yang J, He Z, Lu L, Meng F (2006) Zinc compartmentation in root transport into xylem and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta 224(1):185-195
    Yang X, Ye Z, Shi CH, Zhu M, Graham R (1998) Genotypic differences in concentrations of iron manganese copper and zinc in polished rice grains. Journal of plant nutrition 21(7):1453-1462
    Yee S (1997) In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth. Pharmaceutical research 14(6):763-766
    Zeng Y, Zhang H, Wang L, Pu X, Du J, Yang S, Liu J (2010) Genotypic variation in element concentrations in brown rice from Yunnan landraces in China. Environmental geochemistry and health 32(3):165-177
    Zhang Y, Shi R., Re zaul KM, Zhang F, Zou C (2010) Iron and zinc concentrations in grain and flour of winter wheat as affected by foliar applicatio. Journal of agricultural and food chemistry 58(23):12268-12274
    Zhang Y Q, Deng Y Chen RY Cui Z L, Chen X P, Yost R Zhang FS, Zou CQ (2012) The reduction in zinc concentration of wheat grain upon increased phosphorus-fertilization and its mitigation by fo liar zinc application. Plant and Soil 1-10
    Zhang YQ, Sun YX, Ye YL, Karim MR, Xue YF, Yan P, Meng QF, Cui ZL, Cakmak I. Zhang FS (2012) Zinc bio fortification of wheat through fertilizer applications in different locations of China. Field Crops Research 125:1-7
    Zheng L, Cheng Z, Ai C, Jiang X, Bei X, Zheng Y, Glahn RP, Welch RM, Miller DD, Lei XG (2010) Nicotianamine, a novel enhancer of rice iron bioavailability to humans. PloS one 5(4):e10190
    Zimmermann MB, Hurrell RF (2002) Improving iron, zinc and vitamin A nutrition through plant biotechnology. Current Opinion in Biotechnology 13(2): 142-145
    Zou C, Gao X, Shi R, Fan X, Zhang F (2008) Micronutrient deficiencies in crop production in China. Micronutrient deficiencies in global crop production 127-148
    Zodl B, Zeiner M, Sargazi M,Roberts NB,Marktl W, Steffan I, Ekmekcioglu C (2003) Toxic and biochemical effects of zinc in Caco-2 cells. Journal of Inorganic Biochemistry 97(4)324-330
    Zhu L, Glahn RP, Yeung CK, Miller DD (2006) Iron uptake by Caco-2 cells from NaFeEDTA and FeSO4:Effects of ascorbic acid pH and a Fe (II) chelating agent. Journal of agricultural and food chemistry 54(20):7924-7928
    鲍士旦(2005)土壤农化分析.中国农业出版社.
    陈文强(2006)微量元素锌与人体健康.微量元素与健康研究23(4):62-65
    陈厚荣(2009)杂粮米型营养强化剂的生产技术研究,西南大学,博士学位论文.
    陈碧艳,唐任光, 杨志娟(2009)百色市1560名儿童钙铁锌镁微量元素结果分析.现代保健:医学创新研究(23):179-180
    迟凤琴(2002)不同硫肥品种用量对玉米产量和黑土有效硫的影响.土壤肥料(4):38-40
    董晓慧(2001)氨基酸螯合锌吸收、转运特点和影响因素的研究.东北农业大学,博士学位论文.
    俄胜哲,袁继超,姚凤娟,丁志勇,喻晓玶, 罗付香(2004)攀西及相邻地区稻米中矿质元素含量的差异分析.四川农业大学学报22(4):313-317
    付力成,王人民,孟杰,万吉丽(2010)叶面锌、铁配施对水稻产量、品质及锌铁分布的影响及其品种差异中国农业科学,43(24):5009-5018
    樊明宪(2004)世界硫肥介绍.化肥工业32(1):1-7
    高永清, 蒋建华(1995)常见食物中植酸的含量.中国学校卫生16(1):57-58
    高霄鹏.(2006)不同基因型旱稻锌营养特性的研究.中国农业大学,博士学位论文.
    韩永斌,顾振新,蒋振辉(2006)Ca2+浸泡处理对发芽糙米生理指标和GABA等物质含量的影响.食品科学27(10):58-60
    何武, 富振英.(2004)中国营养状况十年跟踪:人民卫生出版社.
    黄国霞(2005)锌营养缺乏对机体的影响及防治措施.现代临床医学31(5):363-365
    黄秋婵,韦友欢,石景芳(2009)微量元素锌对人体健康的生理效应及其防治途径.微量元素与健康研究26(1):68-70
    韩植龙,南钟浩, 全东兴,曹桂兰(2003)特种稻种质创新与营养特性评价.植物遗传资源学报4(3):207-213
    姜雯,赵明,樊堂群,金灵娜(2006)粮食作物锌的吸收运转分配和改善子粒锌含量的理论与技术途径.中国土壤与肥料(4):10-15
    蒋廷惠,胡霭堂,秦怀英(1989)土壤锌的形态和分级方法.土壤通报20(2):86-89
    蒋彬(2002)精米中微量元素铁铜锰锌的含量差异.昭通师范高等专科学校学报24(2):45-48.
    矫继峰(2005)酵母锌对仔猪生长性能及免疫水平的影响.吉林农业大学,博士学 位论文.
    金瑛,马冠生(2005)植酸与矿物质的利用率.国外医学卫生学分册32(3):141-144
    金增辉(2004)营养强化米及其加工方法.粮食与油脂9:40-43
    雷激,张明秋,张勇,黄承钰, 白琳(2011)体外消化/Caco-2细胞模型评价面粉锌利用率.食品科学32(1):263-269
    林涛,陈翊,邝间玲,李婉玲.2011.广州地区儿童全血部分微量和常量元素含量年龄差异的分析.广东医学32(14):1859-1861
    林世玲(2011)硫肥pH值的变化对土壤有效磷含量作物产量的影响.兰州大学硕士学位论文.
    李天真(2003)人体微量元素锌的营养研究.湖州职业技术学院学报1(2):72-76
    李明智,郝丽瑾(2005)体内必需微量元素锌的生理功能.菏泽医学专科学校学报10(2):60-61
    李春俭(2001)高等植物的矿质营养(Marschner H) In):北京:中国农业大学.
    李灵芝,李海平(2008)微量元素锌对苦荞种子萌发及生理特性的影响.西南大学学报:自然科学版30(3):80-83
    李燕婷,李秀英,肖艳,赵秉强,王丽(2009).叶面肥的营养机理及应用研究进展,中国农业科学42(1):162-172
    刘存辉,董树亭,胡昌浩(2002)高产夏玉米施用硫肥对矿质元素吸收影响的研究.玉米科学,10(3):82-86
    刘福来(1998)土壤-植物系统中锌的研究概况.土壤肥料(5):10-14
    刘璐璐,刘正辉,丁艳锋,王绍华,王强盛,李刚华(2009)水培条件下硫素营养对粳稻米质的影响.中国农业科学,42(6):1924-1932
    刘宝存,孙明德,吴静,黄德明(2002)硫素营养对小麦子粒氨基酸含量的影响.植物营养与肥料学报8(4):458-461
    刘东,高萍(2011)Caco-2细胞模型评价药物口服吸收的局限性及对策.中国药学杂志.08:565-568
    刘铮(1994)我国土壤中锌含量的分布规律.中国农业科学27(1):30-37
    龙新宪,杨肖娥(1998)植物育种途径改善人类的铁,锌营养.广东微量元素科学,5(009):5-10
    陆勤丰(2006)锌强化营养小麦粉开发的实证研究。食品科学31(6):109-112
    陆景陵(2003)植物营养学:中国农业大学出版社.
    买文选,田霄鸿,陆欣春(2012)小麦不同生育期磷-锌关系研究.华北农学报26(5):205-213
    买文选,田霄鸿,陆欣春,和杨习文(2011)磷锌肥配施对冬小麦籽粒锌生物有效性的影响.中国生态农业学报19(6):1243-1249
    牛丽凤,刘剑辉(2011)微量元素锌与儿童健康关系的研究现状.中国中西医结合儿科学3(3):235-236
    石荣丽,邹春琴, 张福锁(2006)籽粒铁,锌营养与人体健康研究进展.广东微量元素科学13(7):1-8
    单延春(2001)锌与免疫功能的研究.国外医学:免疫学分册24(4):180-183
    沈杰,张天园(2009)成年人锌缺乏状况调查分析.微量元素与健康研究26(2):68.
    宋金敏,刘鹏,徐根娣,刘清,黄许(2008)鼠模型的水稻锌,铁有效性快速检测研究.广东微量元素科学15(6):22-25
    宋添星,彭显龙,刘元英,范立春,郭艳文(2007)实地氮肥管理对寒地水稻品质的影响.东北农业大学学报38(5):590-593
    孙桂芳, 杨光穗(2002)土壤一植物系统中锌的研究进展.华南热带农业大学学报8(2):22-30
    孙海燕,廖晓慧,彭光华, 张声华(2007) Caco-2细胞模型及其在食品营养物质吸收研究中的新进展.时珍国医国药18(10):2573-2573
    王志宏,翟凤英,何宇纳,胡以松,王惠君(2006)中国居民膳食锌元素的摄入状况及变化趋势.卫生研究35(4):485-486
    王忠, 顾蕴洁(1998)水稻糊粉层的形成及其在萌发过程中的变化.扬州大学学报:自然科学版1(1):19-24
    王东,于振文,王旭东.(2003)硫肥对冬小麦硫素吸收分配和产量的影响.作物学报29(5):791-793
    吴春勇,韦燕燕,冯英, 杨肖娥(2009)水稻锌生物有效性及通过土壤-植物系统强化锌含量的研究进展.中国农业科技导报11(2):23-29
    吴曦,陈明昌,杨治平(2007)碱性土壤施单质硫对油菜生长、土壤pH和有效磷含量的影响.植物营养与肥料学报13(4):671-677
    孙祖琰(1991)河北土壤微量元素研究会微肥应用.中国农业出版社,北京.
    夏敏(2003)必需微量元素与人体健康.广东微量元素科学10(1):11-16
    徐明岗,张青, 李菊梅(2004)土壤锌自然消减的研究进展.生态环境13(2):268-270
    徐金仁,周文红,徐芬芬,朱莉英,郭振(2010)水稻硫肥施用技术研究.广东农业科学(2):75-76
    徐晓燕,杨肖娥(1996)锌从土壤向食物链的迁移.广东微量元素科学3(7):21-29.
    袁可能,土壤学(1983)植物营养元素的土壤化学:科学出版社
    崔岩山, 王庆仁(2008)不同种类硫肥对油菜吸锌的影响.中国生态农业学报16(1):113-116
    崔岩山,王庆仁,董艺婷,李海峰(2004)硫磺对土壤中Pb和Zn形态的影响.环境化学23(1):46-50
    崔岩山,王庆仁(2008)不同种类硫肥对油菜吸锌的影响.中国生态农业学报16(1):113-116
    虞洁(2011)101600例0岁~17岁人群末梢血锌元素水平研究.兰州大学,博士学位论文
    虞华芳,汪志君,方维明(2005)不同锌处理对麦芽富锌的影响.食品与发酵工业31(4):69-73
    虞银江,廖海兵,陈文荣,田生科, 杨肖娥(2012)水稻吸收,运输锌及其籽粒富集锌的机制.中国水稻科学26(3):365-372
    余增峰(2010)烟酸锌对生长猪生产性能的影响及其吸收机制的研究.福建农林大学,博士学位论文.
    谢新华,肖昕,李晓方,刘邻渭(2003)稻米蛋白质的研究进展.广东农业科学(6):2-4
    于昱,罗绪刚,吕林,刘彬(2006)动物小肠锌吸收特点及其机制的研究进展.肠外与肠内营养13(3):179-183
    郑金贵(2004)农产品品质学:厦门大学出版社.
    赵宁春,张其芳,程方民,周伟军(2007)氮,磷,锌营养对水稻籽粒植酸含量的影响及与几种矿质元素间的相关性.中国水稻科学21(2):185-190
    赵同科(1996)植物锌营养研究综述与展望.河北农业大学学报19(1):102-107
    赵荣芳,邹春琴,张福锁(2007)长期施用磷肥对冬小麦根际磷,锌生物有效性及其作物磷锌营养的影响.植物营养与肥料学报13(3):368-372
    张玉良,李文星(1991)作物种子的植酸及其研究概况.种子(4):33~34
    张明秋,谢传晓,雷激,律焱,黄承钰(2008)体外消化/Caco-2细胞模型评价玉米铁利用率的有效性验证.“全国老年营养学术研讨会”暨“四川省营养学会成立二十周年庆祝会”会议录.
    张瑞兰,许郑林,孙风娥(1998)锌对免疫功能的调节作用.微量元素与健康研究15(4):70-71
    张福锁(1992)植物高铁载体对小麦锌吸收率的影响(简报)中国农业大学学报18(2):206-206
    周红梅,赵文利,张雪,何念海,孔祥英(2007)1383例儿童锌铁铜镁钙检测结果分析.重庆医学35(22):2021-2022

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700