靶向核糖核酸酶抗乙肝病毒作用的研究和抗乙肝病毒机制的初步探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙肝病毒感染是一个世界范围的卫生问题。据统计,全世界大约有3.5亿乙型肝炎病毒慢性感染者,我国约有1.2亿,其中相当大的一部分,特别是围产期/幼年期乙肝病毒感染者会迁延转变成为慢性肝炎,肝硬化或者肝癌。在过去的二十年中,虽然疫苗计划免疫降低了急、慢性乙肝病毒感染的发生率,但是现有的数目庞大的感染人群、约5%的对疫苗无应答者以及逃避疫苗诱导免疫的乙肝病毒突变株,都表明急需有效的治疗手段。对慢性乙型肝炎感染者的治疗,目前临床应用的α干扰素和核苷类似物有一定疗效,但是干扰素有效率不高(约为30%-40%),耐受性差,价格昂贵,副作用和禁忌症都较多;核苷类似物包括lamivudine、famciclovir等停药后部分患者的病情会复发,而长期用药又会导致耐药株的出现。因此,目前的治疗乙肝病毒感染的方法并不令人满意,迫切需要探索新的有效的治疗方法。近年来,随着生物技术的发展,基因治疗的研究取得了令人瞩目的成就,这也为乙型肝炎的治疗开辟了新的途径。
     1991年,Natsoulis和Boeke在Nature杂志首次提出一种新的抗病毒的策略:核衣壳导向的病毒灭活(capsid-targeted viral inactivation,CTVI)并将其应用于逆转录病毒的实验治疗。乙肝病毒的复制过程类
Hepatitis B vims (HBV) infection is still a major health concern around the world. It has been established that more than 350 million people are infected by HBV and 120 million in our country, and a lot of them will evolve into chronic hepatitis, liver cirrhosis and hepatocellular carcinoma, especially those who have infected in the childhood. Past 20 years, vaccine injected have decreased acute and chronic HBV infection, but there are so much people infected and 5% non-responders for vaccine and mutants for escaping immunization, which all need the effective antiviral treatment. To date, interferon- α (IFN- α ), an immuno- modulator, and two synthetic nucleoside analogues, lamivudine and adefovir dipivoxil, are the only licensed antiviral agents for the treatment of chronic HBV infection. However, IFN- α treatment response in chronic HBV infection patients rates range between 30% and 40%, and IFN-α therapy is very expensive and associated with a number of adverse effects, such as flu-like symptoms, paracetamol, fatigue, leucopoenia and depression, and so on. Nucleotide analogues such as lamivudine can inhibit replication of HBV via inhibiting the synthesis of minus-strand DNA of HBV, but cease of the treatment
    usually leads to relapse of the infection and drug-resistant virus variants have emerged. In a word, the limited efficacy of current treatment for HBV infection justifies the search for new treatment strategy. The remarkableacheivements in the gene therapy bring us wishes to cure this disease.Capsid-targeted viral inactivation (CTVI), first proposed by Natsoulis and Boeke in 1991, is a conceptually powerful antiviral approach. The replication of Hepadnavirus, including HBV, is unique in DNA virus in that it needs a RNA intermediate and a reverse transcription process. This 3.5 kb RNA intermediate contains all genetic information of HBV and is so called pregenomic RNA (pgRNA). The pgRNA is first translated to both the capsid, or core, protein (c protein) and the DNA polymerase protein (P protein). Then the pgRNA is bound first by P protein and cellular chaperones to form a complex which is then encapsidated by C protein. Inside the nucleocapsids, P protein catalyzes the synthesis of minus-strand DNA via reverse transcription and then the incomplete plus-strand DNA. The replication characteristic of HBV hints CTVI can also be applied to this malicious virus.Previously, we reported the construction of a fusion protein of HBV C protein and a ribonuclease, human eosinophil-derived neurotoxin (hEDN) and other control plasmid, including including p/hEDN, p/HBVc, and p/TNmut in which a Lys113-->Arg mutation was introduced by sequential PCR to eliminate the ribonuclease activity of hEDN, were also constructed. Liposome-mediated transfection of 2.2.15 cells by p/TN, p/TNmut, p/hEDN, p/HBVc, and pcDNA3.1 (-), or mock transfection was performed. After that, we found that the targeted ribonuclease could inhibit HBV replication in vitro. The aim of this research is to detect further antiviral effect by targeted ribonuclease and to explore its antiviral mechanism.First, Liposome-mediated transfection of 2.2.15 cells by p/TN, p/TNmut, p/hEDN, p/HBVc, and pcDNA3.1 (-), or mock transfection was
    performed. After that, RT-PCR was used to verify the transgene expression. Then, all the plasmid and pCMV.SPORT- & -gal were co-transfected into 2.2.15 cells. After 48 h, we prepared the cell extract of every co-transfection group to compare the efficiency each other. Under the condition of verifying the transgene expression and no difference in the transfection efficiency, we detected the further antiviral effect of targeted ribonuclease. Concentration of HBsAg and HBeAg in the supernatant of the transfected cells was measured using solid-phase radioimmunoassay. The concentration of HBsAg and HBeAg in the supernatant of 2.2.15 cells transfected with p/TR was significantly lower than controls, Compared with that of mock transfected 2.2.15 cells, the concentration of HBsAg in the supernatant of 2.2.15 cells transfected with p/TR was decreased by 51% and 61%, respectively. Concentration of HBsAg and HBeAg of the transfected cells was measured using HBsAg and HBeAg diagnosis kit. The concentration of HBsAg and HBeAg of 2.2.15 cells transfected with p/TR was significantly lower than controls, Compared with that of mock transfected 2.2.15 cells, the concentration of HBsAg in the supernatant of 2.2.15 cells transfected with p/TR was decreased by 31% and 41%, respectively. HBV DNA copies were determined by fluorescent real time PCR. The significant decrease of HBV DNA copies in p/TR transfection, compared with that of mock transfected 2.2.15 cells, showed the anti-HBV activity of the targeted ribonuclease.Here before, we verify the anti-HBV activity of the targeted ribonuclease. To explore the anti-HBV mechanism, we expressed the active targeted ribonuclease and control protein in E.coli, detecting their ribonuclease activity and studying their targeted degrading HBV pgRNA in and out 2.2.15 cells. First, the coding genes TR, TRmut and hEDN in the p/TR, p/TRmut and p/hEDN were cloned into prokaryotic expression vector pET32a(+). After digesting with BamHl and Hindlll, we could verify the
    successful construct of pET32a(+)/TR, pET32a(+)/TRmut and pET32a(+)/hEDN. All the recombinant prokaryotic expression vectors were transformed into E.coli BL21, inducing by different IPTG concentration and different induction time. The expression products were determined by SDS-PAGE and Western blot was used to confirm the target protein expression. Results showed that, under different induction conditions, the the recombinant prokaryotic expression vectors pET32a(+)/TR, pET32a(+)/TRmut and pET32a(+)/hEDN were successfully induced to express in E.coli. These three kinds of expression products with the molecular weight were 43kD, 43kD and 25kD, respectively. Western blot indicated a single band in the corresponding location. The expression products mainly existed in a form of inclusion bodies. pET32a(+)/TR was purified by Ni-NTA agarose under denaturing conditions, though some nonspecific binding proteins couldn't be excluded from the purified product. After the purification, TR was refolded by large volume dialysis and concentrated by by Ni-NTA agarose under native conditions. For pET32a(+)/TRmut and pET32a(+)/hEDN, we used the conventional inclusion body method to purify and slowly dialysis to refold. The refolding protein was freeze-dried to store. Using the yeast tRNA as a substrate, the analysis of ribonuclease activity showed that the results of refolding is very good.In other to detect the ribonuclease activity of the refolding protein, the qualitative ribonuclease activity analysis of refolding protein was done. The liver RNA of mouse was extracted by Trizol reagent and used as the substrate. After the incubation of the liver RNA and TR, the degrading of RNA was analyzed by RNA electrophoresis. The results showed that the two binds of RNA incubating with TRmut were very clear and that of incubating with TR were degraded to not so clear and showed the dose-dependent. Then, the quantitative ribonuclease activity analysis of refolding protein was
引文
1) Ganem D, Prince AM. Hepatitis B virus infection-natural history and clinical consequences. N Engl J Med. 2004, 350: 1118-I129
    2) Shouval D. Hepatitis B Vaccines. J hepatol. 2003, 39: S70-S76
    3) Huang X, Lu D, Ji G, Sun Y, Ma L, Chen Z, Zhang Li, Huang J, Yu L. Hepatitis B virus(HBV)vaccine-induced escape mutants of HBV S gene among child from Qidong area, china. Virus Res. 2004, 99: 63-68
    4) 刘崇柏,苏崇鳌.中国乙型肝炎疫苗免疫及存在的问题.中华流行病学杂志.2004,25:377-378
    5) Lok AS, McMahon BJ; AASLD (American Association for the Study of Liver Diseases). Chronic hepatitis B: update of therapeutic guidelines. Hepatology. 2004, 39: 857-61.
    6) De Franchis R, Hadengue A, Lau G, Lavanchy D, Lok A, McIntyre N, Mele A, Paumgarmer G, Pietrangelo A, Rodes J, Rosenberg W, Valla D; EASL Jury. EASL International Consensus Conference on Hepatitis B. 13-14 September, 2002 Geneva, Switzerland. Consensus statement (long version). J Hepatol. 2003, 39: S3-25
    7) 拉米夫定临床应用专家组.2004年拉米夫定临床应用专家共识.中华传染病杂志.2004,22:283-287
    8) Trepo C, Maynard M, Zoulim F. Perspectives on therapy of hepatitis B. J Hepatol. 2003, 39: S220-3.
    9) Hilleman MR. Critical overview and outlook: pathogenesis, prevention, and treatment of hepatitis and hepatocarcinoma caused by hepatitis B virus. Vaccine. 2003, 21: 4626-49.
    10) 张定凤.探索对慢性乙型肝炎病毒感染的合理治疗方案.中华肝脏病杂志 2004,12:577-581
    11) Natsoulis G., Boeke JD. New antiviral strategy using capsid-nuclease fusion proteins. Nature, 1991, 352: 632-635
    12) 李英辉,刘军,薛采芳.乙肝病毒靶向核糖核酸酶真核表达载体的构建及在2.2.15细胞的表达.细胞与分子免疫学杂志 2002,18:271-274
    13) Bartenschlager R, Schaller H. Hepadnaviral assembly is initiated by polymerase binding to the encapsidation signal in the viral RNA genome. EMBO J, 1992, 11: 3413-3420
    14) Junker-Niepmann M, Bartenschlager R, Schaller, H. A short cis-acting sequence is required for hepatitis B virus pregenome encapsidation and sufficient for packaging of foreign RNA EMBO J, 1990, 9: 3389-3396
    15) Nassal, M. The arginine-rich domain of the hepatitis B virus core protein is required for pregenome encaspsidatgion and productive viral positive-strand DNAS synthesis but not for virus assembly. J. Virol, 1992, 66: 4107-4116
    16) Schumann G., Qin L, Rein A, et al. Therapeutic effect of gag-nuclease fusion protein on retrovirus-infected cell cultures. J. Virol, 1996, 70: 4329-4337
    17) Schumann G., Cannon K, Ma WP, et al. Antiretroviral effect ofa gag-Rnase HI fusion gene. Gene Ther, 1997, 4: 593-599
    18) Cam A, Rybak SM, Newton DL, et al. Inhibition of HIV-1 replication by combined expression of gag dominant negative mutant and a human ribonuclease in a tightly controlled HIV-1 inducible vector. Gene Ther, 1998, 5: 65-75
    19) Liu J, Li YH, Xue CF, Ding J, Gong WD, Zhao Y, Huang YX. Targeted ribonuclease can inhibit replication of hepatitis B virus. World J Gastroenterol. 2003, 9: 295-299.
    20) Gong WD, Liu J, Ding J, Zhao Y, Li YH, Xue CF. Inhibition of HBV targeted ribonuclease enhanced by introduction of linker. World J Gastroenterol, 2003, 9: 1504-1507
    21) Ding J, Liu J, Xue CF, Gong WD, Li YH, Zhao Y. Anti-HBV effect of TAT-HBV targeted ribonuclease. World J Gastroenterol. 2003, 9: 1525-1528.
    22) Liu J, Li YH, Xue CF, Ding J, Gong WD, Zhao Y, Huang YX. Quantifying anti-HBV effect of targeted ribonuclease by real-time fluorescent PCR. World J Gastroenterol, 2004, 10: 2883-2885
    23) 李英辉,刘军,薛采芳,丁劲,宫卫东,赵亚.靶向核糖核酸酶在体外抑制乙型肝炎病毒复制的研究.中华微生物学和免疫学杂志,2003,23:484-488
    24) 赵亚,宫卫东,刘军,李英辉,丁劲,薛采芳.HBV—TR重组腺病毒载体的构建.第四军医大学学报,2004,25:321-324
    25) 赵亚,刘军,宫卫东,李英辉,丁劲,薛采芳.重组腺病毒介导的HBV核心蛋白和hEDN融合蛋白基因在小鼠肝脏的表达.第四军医大学学报,2004,25:1073-1076
    26) Hoofnagle JH, Di Bisceglie AM. The treatment of chronic viral hepatitis. N Engl J Med 1997; 336: 347-356.
    27) 姚光弼.乙型和丙型肝炎药物的治疗进展[J] 传染病信息,1999,12:1
    28) Fattovich G, Giustina G, Realdi G. Long-term outcome of hepatitis B e antigen-positive patients with compen-sated cirrhosis treated with interferon-alpha. Hepatology 1997, 26: 1338-1342.
    29) Bortolotti F, Jara P, Barbera C, Gregorio GV, Vegnente A, Zancan L, et al. Long term effect on alpha interferon in children with chronic hepatitis B. Gut 2000, 46: 715-718.
    30) 许正锯,王崇国,李旭红等.干扰素抗体与IFN-2α治疗慢性乙型肝炎疗效的关系.中华传染病杂志,1998,16:178-179
    31) 赵瑞祥.IFN-α治疗慢性活动性乙型肝炎的远期疗效.国外医学流行病学传染病分册,1995,22:138
    32) Bernard F, Raymond G, Willems B, et al, Quantitative assessment of serum hepatitisB antigen IgM, hepatitis B core antibody and HBV DNA in monitoring theresponse to treatment in patients with chronic hepatitis B. J Viral Hepat 1997, 4: 265-272
    33) Wong DKH, Cheung AM, O'Rourke K, Naylor CD, Detsky AS, Heathcote J. Effect of alpha-interferon in patients with hepatitis Be antigen-positive chronic hepatitis B: a meta-analysis. Ann Intern Med 1993, 119: 312—323.
    34) Andrenoe et al. A randomiel Controned triad of thymus in all versus interferon a treatment in patients with hepatitis B virus DNA positive chronic hepatitis B. Hepatology, 1996, 24: 774-777
    35) 王小众,陈运新,马连生,等.中国慢性乙肝肝炎抗病毒治疗的现状.世界华人消化杂志,2002,10:745
    36) Lebray P, Vallet-Pichard A, Michel ML, Fontaine H, Sobesky R, Brechot C, Pol S. Immunomodulatory drugs and therapeutic vaccine in chronic hepatitis B infection. J Hepatol. 2003, 39 Suppl 1: S151-9.
    37) Pol S, Michel ML, Brechot C. Immune therapy of hepatitis B virus chronic infection. Hepatology. 2000, 31: 548-9.
    38) Carreno V, Zeuzem S, Hopf U, Marcellin P, Cooksley WG, Fevery J, et al. A phase Ⅰ/Ⅱ study of recombinant humaninterleukin-12 in patients with chronic hepatitis B. Journal of Hepatology 2000, 32, 317-24.
    39) Michel ML, Pol S, Brechot C. & Tiollais P. Immuno-therapy of chronic hepatitis B by anti-HBV vaccine: from present to future. Vaccine 2001, 19: 2395-2399.
    40) Peter Karayiannis. Hepatitis B virus: old, new and future approaches to antiviral Treatment. Journal of Antimicrobial Chemotherapy, 2003, 51: 761-785
    41) 舒欣,李刚,姚集鲁 拉米夫定治疗乙型肝炎耐药性的产生及YMDD变异的研究.国外医学内科学分册,2000,27:185
    42) Sokal EM, Roberts EA, Mieli-Vergani G, McPhillips P, Johnson M, Barber J, Dallow N, Boxall E, Kelly D. A dose ranging study of the pharmacokinetics, safety, and preliminary efficacy of lamivudine in children and adolescents with chronic hepatitis B. Antimicrob Agents Chemother. 2000, 44: 590-597.
    43) Dienstag JL. The value and limitations of long-term nucleoside antiviral therapy in chronic hepatitis B. J Hepatol. 2005, 42: 158-62.
    44) 杨丽华,江应安,陈小蓓.α-干扰素联合拉米夫定抗乙型肝炎病毒复制的临床研究,中国生化约物杂志,2001,22;4
    45) 许家璋,朱志华,高蕾.拉米夫定联合α-干扰素治疗慢性乙型肝炎近期疗效分析,江苏医约杂志,2001,27:423
    46) 王经纬,刘锦堂 贺普丁.联合赛诺金抗乙肿病毒疗效观察.临床肝胆病杂志,2001.17:188
    47) Fung SK, Lok AS. Management of hepatitis B patients with antiviral resistance. Antivir Ther. 2004, 9: 1013-1026.
    48) Hadziyannis SJ, Papatheodoridis GV. Adefovir dipivoxil in the treatment of chronic hepatitis B virus infection. Expert Rev Anti Infect Ther. 2004, 2: 475-483.
    49) 陈新月,闵佳,李俊红,等.泛昔洛韦治疗慢性乙型肝炎的近期疗效.首都医科大学学报,2002,23:145
    50) 刘云华,田正林,李勇.泛昔洛韦对α-2b干扰素无应答的慢性乙型肝炎患者的疗效分析.临床肝胆病杂志,2001,17:186
    51) 李绍白,徐克成,翁绍纪,等.泛昔洛韦加拉米夫定联合治疗慢性乙型肝炎对HBeAg血清转换的影响.胃肠病学和肝病学杂志,2000,9:209
    52) Mutimer D. Hepatitis B virus infection: resistance to antiviral agents. J Clin Virol. 2001, 21: 239-42.
    53) 成军.恩替卡韦及其抗HBV治疗效果.国外医学流行病学传染病学分册,2002,29(2):76
    54) Levine S, Hernandez D, Yamanaka G, Zhang S, Rose R, Weinheimer S, Colonno RJ. Efficacies of entecavir against lamivudine-resistant hepatitis B virus replication and recombinant polymerases in vitro. Antimicrob Agents Chemother. 2002, 46: 2525-2532.
    55) Kann M. Interfering with capsid formation: a practicable antiviral strategy against hepatitis B virus? Hepatology. 2004, 39: 838-840.
    56) Weber O, Schlemmer KH, Hartmann E, Hagelschuer I, Paessens A, Gmef E, Deres K, Goldmann S, Niewoehner U, Stoltefuss J, Haebich D, Ruebsamen-Waigmann H, Wohlfeil S. Inhibition of human hepatitis B virus (HBV) by a novel non-nucleosidic compound in a transgenic mouse model. Antiviral Res. 2002, 54: 69-78
    57) Mehta A, Zitzmann N, Rudd PM, Block TM, Dwek RA. Alpha-glucosidase inhibitors as potential broad based anti-viral agents. FEBS Lett. 1998, 430(1-2): 17-22.
    58) Lu X, Tran T, Simsek E, Block TM. The alkylated imino sugar, n-(n-Nonyl)- deoxygalactonojirimycin, reduces the amount of hepatitis B virus nucleocapsid in tissue culture.J Virol. 2003,77:11933-11940.
    59) Block TM, Lu X, Mehta AS, Blumberg BS, Tennant B, Ebling M, Korba B, Lansky DM, Jacob GS, Dwek RA. Treatment of chronic hepadnavirus infection in a woodchuck animal model with an inhibitor of protein folding and trafficking. Nat Med. 1998,4:610-614.
    60) Mehta AS, Gu B, Conyers B, Ouzounov S, Wang L, Moriarty RM, Dwek RA, Block TM. alpha-Galactosylceramide and novel synthetic glycolipids directly induce the innate host defense pathway and have direct activity against hepatitis B and C viruses. Antimicrob Agents Chemother. 2004,48:2085-2090.
    61) Wagner, R. W. Gene inhibition using antisense oligo-deoxynucleotides. Nature, 1994, 372:333-335.
    62) Blum HE, Galun E, von Weizsacker F. & Wands JR. Inhibition of hepatitis B virus by antisense oligodeoxynucleotides. Lancet, 1991,337:1230.
    63) Yao ZQ, Zhou YX, Wang AL, Bai, XF. & Yang WS. Inhibition of hepatitis B viral gene expression by antisensephosphoro- thioate oligodeoxynucleotides. Journal of Viral Hepatitis, 1995, 2:85-89.
    64) Korba BE. & Gerin JL. Antisense oligonucleotides are effective inhibitors of hepatitis B virus replication in vitro. Anti-viral Research, 1995:28,225-242.
    65) Nakazono K, Ito Y, Wu C H. & Wu GY. Inhibition of hepatitis B virus replication by targeted pretreatment of complexed antisense DNA in vitro. Hepatology 1996, 23:1297-1303.
    66) Moriya K, Matsukura M, Kurokawa K. & Koike K. In vivo inhibition of hepatitis B virus gene expression by antisense phosphorothioate oligonucleotides. Biochemical and Biophysical Research Communications. 1996,218:217-223.
    67) Soni PN, Brown D, Saffie R, Savage K, Moore D, Gregoriadis G, Dusheiko GM. Biodistribution, stability, and antiviral efficacy of liposome-entrapped phosphorothioate antisense oligodeoxynucleotides in ducks for the treatment of chronic duck hepatitis B virus infection. Hepatology. 1998,28:1402-1410.
    68) Robaczewska M, Guerret S, Remy JS, Chemin I, Offensperger WB, Chevallier M, Behr JP, Podhajska AJ, Blum HE, Trepo C, Cova L. Inhibition of hepadnaviral replication by polyethylenimine-based intravenous delivery of antisense phosphodiester oligodeoxynucleotides to the liver. Gene Ther 2001,8:874-881.
    69) Stein CA. & Cohen JS. Oligodeoxynucleotides as inhibitors of gene expression: a review. Cancer Research. 1988,48:2659-2668.
    70) Beck J. & Nassal M. Efficient hammerhead ribozyme-mediated cleavage of the structured hepatitis B virus encapsidation signal in vitro and in cell extracts, but not in intact cells. Nucleic Acids Research. 1995, 23: 4954-4962.
    71) zu Putlitz J, Yu Q, Burke JM. & Wands JR. Combinatorial screening and intracellular antiviral activity of hairpin ribozymes directed against hepatitis B virus. Journal of Virology 1999, 73: 5381-5387.
    72) Kim YK, Junn E, Park I, Lee Y, Kang C. & Ahn JK. Repression of hepatitis B virus X gene expression by hammerhead ribozymes. Biochemical and Biophysical Research Communications. 1999, 257: 759-765.
    73) Passman M, Weinberg M, Kew M. & Arbuthnot P. In situ demonstration of inhibitory, effects of hammerhead ribozymes that are targeted to the hepatitis Bx sequence in cultured cells. Biochemical and Biophysical Research Communications. 2000, 268: 728-733.
    74) Weinberg M, Passman M, Kew M. & Arbuthnot P. Hammerhead ribozyme-mediated inhibition of hepatitis B virus X gene expression in cultured cells. Journal of Hepatology. 2000, 33: 142-151.
    75) Feng Y, Kong YY, Wang Y. & Qi GR. Inhibition of hepatitis B virus by hammerhead ribozyme targeted to the poly(A) signal sequence in cultured cells. Biological Chemistry 2001, 382: 655-660.
    76) von Weizsacker F, Kock J, Wieland S, Offensperger WB, Blum HE. Dominant negative mutants of the duck hepatitis B virus core protein interfere with RNA pregenome packaging and viral DNA synthesis. Hepatology. 1999, 30: 308-315.
    77) 孙殿兴,胡大荣,邬光惠.HBV核心蛋白结构与功能及其在基因治疗策略上的应用.国外医学流行病与传染病分册.2001,28:19-24
    78) Scaglioni P, Melegari M, Takahashi M, Chowdhury JR, Wands J. Use of dominant negative mutants of the hepadnaviral core protein as antiviral agents. Hepatology. 1996, 24: 1010-1017.
    79) 孙殿兴,刘风军,胡大荣,邬光惠,胡学玲,韩聚强,李娟.复制缺损型HBV表达显性阴性突变体抗HBV作用的研究.中华实验和临床病毒学杂志.2004,18:146—149
    80) 邸雅南,胡大荣,范公忍,胡学玲,刘超英,刘勇,吴忆贫.C基因截短突变体抗乙型肝炎病毒作用机制的研究.中华肝脏病杂志.2004,12:290—292
    81) 邸雅南,胡大荣,胡学玲,李娟,范公忍,吴忆贫.S基因显性阴性突变体干扰乙肝病毒颗粒组装的研究.中华微生物学和免疫学杂志.2004,24.88—91
    82) Butz K, Denk C, Fitscher B, Crnkovic-Mertens I, Ullmann A, Schroder CH, Hoppe-Seyler F. Peptide aptamers targeting the hepatitis B virus core protein: a new class of molecules with antiviral activity. Oncogene. 2001, 20: 6579-6586.
    83) Yamamoto M, Hayashi N, Takehara T, Ueda K, Mita E, Tatsumi T, Sasaki Y, Kasahara A, Hori M. Intracellular single-chain antibody against hepatitis B virus core protein inhibits the replication of hepatitis B virus in cultured cells. Hepatology. 1999, 30: 300-7.
    84) 陆荫英,王琳,刘妍,于敏,李克,王业东,张玲霞,成军.乙肝病毒核心抗原单链抗体细胞内免疫抗乙肝病毒基因治疗研究.世界华人消化杂志.2002,10:765-769
    85) Shlomai A, Shaul Y. Inhibition of hepatitis B virus expression and replication by RNA interference. Hepatology. 2003, 37, 764-770.
    86) Beterams G, Nassal M. Significant interference with hepatitis B virus replication by a core-nuclease fusion protein. J Biol Chem. 2001, 276: 8875-8883.
    87) 蔡雄,王国俊,瞿瑶,等.苦参素注射液治疗慢性乙型肝炎临床疗效分析.第二军医大学学报.1997,18:47
    88) 陆伦根,曾民德,茅益民,万谟彬,李成忠,陈成伟,傅青春,王吉耀,佘为民,蔡雄,叶军,周霞秋,王晖,巫善明,唐美芳,朱金水,陈维雄.氧化苦参碱治疗慢性乙型肝炎的随机双盲对照多中心研究.中华肝脏病杂志.2004,12:597-600
    89) McCulloch M, Broffman M, Gao J, Colford JM Jr. Chinese herbal medicine and interferon in the treatment of chronic hepatitis B: a meta-analysis of randomized, controlled trials. Am J Public Health. 2002, 92: 1619-28.
    90) Hansen M, L Jelinek, S Whiting, and E Barklis. Transport and assembly of Gag proteins into Moloney murine leukemia virus. J. Virol. 1990, 64: 5306-5316.
    91) Jones TA, G Blaug, M Hansen, and E Barklis. Assembly of gag- b-galactosidase proteins into retrovirus particles. J. Virol. 1990, 64: 2265-2279.
    92) Schwartz S, BK Felber, and GN Pavlakis. Distinct RNA sequences in the gag region of human immunodeficiency virus type 1 decrease RNA stability and inhibit expression in the absence of Rev protein. J. Virol. 1992, 66: 150-159.
    93) Wu X, Liu H, Xiao H, Kim J, Seshaiah P, Natsoulis G, Boeke JD, Hahn BH, Kappes JC. Targeting foreign proteins to human immunodeficiency virus particles via fusion with Vpr and Vpx. J Virol. 1995, 69: 3389-3398.
    94) Melekhovets YF, Joshi S. Fusion with an RNA binding domain to confer target RNA specificity to an RNase: design and engineering of Tat-RNase HI that specifically recognizes and cleaves HIV-1 RNA in vitro. Nucleic Acids Res. 1996, 24: 1908-1912
    95) Natsoulis G, Seshaiah P, Federspiel MJ, Rein A, Hughes SH, Boeke JD. Targeting of a nuclease to murine leukemia virus capsids inhibits viral multiplication. Proc Natl Acad Sci.1995, 17:364-368
    96) Lin JJ, Helfrnan DM, Hughes SH, Chou CS. Tropomyosin isoforms in chicken embryo fibroblasts: purification, characterization, and changes in Rous sarcoma virus-transformed cells. J Cell Biol. 1985,100:692-703
    97) Petropoulos CJ, Hughes SH. Replication-competent retrovirus vectors for the transfer and expression of gene cassettes in avian cells. J Virol. 1999,65 :3728-3737
    98) VanBrocklin M, Ferris AL, Hughes SH, Federspiel MJ. Expression of a murine leukemia virus Gag-Escherichia coli RNase HI fusion polyprotein significantly inhibits virus spread. J Virol. 1997, 71:3312-8
    99) VanBrocklin M, Federspiel MJ. Capsid-targeted viral inactivation can eliminate the production of infectious murine leukemia virus in vitro. Virology. 2000, 267:111-123.
    100) Schumann G, Qin L, Rein A, Natsoulis G, Boeke JD. Therapeutic effect of Gag-nuciease fusion protein on retrovirus-infected cell cultures. J Virol. 1996, 70:4329-4337
    101) Schumann G, Hermankova M, Cannon K, Mankowski JL, Boeke JD. Therapeutic effect of a Gag-nuclease fusion protein against retroviral infection in vivo. J Virol. 2001,75:7030-7041.
    102) Qin CF, Qin ED. Development of cell lines stably expressing staphylococcal nuclease fused to dengue 2 virus capsid protein for CTV1. Acta Biochim Biophys Sin. 2004,36:577-582.
    103) Qin CF, Qin E, Yu M, Chen SP, Jiang T, Deng YQ, Duan HY, Zhao H. Therapeutic effects of dengue 2 virus capsid protein and staphylococcal nuclease fusion protein on dengue-infected ceil cultures. Arch Virol. 2005,150:659-669.
    104)Schein CH. From housekeeper to microsurgeon: the diagnostic and therapeutic potential of ribonucleases. Nat Biotechnol. 1997,15:529-536.
    105) Klink TA, Woycechowsky KJ, Taylor KM, Raines RT. Contribution of disulfide bonds to the conformational stability and catalytic activity of ribonuclease A. Eur J Biochem. 2000,267:566-572
    106)Ledoux L. Action of ribonuclease on certain ascites rumours. Nature. 1955, 175:258-259.
    107) Aleksandrowicz J, urbanczyk J, ostrowska A, sierko J. Further research on the activity of ribonucleases in the blood and urine of patients suffering from proliferative hemocytopathia. Blood. 1958,13:652-664
    108) Glukhov BN, Jerusalimsky AP, Canter VM, Salganik RI. Ribonuclease treatment of tick-borne encephalitis. Arch Neural. 1976,33:598-603.
    109) Cinatl J Jr, Cinatl J, Kotchetkov R, Matousek J, Woodcock BG, Koehl U, Vogel JU, Komhuber B, Schwabe D. Bovine seminal ribonuclease exerts selective cyto- toxicity toward neuroblastoma cells both sensitive and resistant to chemotherapeutic drugs. Anticancer Res. 2000, 20:853-9.
    110) Matousek J, Pouckova P, Soucek J, Skvor J. PEG chains increase aspermatogenic and antitumor activity of RNase A and BS-RNase enzymes. J Control Release. 2002, 82:29-37.
    111) Irie M, Nitta K, Nonaka T. Biochemistry of frog ribonucleases. Cell Mol Life Sci. 1998,54:775-784.
    112)Mikulski SM, Viera A, Ardelt W, Menduke H, Shogen K. Tamoxifen and trifluoroperazine (Stelazine) potentiate cytostatic/cytotoxic effects of P-30 protein, a novel protein possessing anti-tumor activity. Cell Tissue Kinet. 1990, 23:237-246.
    113) Rybak SM, Pearson JW, Fogler WE, Volker K, Spence SE, Newton DL, Mikulski SM, Ardelt W, Riggs CW, Kung HF, Longo DL. Enhancement of vincristine cytotoxicity in drug-resistant cells by simultaneous treatment with onconase, an antitumor ribonuclease. J Natl Cancer Inst. 1996,88:747-753.
    114) Deptala A, Halicka HD, Ardelt B, Ardelt W, Mikulski SM, Shogen K, Darzynkiewicz Z. Potentiation of tumor necrosis factor induced apoptosis by onconase. Int J Oncol. 1998,13:11-16.
    115) Youle RJ, Wu YN, Mikulski SM, Shogen K, Hamilton RS, Newton D, D'AIessio G, Gravell M. RNase inhibition of human immunodeficiency virus infection of H9 cells. Proc Natl Acad Sci U S A. 1994,91:6012-6016.
    116)Saxena SK, Gravell M, Wu YN, Mikulski SM, Shogen K, Ardelt W, Youle RJ. Inhibition of HIV-1 production and selective degradation of viral RNA by an amphibian ribonuclease. J Biol Chem. 1996,271:20783-20788.
    117) Liao YD.A pyrimidine-guanine sequence-specific ribonuclease from Rana catesbeiana (bullfrog) oocytes. Nucleic Acids Res. 1992,20:1371-1377.
    118) Chang CF, Chen C, Chen YC, Horn K, Huang RF, Huang TH. The solution structure of a cytotoxic ribonuclease from the oocytes of Rana catesbeiana (bullfrog). J Mol Biol. 1998,283:231-244.
    119)Fredens K, Dahl R, Venge P. The Gordon phenomenon induced by the eosinophil cationic protein and eosinophil protein X. J Allergy Clin Immunol. 1982,70:361-366.
    120)Gleich GJ. The functions of eosinophils. Ann Inst Pasteur Immunol. 1986 137D:136-141.
    121)Durack DT, Ackerman SJ, Loegering DA, Gleich GJ. Purification of human eosinophil-derived neurotoxin. Proc Natl Acad Sci U S A. 1981,78:5165-5169.
    122) Griffiths SJ, Adams DJ, Talbot SJ. .Ribonuclease inhibits Kaposi's sarcoma Nature. 1997, 390:568.
    123) Newton DL, Rybak SM. Unique recombinant human ribonuclease and inhibition of Kaposi's sarcoma cell growth. J Nat Cancer Inst. 1998,90:1787-1791.
    124) Dricu A, Sergiu-Bogdan C, Brismar K, Biberfeld P, Andersson LC.A synthetic peptide derived from the human eosinophil-derived neurotoxin induces apoptosis in Kaposi's sarcoma cells. Anticancer Res. 2004,24:1427-1432.
    125)Nitto T, Dyer KD, Mejia RA, Bystrom J, Wynn TA, Rosenberg HF. Characterization of the divergent eosinophil ribonuclease, mEar 6, and its expression in response to Schistosoma mansoni infection in vivo. Genes Immun. 2004, 5:668-674.
    126) Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J Infect Dis. 1998,177:1458-1464.
    127) Domachowske JB, Dyer KD, Adams AG, Leto TL, Rosenberg HF. Eosinophil cationic protein/RNase 3 is another RNase A-family ribonuclease with direct antiviral activity. Nucleic Acids Res. 1998,26:3358-3363.
    128) Wu YN, Mercuri NB, Johnson SW. Presynaptic inhibition of gamma-aminobutyric acidB-mediated synaptic current by adenosine recorded in vitro in midbrain dopamine neurons. J Pharmacol Exp Ther. 1995,273:576-581.
    129)Cara A, Rybak SM, Newton DL, et al. Inhibition of HIV-1 replication by combined expression of gag dominant negative mutant and a human ribonuclease in a tightly controlled HIV-1 inducible vector. Gene Then 1998, 5:65-75
    130) Smith MR, Newton DL, Mikulski SM, Rybak SM. Cell cycle-related differences in susceptibility of NIH/3T3 cells to ribonucleases. Exp Cell Res. 1999,247:220-232.
    131) Newton DL, Nichoils PJ, Rybak SM, Youle RJ.Expression and characterization of recombinant human eosinophil-derived neurotoxin and eosinophil-derived neurotoxin-anti- transferring receptor sFv. J Biol Chem. 1994,269:26739-26745.
    132) Leu YJ, Chern SS, Wang SC, Hsiao YY, Amiraslanov I, Liaw YC, Liao YD. Residues involved in the catalysis, base specificity, and cytotoxicity of ribonuclease from Rana catesbeiana based upon mutagenesis and X-ray crystallography. J Biol Chem. 2003, 278:7300-7309
    133) Leland PA, Schultz LW, Kim BM, Raines RT.Ribonuclease A variants with potent cytotoxic activity. Proc Natl Acad Sci U S A. 1998,95:10407-10412.
    134) Newton DL, Hansen HJ, Mikulski SM, Goldenberg DM, Rybak SM. Potent and specific antitumor effects of an anti-CD22-targeted cytotoxic ribonuclease: potential

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700