早期心肌缺血死后诊断的法医学应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心源性猝死(sudden cardiac death,SCD)系指由于心脏原因所致的突然、意外的自然死亡,占成人猝死原因的首位。在引发SCD的原因中,急性心肌缺血(acute myocardial ischemia,AMI)是最主要的原因,由于短暂的(冠状动脉痉挛)或持续的(冠状动脉闭塞)的急性心肌缺血后,冠状动脉血流量降低,心肌氧等物质供应不足,代谢产物清除减少,引起心脏电生理活动紊乱和/或心肌机械收缩功能障碍,导致大多数病人常在发病后6小时内死亡,甚至1h内死亡。心肌缺血后至少需要6小时在HE染色下才会出现光镜的形态学改变(如凝固性坏死、多灶性心肌纤维波浪样变、核固缩、收缩带坏死、炎细胞浸润等)。而在法医学实践中,早期心肌缺血(early myocardial ischemia, EMI)猝死者多在心肌缺血发生后6小时内死亡,死后常规检查除可见冠状动脉及其分支存在不同程度的动脉粥样硬化外,由缺血性损伤因素所致的病理形态学改变极难检出,使早期心肌缺血的死后诊断成为法医病理学鉴定的难点。
     多年来国内外学者都在寻找敏感、稳定、实用的诊断早期心肌缺血的方法和指标,从常规HE染色、特殊染色和酶组织化学、免疫组织化学、超微结构、荧光检查、离子含量改变、心包液和血液心肌损伤标志物检测、死后影像学检查等方面进行了积极的探索,所有这些方法都从不同方面、不同程度地丰富了EMI死后诊断的内容。但是上述方法或因为操作过于复杂,或实用性不强,或因为缺乏特异性、费用过高等因素的影响而限制了它们在法医病理学中的应用,实际应用价值各家说法不一,迄今仍没有敏感、实用的方法或指标能很好解决实际办案中的死因诊断问题。
     在众多研究方法中,免疫组织化学因其具有特异性强、敏感性高、实用性好等优点,已应用到EMI的研究和应用中来。近年来,许多学者陆续报道了如肌动蛋白(actin)、肌钙蛋白、心型脂肪酸结合蛋白(heart typefatty acid binding protein, H-FABP)、抗肌萎缩蛋白等蛋白分子在急性心肌缺血时从心肌细胞内脱失的现象;血浆中某些蛋白成分如补体成分、纤维连接蛋白(fibronectin, Fn)等在缺血心肌的异常分布情况;缺血心肌诱导表达某些敏感蛋白分子,如缺氧诱导因子-1α(hypoxia-inducible factor-1alpha, HIF-1α)、血管内皮生长因子等。这些研究从多角度观察了急性心肌缺血时心肌细胞发生的各种变化,部分指标在EMI心脏标本进行了验证,但考虑到缺血心肌自身演变的特点和法医学实践中案例的复杂性和特殊性,单一方法和单一检测指标的应用缺乏说服力而难以有效发挥其诊断价值,而以往这些研究为多指标联合应用提供了理论依据。同时,考虑到法医检案的特殊性,如EMI发病时间、尸体保存情况、固定时间等因素的影响,需针对不同的情况进行检测指标的组合,以期达到最好的诊断效果。
     据此,本课题以大鼠急性心肌缺血模型和法医检案心脏标本作为研究对象,研究:①对比观察铁钒-苏木素-伊红染色法(Heidenhain染色)、变色酸2R-亮绿染色和苏木素-碱性复红-苦味酸染色(HBFP染色)对缺血心肌的染色能力,观察不同保存条件及10%福尔马林固定时间对染色的影响;②从不同角度选取检测指标:心肌结构蛋白或胞浆蛋白:actin(HHF35)、H-FABP、S100A1;黏附和进入心肌细胞内的血浆成分:C5b-9、Fn;缺血心肌诱导表达的产物:聚集素蛋白(clusterin,CLU)、HIF-1α、HIF-2α、含Ⅰ型血小板结合蛋白基序的解聚蛋白样金属蛋白酶(adisintegrin and metalloproteinase with thrombospondin type1motifs,ADAMTS-1),观察大鼠急性心肌缺血后血浆S100A1含量的变化及9个诊断指标在大鼠急性缺血心肌中的表达变化情况;③观察不同保存条件及10%福尔马林固定时间对上述9个免疫组织化学检测指标染色的影响;④以法医病理检案心脏标本进行印证,观察检测指标表达情况、阳性率及特异性,为EMI猝死案例的法医病理学诊断提供客观依据。
     第一部分三种组织化学特殊染色在早期心肌缺血死后诊断中的应用和比较
     目的:对比观察Heidenhain染色、变色酸2R-亮绿染色和HBFP染色对急性缺血心肌的染色能力,观察不同保存条件及10%福尔马林固定时间对染色结果的影响。
     方法:
     采用结扎大鼠左冠状动脉前降支的方法建立AMI模型,实验动物190只,雌雄不拘,体重250~300g,随机分为正常对照组(5只)、假手术组(5只)、心肌缺血组(根据缺血时间不同分为急性心肌缺血15min、30min、1h、2h、3h、4h、5h、6h组共8个亚组,每组5只)、-20℃保存组、4℃保存组、室温保存组(大鼠急性心肌缺血6h心脏标本根据在三个保存条件下保存时间不同又分为保存1d、3d、5d、7d、14d、21d、28d组共7个亚组,每组5只)和固定时间组(大鼠急性心肌缺血6h心脏标本根据10%福尔马林固定时间不同又分为固定3d、5d、7d、14d、21d、28d、42d组共7个亚组,每组5只)。建立Heidenhain染色、变色酸2R-亮绿染色及HBFP染色三种组织化学特殊染色方法观察各组染色结果。
     结果:
     1大鼠急性心肌缺血15min,Heidenhain染色、变色酸2R-亮绿染色及HBFP染色均可在缺血区左心室心内膜下及乳头肌处见小灶状心肌细胞阳性着色,随缺血时间延长,阳性着色面积进一步扩大,三种组织化学特殊染色阳性着色部位一致。
     2缺血心脏标本-20℃、4℃和室温保存过程中,随保存时间的延长,三种组织化学特殊染色均出现染色能力下降,阳性面积缩小的趋势,-20℃和4℃保存28d、室温保存21d后,Heidenhain染色效果优于另两种组织化学特殊染色,尤其显示收缩带坏死效果突出。
     3缺血心脏标本10%福尔马林固定42d后,Heidenhain染色效果好于另两种组织化学特殊染色,大片状缺血心肌细胞成阳性着色,与周边非缺血区边界清晰。
     小结:Heidenhain染色较变色酸2R-亮绿染色和HBFP染色可操作性强、敏感性高、死后变化及长时间固定影响小,可作为法医学实践中EMI死后诊断首选的组织化学特殊染色方法。
     第二部分大鼠急性心肌缺血多指标免疫组织化学检测
     目的:观察大鼠急性心肌缺血后不同时间点血浆S100A1含量变化及心肌细胞内actin(HHF35)、H-FABP、S100A1、C5b-9、Fn、CLU、HIF-1α、HIF-2α和ADAMTS-1的表达敏感性及变化规律。
     方法:
     1采用ELISA法检测大鼠急性心肌缺血后不同时间点血浆S100A1含量。
     2采用Western blot检测大鼠急性心肌缺血后不同时间点缺血心肌ADAMTS-1蛋白的表达
     3采用免疫组织化学方法观察大鼠急性缺血后不同时间点心肌细胞内actin(HHF35)、H-FABP、S100A1、C5b-9、Fn、CLU、HIF-1α、HIF-2α和ADAMTS-1的表达敏感性及变化规律。
     结果:
     1大鼠急性心肌缺血15min后血浆S100A1含量与假手术组相比明显升高(P<0.05),且随着缺血时间的延长,血浆S100A1含量逐渐升高,至缺血6h时达到高峰。
     2大鼠急性心肌缺血15min后缺血区心肌细胞内ADAMTS-1蛋白表达与假手术组相比明显升高(P<0.05),且随着缺血时间的延长,ADAMTS-1蛋白的表达逐步升高,至缺血6h时达到高峰。
     3大鼠急性心肌缺血后不同时间点免疫组织化学结果
     ①actin(HHF35)、H-FABP、S100A1:对照组心肌细胞呈现较均匀一致的棕黄色阳性染色,急性心肌缺血15min后actin(HHF35)、H-FABP和S100A1三种蛋白在缺血区左心室心内膜下及乳头肌可见小灶性心肌细胞胞浆缺染,随缺血时间的延长,缺染范围逐渐扩大,自心内膜向心外膜发展,缺血4h三种蛋白缺染扩展至近心肌全层,与周边非缺血区阳性着色的心肌细胞界限清晰。在各缺血组三种蛋白缺染位置基本一致。
     ②ADAMTS-1、CLU:对照组心肌细胞阴性表达,急性心肌缺血15min缺血区心内膜浅层及乳头肌散在心肌细胞出现阳性表达,随着缺血时间的延长,阳性范围逐渐扩大,缺血4h缺血区心肌细胞片状阳性表达,阳性着色扩展至近心外膜,CLU缺血4h时表达达高峰,ADAMTS-1缺血6h时表达达高峰
     ③C5b-9、HIF-1α:对照组及急性心肌缺血15min组心肌细胞呈阴性表达,缺血30min时在缺血区心内膜浅层及乳头肌散在心肌细胞出现阳性表达,随着缺血时间的延长,阳性范围逐渐扩大,缺血4h缺血区心肌细胞片状阳性表达,阳性着色扩展至近心外膜,缺血6h时表达达高峰。
     ④HIF-2α:对照组、急性心肌缺血15min和30min组心肌细胞呈阴性表达,缺血1h后,缺血区心内膜浅层及乳头肌散在心肌细胞出现阳性表达,随着缺血时间的延长,阳性范围逐渐扩大,缺血5h缺血区大部分心肌细胞表达阳性,阳性着色扩展至近心外膜,表达达高峰。
     ⑤Fn:对照组、急性心肌缺血15min和30min组心肌细胞呈阴性着色,缺血1h缺血区心内膜下浅层及乳头肌毛细血管腔内血浆出现阳性反应,缺血2h后缺血区心内膜下浅层及乳头肌心肌细胞出现Fn阳性着色,血管腔内血浆及血管壁阳性着色,随着缺血时间的延长,阳性着色范围逐渐扩大,缺血6h达到高峰。
     小结:大鼠急性心肌缺血15min actin(HHF35)、H-FABP和S100A1即可出现缺失,ADAMTS-1和CLU蛋白出现阳性表达;C5b-9和HIF-1α在大鼠急性心肌缺血30min出现阳性表达;HIF-2α在大鼠急性心肌缺血1h出现阳性表达;Fn在大鼠急性心肌缺血2h出现阳性着色。随缺血时间的延长,actin(HHF35)、H-FABP和S100A1蛋白染色缺失愈加明显,而C5b-9、Fn、CLU、HIF-1α、HIF-2α和ADAMTS-1蛋白则阳性着色逐渐增强。
     第三部分不同保存条件及10%福尔马林固定时间对急性心肌缺血免疫组织化学诊断指标的影响
     目的:观察三种保存条件:-20℃、4℃和室温及10%福尔马林固定时间对第二部分观察的9个免疫组织化学诊断指标染色的影响。
     方法:
     采用免疫组织化学方法观察不同保存条件及10%福尔马林固定时间对急性缺血心肌细胞内actin(HHF35)、H-FABP、S100A1、C5b-9、Fn、CLU、HIF-1α、HIF-2α和ADAMTS-1表达变化的影响。
     结果:
     1不同保存条件对免疫组织化学诊断指标染色的影响:
     ①室温保存对目的蛋白免疫组织化学染色的影响最大,4℃保存其次,-20℃保存影响最轻。
     ②大鼠急性心肌缺血心脏标本在-20℃、4℃及室温条件下保存,actin(HHF35)、H-FABP及S100A1抗原稳定性最差,只限于对-20℃和室温保存1天、4℃保存3天标本有诊断意义。
     ③C5b-9、Fn、CLU、HIF-1α、HIF-2α、ADAMTS-1均显示出良好的抗原稳定性,其中CLU稳定性最好,可适用于三个保存条件下28d以内心脏标本的检测;C5b-9相对稳定性最差,适用于-20℃保存28d、4℃保存21d、室温保存14d以内标本,且保存不同时间后,非缺血区心肌细胞均未见出现假阳性干扰结果判断。
     210%福尔马林固定时间对免疫组织化学诊断指标染色的影响:
     随固定时间的延长,各指标免疫组织化学阳性染色强度有下降的趋势,尤以缺血区中央明显,固定42d时,各候选指标免疫组织化学阳性染色仍清晰可辨,缺血区与非缺血区免疫组织化学染色分界清晰。
     小结:actin(HHF35)、H-FABP及S100A1抗原稳定性最差,只限于对-20℃和室温保存1天、4℃保存3天标本有诊断意义。C5b-9、Fn、CLU、HIF-1α、HIF-2α、ADAMTS-1均显示出良好的抗原稳定性,其中CLU稳定性最好,可适用于三个保存条件下28d以内心脏标本的检测;C5b-9相对稳定性最差,适用于-20℃保存28d、4℃保存21d、室温保存14d以内标本。9个诊断指标均可用于10%福尔马林固定42d以内的心脏组织标本的检测。
     第四部分免疫组织化学诊断指标在人体尸检心脏标本的检测
     目的:将9个免疫组织化学诊断指标在法医病理检案心脏标本上进行印证,观察检测指标的诊断价值、阳性率及特异性。
     方法:实验分为正常对照组(10例)、明确心肌梗死组(10例)、疑似心肌梗死组(10例)、其他案例组(23例,包括机械性窒息、电击死、失血性休克、一氧化碳中毒、病毒性心肌炎),采用免疫组织化学方法观察各组心脏标本actin(HHF35)、H-FABP、S100A1、C5b-9、Fn、CLU、HIF-1α、HIF-2α和ADAMTS-1的表达情况。
     结果:
     1正常对照组心肌细胞actin(HHF35)、H-FABP和S100A1呈现较为均匀一致阳性表达,而明确心肌梗死组、疑似心肌梗死组和其他案例组均可见actin(HHF35)、H-FABP和S100A1呈片状或弥漫性、灶状染色缺失。明确心肌梗死组、疑似心肌梗死组和其他案例组actin(HHF35)、H-FABP和S100A1缺染阳性率高于正常对照组,但三组之间无明显差异。
     2正常对照组和失血性休克案例心肌细胞内C5b-9、Fn、CLU、HIF-1α、HIF-2α和ADAMTS-1均呈阴性表达,明确心肌梗死组和大部分疑似心肌梗死组案例心肌细胞可见C5b-9、Fn、CLU、HIF-1α、HIF-2α、ADAMTS-1阳性表达。而机械性窒息部分案例可见HIF-1α和HIF-2α阳性表达,电击死部分案例可见Fn阳性表达,一氧化碳中毒部分案例可见C5b-9、CLU、HIF-1α、HIF-2α和ADAMTS-1阳性表达,病毒性心肌炎案例可见C5b-9、Fn、CLU和ADAMTS-1阳性表达。明确心肌梗死组和疑似心肌梗死组6个诊断指标的阳性率明显高于正常对照组和其他案例组。
     小结:actin(HHF35)、H-FABP、S100A1、C5b-9、Fn、CLU、HIF-1α、HIF-2α和ADAMTS-1共9个诊断指标在急性心肌梗死人体心脏标本上得到了印证,其中actin(HHF35)、H-FABP和S100A1诊断特异性最差,不宜单独使用进行EMI的死后诊断,C5b-9、Fn、CLU、HIF-1α、HIF-2α和ADAMTS-1诊断价值良好,但在其他非梗死性的直接或间接引起心肌损害的案例,如机械性窒息、电击死、一氧化碳中毒、心肌炎等中也有表达,将多个诊断指标联合应用将提高EMI死后诊断正确率。
     结论:本研究从法医病理学实用角度出发,采用大鼠急性心肌缺血模型和人体尸检心脏标本作为研究对象,系统地观察了三种组织化学特殊染色和9个免疫组织化学诊断指标在急性心肌缺血6小时内死后诊断的敏感性、实用性和特异性,得出以下结论:
     1Heidenhain染色较变色酸2R-亮绿染色和HBFP染色可操作性强、敏感性高、死后变化及10%福尔马林固定时间影响小,可作为法医学实践中早期心肌梗死死后诊断首选的组织化学特殊染色方法。
     2大鼠急性心肌缺血15min actin(HHF35)、H-FABP和S100A1即可出现缺失,ADAMTS-1和CLU蛋白出现阳性表达;C5b-9和HIF-1α在大鼠急性心肌缺血30min出现阳性表达;HIF-2α在大鼠急性心肌缺血1h出现阳性表达;Fn在大鼠急性心肌缺血2h出现阳性着色。随缺血时间的延长,actin(HHF35)、H-FABP和S100A1蛋白染色缺失愈加明显,而C5b-9、Fn、CLU、HIF-1α、HIF-2α和ADAMTS-1蛋白则阳性着色逐渐增强。
     3actin(HHF35)、H-FABP及S100A1稳定性最差,只限于对-20℃和室温保存1天、4℃保存3天标本有诊断意义。C5b-9、Fn、CLU、HIF-1α、HIF-2α、ADAMTS-1均显示出良好的稳定性,其中CLU稳定性最好,可适用于三个保存条件下28d以内心脏标本的检测;C5b-9相对稳定性最差,适用于-20℃保存28d、4℃保存21d、室温保存14d以内标本。9个诊断指标可用于10%福尔马林固定42d以内的心脏组织标本的检测。
     4actin(HHF35)、H-FABP、S100A1、C5b-9、Fn、CLU、HIF-1α、HIF-2α和ADAMTS-19个诊断指标在EMI人体心脏标本上得到了印证,其中actin(HHF35)、H-FABP和S100A1诊断特异性最差,不宜单独使用进行EMI的死后诊断,C5b-9、Fn、CLU、HIF-1α、HIF-2α和ADAMTS-1特异性强、敏感性高,诊断价值良好,但在其他非梗死性的直接或间接引起心肌损害的案例中也有表达,将多个诊断指标联合应用将提高EMI死后诊断正确率。
     综上,本研究阐明了组织化学特殊染色和9个免疫组化诊断指标在心肌缺血的染色变化规律、影响因素、相互关系和应用条件,为早期心肌梗死死后诊断确立了较完善的病理形态学指标系统。
Sudden cardiac death (SCD) is most commonly defined as unexpecteddeath from a cardiac cause within a limited time period, which ranks aboveother causes of adult sudden death. Among the causes of SCD, acutemyocardial ischemia (AMI) is the major one. Due to transitory(coronarospasm) or constant (occlusive coronary stenosis) acute myocardialischemia, blood flow in coronary artery decreases, such supplies asmyocardial oxygen reduces and metabolite clearance becomes slow, resultingin the disorder of cardiac electrophysiological activities and/or the dysfunctionmyocardial mechanical contraction, which can cause most of the patients todie within6h, even1hour, of onset. Morphological changes (acidophilicdegeneration necrotic clotting, multifocal patches of wavy fibers,karyopyknosis, contraction band necrosis, marginal rearrangement reactionswith early inflammatory infiltrate, etc.) under light microscope with HE stainshall occur at least6h after myocardial ischemia. However, in the practice offorensic medicine, most victims of early myocardial ischemia (EMI) diewithin6h of the onset of myocardial ischemia. In routine examination, exceptfor coronary atherosclerosis of various degrees, the myocardial morphologicalchanges resulting from ischemic injuries are extremely difficult to detect. Inthe absence of convictive objective evidence, forensic expertise may bechallenged of postmortem diagnosis of EMI.
     Over many years, Chinese and foreign researchers have been seekingsensitive, stable and practical methods and indicators for diagnosis of EMI,ranging from HE stain, histochemical stain, immunohistochemistry (IHC),ultrastructure observation, change of ion content, myocardial injury marker inthe blood and liquor pericardii, postmortem imaging examination, etc. A greatmany of active explorations have been made and all of them enrich the diagnosis of myocardial ischemia from various perspectives and to variousextent. However, the application of above-mentioned techniques are quitelimited due to complicated operation, less practical utility, absence ofdistinctive characteristics or excessive cost. The experts hold various views totheir practical values. There haven't been a sensitive and practical methods orindicators to solve the diagnosis problems in reality.
     Among the researching techniques, IHC has been employed in theresearch and application of EMI because it's high sensitive, practical anddistinctive. In recent years, many scholars have found the phenomenon thatprotein molecule, such as actin, cardiac troponin, heart type fatty acid bindingprotein (H-FABP), dystrophin, etc, disappear from cardiomyocytes duringacute myocardial ischemia; that such proteins as complements and fibronectin(Fn) in blood distribute abnormally in ischemic myocardia; that ischemiccardiomyocytes express some sensitive proteins, such as hypoxia-induciblefactor-1alpha (HIF-1α), vascular endothelial growth factor, etc. Theseresearches have observed various changes from multiple angels when acutemyocardial ischemia occurs. Some indicators are tested in the heart specimensof sudden death from EMI. Considering the development features of EMI andthe complexity and specificity of forensic medicine practice, the application ofsolo method and solo testing indicator can hardly show their diagnostic valueeffectively for being less convictive. However, these researches have laid atheoretical basis for the combined application of multiple indicators.Meanwhile, considering the specificity of forensic investigation, such as theonset time of EMI, preserving condition of body, fixed time, etc., thecombination of different testing indicators for different cases is expected toachieve most satisfactory results.
     Therefore, this project will take the rat model of AMI and human autopsyhearts as researching objects and is to①observe comparatively the stainingabilities to ischemic cardiomyocytes of Heidenhain stain, chrometrope2R-brilliant green stain and HBFP stain, as well as the effects resulting fromdifferent preserving conditions and10%formalin at fixed time;②choose testing marker from various perspectives: structural protein or cytoplasmicprotein in the cardiomyocytes: actin (HHF35)、H-FABP、S100A1;abnormalaccunmlation of plasma proteins: C5b-9、Fn;inducible expression of proteinmolecule in the ischemic cardiomyocytes: clusterin (CLU)、HIF-1α、HIF-2α、a disintegrin and metalloproteinase with thrombospondin type1motifs(ADAMTS-1), and observe the expression changes in the acute ischemiccardiomyocytes of rat through IHC;③observe the effects to theimmunohistochemical testing marker resulting from different preservingconditions and fixed in10%formalin for different time;④to verify withhuman autopsy hearts, observe the testing marker expression and specificity,and provide objective foundation for the postmortem diagnosis of EMI.
     Part I: Application and comparison of three histochemical stains inthe postmortem diagnosis of early myocardial ischemia
     Objective: To observe comparatively the applications of Heidenhainstain, chrometrope2R-brilliant green stain and HBFP stain for ischemiccardiomyocytes, as well as the effects resulting from different preservingconditions and fixed in10%formalin for different time.
     Methods:
     The rat model of AMI was constructed through permanent ligation of theleft anterior descending coronary artery (LAD). One hundred and ninety SDrats either sexes weighing250-300g were randomly distributed into7groups:control group (n=5), sham operated control group(n=5), acute myocardialischemia group (15min,30min,1h,2h,3h,4h,5h,6h after LADocclusion respectively, n=5), preservation at-20℃group, preservation at4℃group, preservation at room temperature group (The rat hearts, which weresubjected to6hours’ period of myocardial ischemia, were preserved at-20℃,4℃and room temperature for1d,3d,5d,7d,14d,21d,28d, n=5), fixed timegroup (The rat hearts, which were subjected to6hours’ period of myocardialischemia, were fixed in10%formalin solution for3d,5d,7d,14d,21d,28d,42d, n=5). The three histochemical stainings, i.e. Heidenhain stain,chrometrope2R-brilliant green stain and HBFP stain were used to observe ischemic cardiomyocytes.
     Results:
     1The punctate positive staining was seen in the subendocardialmyocardium and papillary muscle of left ventricular15min after acutemyocardial ischemia with Heidenhain stain, chrometrope2R-brilliant greenstain and HBFP stain, and the positive stained areas expanded as the ischemiacontinued. The positively stained areas of three special stains were concordant.
     2After the hearts, which suffered acute myocardial ischemia for6hours,were preserved at-20℃,4℃and room temperature, the coloration ability andpositive stained areas of the three histochemical stains tended to decrease withthe preservation time elapsed. Preserved for28days at-20℃and4℃,21daysat room temperature separately, the Heidenhain stain was the more stable thanchrometrope2R-brilliant green stain and HBFP stain, especially for displaycontraction band necrosis.
     3For the heart fixed for42d in10%formalin, the Heidenhain stain wasthe more stable than chrometrope2R-brilliant green stain and HBFP stain. Theischemic cardiomyocytes were stained positively, and the borderlines betweenischemic areas and non-ischemic areas were distinctive.
     Summary: Comparing with chrometrope2R-brilliant green stain andHBFP stain, Heidenhain stain is more operable, sensitive and less liable tochange after death and be affected by the fixation time in10%formalin.Heidenhain staining can be the first choice for the postmortem diagnosis ofEMI in the practice of forensic medicine.
     Part II: Detection of multiple immunohistochemical markers in acuteischemic myocardium of rat.
     Objective: To observe the change of plasma S100A1concentrations andthe expression and change pattern of actin (HHF35), H-FABP, S100A1, C5b-9,Fn, CLU, HIF-1α, HIF-2α and ADAMTS-1in the cardiomyocytes at differenttime after LAD occlusion of rats.
     Methods:
     1The plasma S100A1concentrations in different groups (sham operated group,15min,30min,1h,2h,4h,6h after LAD occlusion) were tested byELISA.
     2The protein levels of ADAMTS-1in different groups (sham-operatedgroup;15min,30min,1h,2h,4h,6h after LAD occlusion) were examinedby western blotting.
     3. IHC was used to observe the expression and change pattern of actin(HHF35), H-FABP, S100A1, C5b-9, Fn, CLU, HIF-1α, HIF-2α andADAMTS-1in the cardiomyocytes at different time after acute myocardialischemia of rat.
     Results:
     1At15min after LAD occlusion, the S100A1concentration wassignificantly higher than that of the sham-operated group (P<0.001). With thecontinuation of occlusion time, plasma S100A1concentrations furtherincreased, and peaked at6h after LAD occlusion.
     2At15min after LAD occlusion, the protein level of ADAMTS-1detected by western blotting was significantly elevated than that of thesham-operated group (P<0.001). With the continuation of occlusion time, theprotein levels of ADAMTS-1further increased, and peaked at6h after LADocclusion.
     3Immunohistochemical results at different time for rats after acutemyocardial ischemia
     ①Actin (HHF35), H-FABP, S100A1: All cardiomyocytes of rats incontrol group are evenly stained positively brown-yellow. At15min afterLAD occlusion, the depletion of actin (HHF35), H-FABP, S100A1occurred inthe cardiomyocytes of the subendocardial layer and papillary muscles inischemic area. With the ischemic time prolonged, the depletion of stained areaextended from the endocardial to the epicardium. By4h after LAD occlusion,this area extended to all myocardial tissue in the ischemic area. A cleardividing line is drawn between the stained area and unstained area. Thepositions of unstained area of three proteins are basically the same in the eachgroup.
     ②ADAMTS-1, CLU: Negative expression occurred in thecardiomyocytes of rats in control group, sham operated control group. At15min after LAD occlusion, the positive expression of ADAMTS-1and CLUoccurred in the cardiomyocytes of the subendocardial layer and papillarymuscles in ischemic area. With the ischemic time prolonged, the positive areaextended. By4h after LAD occlusion, the sheet positive expression occurredin the cardiomyocytes of ischemic area. The positively stained area extendedto epicardium. Expression of CLU and ADAMTS-1reached the peak by4hand6h after LAD occlusion respectively.
     ③C5b-9, HIF-1α:The negative expression occurred in cardiomyocytesof rats in control group, sham operated control group and15min after LADocclusion group. At30min after LAD occlusion, the positive expression ofC5b-9and HIF-1α occurred in the cardiomyocytes of the subendocardial layerand papillary muscles in ischemic area. With the ischemic time prolonged, thepositive area gradually extended. By4h after LAD occlusion, the sheetpositive expression occurred in cardiomyocytes in ischemic area and itspositive stained area extended to the epicardium. Expression of C5b-9andHIF-1α reached the peak by6h after LAD occlusion.
     ④HIF-2α: Negative expression occurred in the cardiomyocytes of rats incontrol group, sham operated control group,15min and30min after LADocclusion group. By1h after LAD occlusion, the positive expression ofHIF-2α occurred in the cardiomyocytes of the subendocardial layer andpapillary muscles in ischemic area. The positive area extended with theprolongation of ischemic time. By5h after LAD occlusion, the positiveexpression of HIF-2α occurred in the majority of cardiomyocytes in ischemicarea and extended to epicardium, reached the peak.
     ⑤Fn: Negative expression occurred in the cardiomyocytes of rats incontrol group,15min and30min after LAD occlusion group. The positiveexpression of Fn was shown in the serum of capillary vessel of thesubendocardial layer and papillary muscles in ischemic area. By2h LADocclusion, the positive expression occurred in the cardiomyocytes of the subendocardial layer and papillary muscles in ischemic area. The serum ofcapillary vessel and vascular wall are stained positively. With the ischemictime prolonged, the positive area extended gradually and reached the peak by6h after LAD occlusion.
     Summary: The diminished or absent actin (HHF35), H-FABP andS100A1occurs in rats at15min after LAD occlusion, and the positiveexpression occurs in ADAMTS-1and CLU. The positive expression of C5b-9and HIF-1α occurs at30min after LAD occlusion. The positive expression ofHIF-2α occurs at1h after LAD occlusion. The positive expression of Fnoccurs at2h after LAD occlusion. With the ischemic time prolongs, thedepletion of actin (HHF35), H-FABP and S100A1becomes more evident,while the protein expression of C5b-9、Fn、CLU、HIF-1α、HIF-2α andADAMTS-1become strong gradually.
     Part III: Influence of different preservation conditions and fixationtime in10%formalin on the immunohistochemistrical diagnosticmarkers of acute myocardial ischemia.
     Objective: To observe the influence of three preservation conditions:-20℃,4℃and room temperature, and fixation time in10%formalin on thenine stained immunohistochemistrical diagnostic markers observed in thesecond part.
     Methods:
     Influence of three preservation conditions:-20℃,4℃and roomtemperature, and fixation time in10%formalin on the changed expression ofthe nine diagnostic markers was observed in the ischemic cardiomyocytes byIHC.
     Results:
     1Influence of three preservation conditions on the nineimmunohistochemistrical diagnostic markers:
     ①The target protein of IHC was most serious seriously affected in roomtemperature preservation, less seriously affected by4℃preservation, andmost slightly affected by-20℃preservation.
     ②When the rat heart, which was harvested at6h after LAD, preservedat-20℃,4℃and room temperature, actin (HHF35), H-FABP and S100A1were worst in terms stability. Only when they were preserved in-20℃, roomtemperature for1day and in4℃temperature for3days can be meaningful forpostmortem diagnosis.
     ③C5b-9, Fn, CLU, HIF-1α、HIF-2α and ADAMTS-1all showed aexcellent feature of stability, among which CLU was most stable and can beapplicable to detect ischemic heart for28days preserved under threetemperature conditions. C5b-9was most unstable and can be used to detectischemic heart in-20℃temperature for28days, in4℃temperature for21days, and in room temperature for14days. After preserved for a differentperiod of time, no false positive result appeared in the cardiomyocytes of thenon-ischemic area that interrupted the estimation.
     2Influence of fixation time in10%formalin on the nineimmunohistochemistrical diagnostic markers:
     With the fixed time being prolonged, IHC-positive stained intensityshowed a tendency of decline, especially in the central part of ischemic area.When fixed for42days, all the diagnostic markers of IHC were still legibleand clear, and ischemic area and non-ischemic area was clearly demarked.
     Summary: Actin (HHF35), H-FABP, S100A1are worst in terms stability,and only when the ischemic heart is preserved in-20℃temperature, in roomtemperature for1day, and in4℃temperature for3days can be meaningfulfor postmortem diagnosis. C5b-9, Fn, CLU, HIF-1α、HIF-2α and ADAMTS-1all show a excellent feature of stability, among which CLU is most stable andcan be applicable to detect of ischemic heart for28days preserved under threetemperature conditions. C5b-9is most unstable and can be used to detect theischemic heart preserved in-20℃temperature for28days, in4℃temperaturefor21days, and in room temperature for14days. All the nine diagnosticmarkers can be used to detect the heart samples which are fixed in10%formalin for42days.
     Part IV: An immunohistochemical study on the postmortemdiagnosis with human autopsy hearts.
     Objective: The nine diagnostic markers are used to detect human autopsyhearts with the purpose of testing its application value and specificity.
     Methods:
     The human autopsy hearts were divided into four groups:①normalcontrol group (n=10);②definite myocardial infarction group (n=10);③suspected myocardial infarction group(n=10);④other cases group (n=23,including mechanical asphyxia, electrocution, hemorrhagic shock, carbonmonoxide poisoning, viral myocarditis). The expression of all the ninediagnostic markers was observed in human autopsy hearts by IHC.
     Results:1Normal control group showed homogenous brown reactions for actin(HHF35), H-FABP and S100A1. Diffuse or focal depletion of actin (HHF35),H-FABP and S100A1could be found in the definite myocardial infarctiongroup, suspected myocardial infarction group and other cases group. Thepositive rate of actin (HHF35), H-FABP and S100A1in the definitemyocardial infarction group, suspected myocardial infarction group and othercases group was significantly higher than that in the other cases group, butthere was not significant difference between the three groups.
     2Normal control group and hemorrhagic shock group showed negativestaining for C5b-9, Fn, CLU, HIF-1α, HIF-2α and ADAMTS-1. The positiveexpression of C5b-9, Fn, CLU, HIF-1α, HIF-2α and ADAMTS-1occurred inthe definite myocardial infarction group and most cases of suspectedmyocardial infarction group. The positive expression of HIF-1α and HIF-2αoccurred in some cases of mechanical asphyxia. The Fn positive expressionoccurred in some cases of electrocution. The positive expression of C5b-9,CLU, HIF-1α, HIF-2α and ADAMTS-1occurred in some cases of carbonmonoxide poisoning case. The positive expression of C5b-9, Fn, CLU andADAMTS-1occurred in viral myocarditis cases. The positive rate was higherin definite myocardial infarction group and suspected myocardial infarctiongroup than that in normal control group and other cases group.
     Summary: The nine diagnostic markers, namely actin (HHF35), H-FABP,S100A1, C5b-9, Fn, CLU, HIF-1α, HIF-2α and ADAMTS-1, are verified onthe EMI human autopsy hearts. Among them, actin (HHF35), H-FABP andS100A1are least in diagnostic specificity, which are not suitable to be appliedalone to postmortem diagnosis of EMI. C5b-9, Fn, CLU, HIF-1α, HIF-2α andADAMTS-1are more useful in postmortem diagnosis of EMI, but theirexpressions are also found in some cases of non-infarctive direct or indirectmyocardial injury (mechanical asphyxia, electrocution, hemorrhagic shock,carbon monoxide poisoning, viral myocarditis). The combined application ofmultiple diagnostic markers will improve the accuracy of the postmortemdiagnosis of EMI.
     Conclusion:From a practical perspective of forensic pathology, thisproject took the rat model of AMI and human autopsy hearts as researchingobjects and observed the sensitivity, practicability and specificity of threehistochemical stains and nine immunohistochemistrical diagnostic markers forthe postmortem diagnosis of EMI. Main conclusions are reached as follows:
     ①Comparing with chrometrope2R-brilliant green stain and HBFP stain,Heidenhain stain is more operable, sensitive and less liable to change afterdeath and be affected by the fixation time in10%formalin. Heidenhainstaining can be the first choice for the postmortem diagnosis of EMI in thepractice of forensic medicine.
     ②The diminished or absent actin (HHF35), H-FABP and S100A1occurs in rats at15min after LAD occlusion, and the positive expressionoccurs in ADAMTS-1and CLU. The positive expression of C5b-9and HIF-1αoccurs at30min after LAD occlusion. The positive expression of HIF-2αoccurs at1h after LAD occlusion. The positive expression of Fn occurs at2hafter LAD occlusion. With the ischemic time prolongs, the depletion of actin(HHF35), H-FABP and S100A1becomes more evident, while the proteinexpression of C5b-9、Fn、CLU、HIF-1α、HIF-2α and ADAMTS-1becomestrong gradually.
     ③Actin (HHF35), H-FABP, S100A1are worst in terms stability, and
     only when the ischemic heart is preserved in-20℃temperature, in roomtemperature for1day, and in4℃temperature for3days can be meaningfulfor postmortem diagnosis. C5b-9, Fn, CLU, HIF-1α、HIF-2α and ADAMTS-1all show a excellent feature of stability, among which CLU is most stable andcan be applicable to detect of ischemic heart for28days preserved under threetemperature conditions. C5b-9is most unstable and can be used to detect theischemic heart preserved in-20℃temperature for28days, in4℃temperaturefor21days, and in room temperature for14days. All the nine diagnosticmarkers can be used to detect the heart samples which are fixed in10%formalin for42days.
     ④The nine diagnostic markers, namely actin (HHF35), H-FABP,S100A1, C5b-9, Fn, CLU, HIF-1α, HIF-2α and ADAMTS-1, are verified onthe EMI human autopsy hearts. Among them, actin (HHF35), H-FABP andS100A1are least in diagnostic specificity, which are not suitable to be appliedalone to postmortem diagnosis of EMI. C5b-9, Fn, CLU, HIF-1α, HIF-2α andADAMTS-1are more useful in postmortem diagnosis of EMI, but theirexpressions are also found in some cases of non-infarctive direct or indirectmyocardial injury (mechanical asphyxia, electrocution, hemorrhagic shock,carbon monoxide poisoning, viral myocarditis). The combined application ofmultiple diagnostic markers will improve the accuracy of the postmortemdiagnosis of EMI.
     To sum up, this research studies systematically the application ofhistochemical staining and the nine diagnostic markers of IHC, whichprovides theoretical basis for the forensic experts of the postmortem diagnosisof EMI.
引文
1Hua W, Zhang LF, Wu YF, et al. Incidence of sudden cardiac death inChina: analysis of4regional populations. J Am Coll Cardiol,2009,54(12):1110-1118
    2Chugh SS, Reinier K, Teodorescu C, et al. Epidemiology of suddencardiac death: clinical and research implications. Prog Cardiovasc Dis,2008,51(3):213-228
    3Senter S, Francis G S. A new, precise definition of acute myocardialinfarction. Cleve Clin J Med,2009,76(3):159-166
    4Thygesen K, Uretsky BF. Acute ischaemia as a trigger of sudden cardiacdeath. Eur Heart J Suppl,2004,6: D88-90
    5de la Grandmaison GL. Is there progress in the autopsy diagnosis ofsudden unexpected death in adults? Forensic science international,2006,156:138-144
    6Campobasso CP, Dell Erba AS, Addante A, et al. Sudden cardiac deathand myocardial ischemia indicators: a comparative study of fourimmunohistochemical markers. Am J Forensic Me d Pathol,2008,29:154-161
    7何柯,吕纪平,朱新菊,等.早期心肌梗死死后诊断的法医病理学研究进展.法医学杂志,2006,22(5):381-384
    8汪静宇,丁美满,李永宏.冠心病猝死的法医病理学免疫组织化学研究进展.刑事技术,2007,6:32-35
    9Ribeiro-Silva A, S Martin CC, Rossi MA. Is immunohistochemistry auseful tool in the postmortem recognition of myocardial hypoxia in humantissue with no morphological evidence of necrosis? Am J Forensic MedPathol,2002,23(1):72-77
    10Leadbeatter S, Wawman HM, Jasani B. Immunocytochemical diagnosis ofearly myocardial ischaemic/hypoxic damage. Forensic Sci Int,1989,40(2):171-180
    11明媚,孟祥志.大鼠心脏型脂肪酸结合蛋白在早期心肌缺血时的含量变化.中国法医学杂志,2004,19(2):68-71
    12明媚,孟祥志,邹祖玉,等.心脏型脂肪酸结合蛋白诊断心肌缺血性猝死.武汉大学学报(医学版),2004,25(2):118-121
    13Xiangzhi Meng, Mei Ming, Enyin Wang. Heart fatty acid binding proteinas a marker for postmortem detection of early myocardial damage.Forensic Sci Int,2006,160(1):11-16
    14郭淼,万立华.心肌脂肪酸结合蛋白在诊断早期心肌梗死的死后稳定性研究.重庆医科大学学报,2008,33(12):1488-1491
    15熊小明,邓世雄.心肌肌钙蛋白T在家兔缺血心肌中的表达及其死后稳定性.法医学杂志,2008,24(2):90-93
    16刘重元.早期心肌缺血与梗死后肌钙蛋白和肌红蛋白的观察.现代生物医学进展,2007,7(6):886-887
    17Fishbein MC, Wang T, Matijasevic M, et al. Myocardial tissue troponins Tand I. An immunohistochemical study in experimental models ofmyocardial ischemia. Cardiov Pathol,2003,12(2):65-71
    18贾建长,赵子琴,顾云菊,等.家兔急性心肌梗死cTnI免疫组织化学实验研究.法医学杂志,2005,21(2):104-106
    19贾建长,赵子琴,顾云菊.人体冠心病组织cTnI免疫组织化学研究.法医学杂志,2007,23(3):185-187
    20包乌仁吐亚,武彦,耿虹,等.心肌钙蛋白I与脑钠肽在心肌梗死组织中的表达及其意义.包头医学院学报,27,(5):350-351
    21宋一璇,傅晨钟,祝家镇,等.抗肌动蛋白单克隆抗体在早期心肌缺血诊断中的应用.中国法医学杂志,1994,9(3):131-133
    22王蕾,郭子新,席丰,等.肌动蛋白、肌钙蛋白及纤维连接蛋白在心肌缺血中的研究实用.心脑肺血管病杂志,2006,14(8):615-617
    23胡丙杰,陈玉川,祝家镇,等.实验性早期心肌缺血结蛋白的免疫组织化学研究.法律与医学杂志,1998,5(4):148-150
    24胡丙杰,陈玉川,祝家镇,等.结蛋白诊断早期心肌梗死的特异性研究.法律与医学杂志,2000,7(4):145-148
    25陈林,李永宏.心肌连接蛋白Cx43在冠心病心肌梗死病例中的表达.皖南医学院学报,2008,27(5):328-331
    26章诗伟,刘世新,邓立彬,等.急性心肌缺血猝死例左室心肌Cx43脱磷酸化的免疫组化研究.法医学杂志,2004,20(3):136-142
    27Hashmi S, Al-Salam S. Loss of dystrophin staining in cardiomyocytes: anovel method for detection early myocardial infarction. Int J Clin ExpPathol,2013,6(2):249-257
    28Rzepecka-Wozniak E,Konieczna M,Bolechala F. Myocardial ischemia ofthe driver as a cause of a traffic road accident. Immunohistochemical C9staining method in diagnostics of early myocardial infarction. Arch MedSadowej Kryminol,2006,56(2):110-114
    29Jenkins CP, Cardona DM, Bowers JN, et al. The utility of C4d, C9, andtroponin T immunohistochemistry in acute myocardial infarction. ArchPathol Lab Med,2010,134(2):256-263
    30Piercecchi-Marti MD, Lepidi H, Leonetti G, et al. Immunostaining bycomplement C9: a tool for early diagnosis of myocardial infarction andapplication in forensic medicine. J Forensic Sci,2001,46(2):328-334
    31胡丙杰,冯绮明,汪冠三,等.心肌梗死6项免疫组化指标的死后稳定性比较.中国法医学杂志,2003,4(18):208-221
    32胡丙杰,陈玉川,祝家镇,等.实验性早期心肌缺血补体C5的免疫组织化学研究.中国法医学杂志,2000,15(4):197-199
    33Thomsen H, Held H. Immunohistochemical detection of C5b-9(m) inmyocardium: an aid in distinguishing infarction-induced ischemic heartmuscle necrosis from other forms of lethal myocardial injury. Forensic SciInt,1995,71(2):87-95
    34申成斌,王兆福,胡丙杰.实验性早期心肌梗死的免疫组化研究.河南医学研究,2003,2(12):119-123
    35Zhu BL, Tanaka S, Ishikawa T, et al. Forensic pathological investigation ofmyocardial hypoxia-inducible factor-1alpha, erythropoietin and vascularendothelial growth factor in cardiac death. Leg Med (Tokyo),2008,10(1):11-19
    36李志刚,王江峰,成建定.缺氧诱导因子1alpha在急性心肌缺血中的表达规律.中山大学学报(医学科学版),2006,27(3):306-309
    37杜中波,毛瑞明,高卫民,等.大鼠急性心肌缺血早期缺氧诱导因子-1α的表达.法医学杂志,2012,28(5):327-332
    38Xu XH, Chen JG, Zhu JZ. Primary study of vascular endothelial growthfactor immunohistochemical staining in the diagnosis of early acutemyocardial ischemia.Forensic Sci Int,2001,118(1):11-14
    39熊小明,邓世雄. VEGF在家兔缺血心肌中的表达及其死后稳定性研究.中国法医学杂志,2008,23(1):16-19
    40马运,刘更新,董洪望. VEGF免疫组化在心性猝死诊断中的应用.济宁医学院学报,2008,31(3):231-232
    41毛瑞明,杜中波,高卫民,等.大鼠急性心肌缺血后血管内皮生长因子的表达变化.法医学杂志,2012,28(3):179-184
    42王志勇,李政,陈新山.大鼠急性心肌缺血早期内皮素的免疫组化染色观察.中国法医学杂志,2003,4(18):205-207
    43孙忠国,张凡,成日青,等.Fn、HSP70在冠心病猝死心肌中表达的诊断意义.河北北方学院学报(医学版),2007,24(1):67-69
    44左立平,梁艳冰,唐皓,等.急性心肌梗死猝死者心肌细胞hsn和HSP70改变的意义.热带医学杂志,2007,44(2):971-974
    45徐冰,高兴辰,张洋,等.热休克蛋白在冠心病猝死病例心肌和血管中的表达及意义.牡丹江医学院学报,2012,33(3):1-3
    46袁翔天,彭雪,靳占峰.急性心肌缺血猝死心肌中FAPα和TGF-β1的表达.法医学杂志,2012,28(1):18-20
    47王文靖,高铁磊,靳占峰,等.心肌缺血猝死心肌中高迁移率族蛋白B-1的表达研究.中国法医学杂志,2012,27(2):104-107
    48梁正,刘瑞清,路一凡,等. Cathepsin-L在缺血心肌中的表达.中国法医学杂志,2012,27(5):364-367
    49Thygesen K, Alpert JS, Jaffe AS, et al. Third universal definition ofmyocardial infarction. Eur Heart J,2012,33(20):2551-2567
    50刘英坤,钟志玖,班翔等.诊断早期心肌缺血三种组织学染色方法的比较.哈尔滨医科大学学报,2002,36(3):238-239
    51Godwin Avwioro. Histochemical uses of haematoxylin-a review. Journalof Pharmacy and clinical Sciences,2011,1:24-34
    52李成库.显示和判定心肌早期病变的染色方法研究.中国法医学杂志,1989,4(3):148-151
    53Lie JT, Holley KE, Kampa WR, et al. New histochemical method formorphologic diagnosis of early stages of myocardial ischemia. Mayo ClinProc,1971,46(5):319-327
    54陈红霞,高英茂.急性大鼠心肌梗死实验模型的制备.中国组织化学与细胞化学杂志,2005,14(2):70-74
    55邵同先,张苏亚.不同组化染色对实验性急性心肌缺血的早期诊断研究.陕西医学杂志,2005,34(4):443-445
    56Emmanual J, Tan KL. Variability of haematoxylin-basic fuchsin-picricacid (HBFP) staining of infarcted myocardium due to tissue storage.Malays J Pathol,1982,5:67-69
    57Al-Rufaie HK, Florio RA, Olsen EG. Comparison of the haematoxylinbasic fuchsin picric acid method and the fluorescence of haematoxylin andeosin stained sections for the identification of early myocardial infarction.J Clin Pathol,1983,36(6):646-649
    58Ribeiro-Silva A, S Martin CC, Rossi MA. Is immunohistochemistry auseful tool in the postmortem recognition of myocardial hypoxia in humantissue with no morphological evidence of necrosis? Am J Forensic MedPathol,2002,23(1):72-77
    59胡志红,吴萍,王庭.心肌Heidenhain染色诊断早期心肌缺血的实验观察.临床与实验病理学杂志,2011,27(6):642-644
    60Karch S B, Billingham M E. Myocardial contraction bands revisited. HumPathol,1986,17(1):9-13
    61葛延昌,蔡一倩,Ananda S,等.心肌收缩带坏死及其法医学意义.中国法医学杂志,2009,24(4):260-262
    62Hopster DJ, Milroy CM, Burns J, et al. Necropsy study of the associationbetween sudden cardiac death, cardiac isoenzymes and contraction bandnecrosis. J Clin Pathol,1996,49(5):403-406
    1Ribeiro-Silva A, S Martin CC, Rossi MA. Is immunohistochemistry auseful tool in the postmortem recognition of myocardial hypoxia in humantissue with no morphological evidence of necrosis? Am J Forensic MedPathol,2002,23(1):72-77
    2Campobasso CP, Dell'Erba AS, Addante A, et al. Sudden cardiac deathand myocardial ischemia indicators: a comparative study of fourimmunohistochemical markers. Am J Forensic Med Pathol,2008,29(2):154-161
    3Greve G, Rotevatn S, Svendby K, et al. Early morphologicchanges in catheart muscle cells after acute coronary occlusion. AmJ Pathol,1990,136(2):273-283
    4Tsukada T, Tippens D, Gordon D, et al. HHF35, a muscle-actin-specificmonoclonal antibody.I.Immunocytochemical and biochemicalcharacterization. Am J Pathol,1987,126(1):51-60
    5Fu C, Song Y, Zhu J. Immunocytochemical study with anti-muscle actinantibody (HHF35) on myocardial ischaemia and reperfusion injury in rats.Forensic Sci Int,1993,59(1):25-34
    6宋一璇,傅晨钟,祝家镇,等.抗肌动蛋白单克隆抗体在早期心肌缺血诊断中的应用.中国法医学杂志,1994,9(3):131-133
    7胡丙杰,程海鹰,陈玉川,等.早期心肌梗死后诊断若干免疫组织化学指标的敏感性比较.中国组织化学与细胞化学杂志,2001,10(4):406-473
    8Petzold T, Feindt P, Sunderdiek U, et al. Heart-type fatty acid bindingprotein (H-FABP) in the diagnosis of myocardial damage in coronaryartery bypass grafting. Eur J Cardiothorac Surg,2001,19(6):859-864
    9Glatz JF, van Bilsen M, Paulussen RJ, et al. Release of fatty acid-bindingprotein from isolated rat heart subjected to ischemia and reperfusion or tothe calcium paradox. Biochim Biophys Acta,1988,961(1):148-152
    10明媚,孟祥志.大鼠心脏型脂肪酸结合蛋白在早期心肌缺血时的含量变化.中国法医学杂志,2004,19(2):68-71
    11明媚,孟祥志,邹祖玉,等.心脏型脂肪酸结合蛋白诊断心肌缺血性猝死.武汉大学学报(医学版),2004,25(2):118-121
    12明媚,孟祥志.早期心肌缺血心脏型脂肪酸结合蛋白的免疫组织化学观察.法医学杂志,2004,20(1):15-17
    13Xiangzhi Meng, Mei Ming, Enyin Wang. Heart fatty acid binding proteinas a marker for postmortem detection of early myocardial damage.Forensic Sci Int,2006,160(1):11-16
    14Kiewitz R, Lyons GE, Sch fer BW, et al. Transcriptional regulation ofS100A1and expression during mouse heart development. BiochimBiophys Acta,2000,1498(2-3):207-219
    15Remppis A, Greten T, Sch fer BW, et al. Altered expression of theCa(2+)-binding protein S100A1in human cardiomyopathy BiochimBiophys Acta,1996,1313(3):253-257
    16Most P, Seifert H, Gao E, et al. Cardiac S100A1protein levels determinecont ractile performance and propensity towards heart failure aftermyocardial infarction. Circulation,2006,114(12):1258-1268
    17Kraus C, Rohde D, Weidenhammer C, et al. S100A1in cardiovascularhealth and disease: closing the gap between basic science and clinicaltherapy. J Mol Cell Cardiol,2009,47(7):445-455
    18Usui A, Kato K, Sasa H, et al. S-100ao protein in serum during acutemyocardial infarction. Clin Chem,1990,36(4):639-641
    19Kiewitz R, Acklin C, Minder E, Huber PR, et al. S100A1, a new markerfor acute myocardial ischemia. Biochem Biophys Res Commun,2000,274(3):865-871
    20Z. Xiaohong C, Xiaorui H, Jun H, et al. The contrast ofimmunohistochemical studies of myocardial fibrinogen and myoglobin inearly myocardial ischemia in rats. Legal Med,2002,4(1):47-51
    21Bhakdi S, Tranum-Jensen J. Membrane damage by complement. BiochimBiophys Acta,1983,737(3-4):343-372
    22Sch fer H, Mathey D, Hugo F, et al. Deposition of the terminal C5b-9complex in infarted areas of human myocardium.J Immunol,1986,137(6):1945-1949
    23Howie AJ. C9immunohistology in detection of myocardial infarction. JPathol,2001,193(3):421
    24Thomsen H, Held H. Immunohistochemical detection of C5b-9(m) inmyocardium: an aid in distinguishing infarction-induced ischemic heartmuscle necrosis from other forms of lethal myocardial injury. Forensic SciInt,1995,71(2):87-95
    25V kev A, Morgan BP, Tikkanen I, et al. Time course of complementactivation and inhibitor expression after ischemic injury of ratmyocardium. Am J Pathol,1994,44(6):1357-1368
    26Doran JP, Howie AJ, Townend JN, et al. Detection of myocardialinfarction by immunohistological staining for C9on formalin fixed,paraffin wax embedded sections. J Clin Pathol,1996,49(1):34-37
    27Casscells W, Kessler KM, Basset AL, et al. Immmunohistochemical studyof fibronectin in experimental myocardial infarction. Am J Pathol,1990,137(4):801-805
    28胡丙杰,陈玉川,祝家镇.早期心肌梗死心肌细胞内纤维连接蛋白的免疫组化观察.中国法医学杂志,1996,11(1):14-17
    29李凡,马淑玲,莫耀南,等.心肌特殊染色在冠心病猝死诊断中的应用研究.河南科技大学学报(医学版),2003,21(4):264-266
    30鲍现宝,李永宏,朱建华.冠心病猝死心肌纤维连接蛋白免疫组化染色观察.中国法医学杂志,2008,23(4):228-230
    31贾富全,李时荣,顾捷.纤维连接蛋白及内皮素在冠心病心肌中表达研究.中华实用诊断与治疗杂志,2011,25(1):55-57
    32Blaschuk O, Burdzy K, Fritz IB. Purification and characterization of acell-aggregating factor (clusterin), the major glycoprotein in ram rete testisfluid. J Biol Chem,1983,258(12):7714-7720
    33黄海燕,朱立基,宗书东.精浆聚集素在大鼠体内分布的免疫组织化学研究.解剖学报,1997,28(3):290-293
    34Trougakos IP, Gonos ES. Clusterin/apolipoprotein J in human aging andcancer. Int J Biochem Cell Biol,2002,34(11):1430-1448
    35Rosenberg M E, Silkensen J. Clusterin: physiologic and pathophysiologicconsiderations. Int Int J Biochem Cell Biol,1995,27(7):633-645
    36Tripathi S, Batra J, Cao W, et al. Influenza A virus nucleoprotein inducesapoptosis in human airway epithelial cells: implications of a novelinteraction between nucleoprotein and host protein Clusterin. Cell DeathDis.2013March;4(3): e562
    37石磊,孙鲁宁,顾鹏毅,等.载脂蛋白J在实验性脑缺血再灌注大鼠脑内的表达.中风与神经疾病杂志,2011,28(10):898-902
    38Hyodo Y, Miyake H, Kondo Y, et al. Downregulation of lectin-likeoxidized low-density lipoprotein receptor-1after ischemic preconditioningin ischemia-reperfused rat kidneys. Urology,2009,73(4):906-910
    39Ishikawa Y, Akasaka Y, Ishii T, et al. Distribution and synthesis ofapolipoprotein J in the atherosclerotic aorta. Arterioscler Thromb VascBiol,1998,18(4):665-672
    40McLaughlin L, Zhu G, Mistry M, et al. Apolipoprotein J/clusterin limitsthe severity of murine autoimmune myocarditis. J Clin Invest,2000,106(9):1105-1113
    41Swertfeger DK, Witte DP, Stuart WD, et al. Apolipoprotein J/clusterininduction in myocarditis: A localized response gene to myocardial injury.Am J Pathol,1996,148(6):1971-1983
    42Poulakou MV, Paraskevas KI, Vlachos IS, et al. Effect of statins on serumapolipoprotein j and paraoxonase-1levels in patients with ischemic heartdisease undergoing coronary angiography. Angiology,2008,59(2):137-144
    43Cubedo J, Padr ó T, Garc í a-Moll X, et al. Proteomic signature ofapolipoprotein J in the early phase of new-onset myocardial infarction. JProteome Res,2011,10(1):211-220
    44V kev A, Laurila P, Meri S. Co-deposition of clusterin with thecomplement membrane attack complex in myocardial infarction.Immunology,1993,80(2):177-182
    45Silkensen JR, Hirsch AT, Lunzer MM, et al. Temporal induction ofclusterin in the peri-infarct zone after experimental myocardial infarctionin the rat. J Lab Clin Med,1998,131(1):28-35
    46Krijnen PA, Cillessen SA, Manoe R, et al. Clusterin: a protective mediatorfor ischemic cardiomyocytes? Am J Physiol Heart Circ Physiol,2005,289(5): H2193-2202
    47Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novoprotein synthesis binds to the human erythropoietin gene enhancer at a siterequired for transcriptional activation. Mol Cell Biol,1992,12(12):5447-5454
    48Jiang BH, Zheng JZ, Leung SW, et al. Transactivation and inhibitorydomains of hypoxia-inducible factor1alpha: modulation of transcriptionalactivity by oxygen tension. J Biol Chem,1997,272:19253-19260
    49Semenza GL. Hypoxia-inducible factor1: master regulator of O2homeostasis.Curr Opin Genet Dev,1998,8(5):588-594
    50胡明,肖新莉,刘勇.低氧诱导因子1研究进展.医学综述,2006,12(21):1283-1285
    51Jiang BH, Semenza GL, Bauer C, et al. Hypoxia-inducible factor1levelsvary exponentially over a physiologically relevant range of O2tension.Am J Physiol,1996,271(4Pt1): C1172-1180
    52李志刚,王江峰,成建定.缺氧诱导因子1alpha在急性心肌缺血中的表达规律.中山大学学报(医学科学版),2006,27(3):306-309
    53杜中波,毛瑞明,高卫民,等.大鼠急性心肌缺血早期缺氧诱导因子-1α的表达.法医学杂志,2012,28(5):327-332
    54Zhu BL, Tanaka S, Ishikawa T, et al. Forensic pathological investigation ofmyocardial hypoxia-inducible factor-1alpha, erythropoietin and vascularendothelial growth factor in cardiac death. Leg Med (Tokyo),2008,10(1):11-19
    55Blanco Pampín J, García Rivero SA, Otero Cepeda XL, et al.Immunohistochemical expression of HIF-1alpha in response to earlymyocardial ischemia. J Forensic Sci,2006,51(1):120-124
    56Zhao D, Zhu BL, Ishikawa T, et al. Quantitative RT-PCR assays ofhypoxia-inducible factor-1alpha, erythropoietin and vascular endothelialgrowth factor mRNA transcripts in the kidneys with regard to the cause ofdeath in medicolegal autopsy. Leg Med (Tokyo),2006,8(5):258-263
    57Flamme I, Fr hlich T, von Reutern M, et al. HRF, a putative basichelix-loop-helix-PAS-domain transcription factor is closely related tohypoxia-inducible factor-1alpha and developmentally expressed in bloodvessels. Mech Dev,1997,63(1):51-60
    58Talks KL, Turley H, Gatter KC, et al. The expression and distribution ofthe hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normalhuman tissues, cancers, and tumor-associated macrophages. Am J Pathol,2000,157(2):411-421
    59史阳阳,彭芝兰.缺氧诱导因子2的研究进展.华西医学,2008,23(5):1194-1195
    60Turner KJ, Moore JW, Jones A, et al. Expression of hypoxia-induciblefactors in human renal cancer: relationship to angiogenesis and to the vonHippel-Lindau gene mutation. Cancer Res,2002,62(10):2957-2961
    61Jürgensen JS, Rosenberger C, Wiesener MS, et al. Persistent induction ofHIF-1alpha and-2alpha in cardiomyocytes and stromal cells of ischemicmyocardium. FASEB J,2004,18(12):1415-1417
    62Apte SS. A disintegrin-like and metalloprotease (reprolysin type) withthrombospondin type1motifs: the ADAMTS family. Int J Biochem CellBiol,2004,36(6):981-985
    63Thai SN, Iruela-Arispe ML. Expression of ADAMTS1during murinedevelopment. Mech Dev,2002,115(1-2):181-185
    64Günther W, Skaftnesmo KO, Arnold H, et al. Distribution patterns of theanti-angiogenic protein ADAMTS-1during rat development. ActaHistochem,2005,107(2):121-131
    65彭健豪,杜冠华.潜在的药物发现新靶点ADAMTS-1.中国新药杂志,2009,18(11):981-984
    66de Arao Tan I, Ricciardelli C, Russell DL. The metalloproteinaseADAMTS1: A comprehensive review of its role in tumorigenic andmetastatic pathways. Int J Cancer,2013, Feb27. doi:10.1002/ijc.28127.[Epub ahead of print]
    67Apte SS. A disintegrin-like and metalloprotease (reprolysin-type) withthrombospondin type1motif (ADAMTS) superfamily: functions andmechanisms. J Biol Chem,2009,284(46):31493-31497
    68Cilek MZ, Hirohata S, Faruk Hatipoglu O, et al. AHR, a novel acutehypoxia-response sequence, drives reporter gene expression under hypoxiain vitro and in vivo. Cell Biol Int,2011,35(1):1-8
    69Hatipoglu OF, Hirohata S, Cilek MZ, et al. ADAMTS1is a unique hypoxicearly response gene expressed by endothelial cells. J Biol Chem,2009,284(24):16325-16333
    70袁灿,吕青兰,陈广文,等.大鼠心肌缺血预适应诱导表达上调基因的筛选和鉴定.生物化学与生物物理进展,2003,30(3):390-394
    71Nakamura, Keigo, Hirohata, et al. Dynamic Induction of ADAMTS-1Gene in the Early Phase of Acute Myocardial Infarction. Journal ofBiochemistry,2004,136(4):439-446
    72冯小兰,冯震博.实验性大鼠急性心肌梗死ADAMTS-1表达的研究.广西医科大学学报,2008,25,(3):373-375
    1胡丙杰,冯绮明,汪冠三,等.心肌梗死6项免疫组化指标的死后稳定性比较.中国法医学杂志,2003,4(18):208-221
    2熊小明,邓世雄.心肌肌钙蛋白T在家兔缺血心肌中的表达及其死后稳定性.法医学杂志,2008,24(2):90-93
    3郭淼,万立华.心肌脂肪酸结合蛋白在诊断早期心肌梗死的死后稳定性研究.重庆医科大学学报,2008,33(12):1488-1491
    4胡丙杰,陈玉川,祝家镇,等.纤维连接蛋白诊断心肌梗死的死后稳定性研究.中国法医学杂志,2000,15:7-9
    5熊小明,邓世熊. VEGF在家兔缺血心肌中的表达及其死后稳定性研究.中国法医学杂志,2008,23(1):16-19
    6马恒辉,周晓军.提高免疫组化染色质量的相关处理和操作.临床与实验病理学杂志,2011,27(7):760-762
    7赵宝忠,孙智才,刘增辉等.对福尔马林固定剂相关理论的再认识.临床与实验病理学杂志,2009,25(3):337-338
    8张共和,金行藻,张太和,等.225例大肠腺瘤癌变的临床病理、免疫组化及其超微结构.临床肿瘤学杂志,2008,13(2):152-154
    9乔秀玲.不同固定液和固定时间对大肠癌淋巴结免疫组化染色的影响.细胞与分子免疫学杂志,2010,26(5):504-505
    10Moran MM, Siegel RJ, Said JW, et a1. Demonstration of myoglobin andCK-M in myocardium.Comparison of five fixation methods and threeimmunohistochemical techniques.J Histochem Cytachem,1985,33(11):1110-1115
    11Leong AS, Milios J. Rapid immunoperoxidase staining of lymphocyteantigens using microwave irradiation. J Pathol,1986,148(2):183-187
    12Shi SR, Key ME, Kalra KL. Antigen retrieval in formalin-fixed,paraffin-embedded tissues: an enhancement method forimmunohistochemical staining based on microwave oven heating of tissuesections. J Histochem Cytochem,1991,39(6):741-748
    13Gown AM. Unmasking the mysteries of antigen or epitope retrieval andformalin fixation. Am J Clin Pathol,2004,121(2):172-174
    14Shi S R, Cote R J, Chaiwun B, et al. Standardization ofimmunohistochemistry based on antigen retrieval technique for routineformalin-fixed tissue sections. Appl Immunohistochem,1998,6(2):89-96
    15Arber D A. Effect of prolonged formalin fixation on theimmunohistochemical reactivity of breast markers. ApplImmunohistochem Mol Morphol,2002,10(2):183-186
    16Boenisch T. Effect of heat-induced antigen retrieval following inconsistentformalin fixation. Appl Immunohistochem Mol Morphol,2005,13(3):283-286
    17周会芹,杨江辉,余琦,等.不同组织固定液对免疫组化结果的影响.诊断病理学杂志,2009,16(6):478
    1胡丙杰,陈玉川,祝家镇,等.结蛋白诊断早期心肌梗死的特异性研究.法律与医学杂志,2000,7(4):145-148
    2胡丙杰,陈玉川,祝家镇,等.对抗肌动蛋白单克隆抗体诊断早期心肌梗死的评价.中国法医学杂志,1999,15(3):138-139
    3胡丙杰,陈玉川,祝家镇,等.肌红蛋白诊断早期心肌梗死的特异性研究.法律与医学杂志,2000,7(1):4-8
    4Bhakdi S, Tranum-Jensen J. Membrane damage by complement. BiochimBiophys Acta,1983,737(3-4):343-372
    5Thomsen H, Held H. Immunohistochemical detection of C5b-9(m) inmyocardium: an aid in distinguishing infarction-induced ischemic heartmuscle necrosis from other forms of lethal myocardial injury. Forensic SciInt,1995,71(2):87-95
    6Campobasso CP, Dell'Erba AS, Addante A, et al. Sudden cardiac death andmyocardial ischemia indicators: a comparative study of fourimmunohistochemical markers. Am J Forensic Med Pathol,2008,29(2):154-161
    7李建辉,郝国贞.急性一氧化碳中毒与心肌收缩功能损害的关系探讨.现代中西医结合杂志,2011,20(24):3114-3116
    8胡丙杰,陈玉川,祝家镇.早期心肌梗死心肌细胞内纤维连接蛋白的免疫组化观察.中国法医学杂志,1996,11(1):14-17
    9李凡,马淑玲,莫耀南,等.心肌特殊染色在冠心病猝死诊断中的应用研究.河南科技大学学报(医学版),2003,21(4):264-266
    10鲍现宝,李永宏,朱建华.冠心病猝死心肌纤维连接蛋白免疫组化染色观察.中国法医学杂志,2008,23(4):228-230
    11贾富全,李时荣,顾捷.纤维连接蛋白及内皮素在冠心病心肌中表达研究.中华实用诊断与治疗杂志,2011,25(1):55-57
    12欧桂生,竞花兰.姜富学,等.电击死心肌组织中纤维连接蛋白的实验观察.中国法医学杂志,2002,17(5):277-278
    13赵玉涛,张建明,竞花兰.人电损死后心肌中纤维连接蛋白表达的实验观察.中山大学学报论丛,2007,27(3):158-160
    14Tsukamoto Y, Helsel WE, Wahl SM. Macrophage production offibronectin, a chemoattractant for fibroblasts. J Immunol,1981,127(2):673-678
    15Krijnen PA, Cillessen SA, Manoe R, et al. Clusterin: a protective mediatorfor ischemic cardiomyocytes? Am J Physiol Heart Circ Physiol,2005,289(5): H2193-2202
    16McLaughlin L, Zhu G, Mistry M, et al. Apolipoprotein J/clusterin limitsthe severity of murine autoimmune myocarditis. J Clin Invest,2000,106(9):1105-1113
    17Swertfeger DK, Witte DP, Stuart WD, et al. Apolipoprotein J/clusterininduction in myocarditis: A localized response gene to myocardial injury.Am J Pathol,1996,148(6):1971-1983
    18Semenza GL. Hypoxia-inducible factor1: master regulator of O2homeostasis. Curr Opin Genet Dev,1998,8(5):588-594
    19Semenza GL. Angiogenesis in ischemic and neoplastic disorders. AnnuRev Med,2003,54:17-28
    20张更谦,周斌,杜冰,等.鼠窒息后缺氧诱导因子1α在心、肺中的表达.法医学杂志,2006,22(6):407-410
    21Cilek MZ, Hirohata S, Faruk Hatipoglu O, et al. AHR, a novel acutehypoxia-response sequence, drives reporter gene expression under hypoxiain vitro and in vivo. Cell Biol Int,2011,35(1):1-8
    22申鳄,陈瑞珍,杨英珍,等. ADAMTS-1与小鼠急、慢性病毒性心肌炎心肌纤维化相关性的初步研究.中华心血管病杂志,2007,35(9):854-858
    23Guo C, Wang Y, Liang H, et al. ADAMTS-1contributes to the antifibroticeffect of captopril by accelerating the degradation of type I collagen inchronic viral myocarditis. Eur J Pharmacol,2010,629(1-3):104-110
    1刘英坤,钟志玖,班翔,等.诊断早期心肌缺血三种组织学染色方法的比较.哈尔滨医科大学学报,2002,36(3):238-239
    2胡志红,吴萍,王庭.心肌Heidenhain染色诊断早期心肌缺血的实验观察.临床与实验病理学杂志,2011,27(6):642-644
    3胡志红,吴萍,王庭.心肌Heidenhain染色在冠心病猝死诊断中的应用观察.九江学院学报(自然科学版),2011,1:46-49
    4明媚,孟祥志.大鼠心脏型脂肪酸结合蛋白在早期心肌缺血时的含量变化.中国法医学杂志,2004,19(2):68-71
    5明媚,孟祥志,邹祖玉,等心脏型脂肪酸结合蛋白诊断心肌缺血性猝死.武汉大学学报(医学版),2004,25(2):118-121
    6明媚,孟祥志.早期心肌缺血心脏型脂肪酸结合蛋白的免疫组织化学观察.法医学杂志,2004,20(1):15-17
    7Xiangzhi Meng, Mei Ming, Enyin Wang. Heart fatty acid binding proteinas a marker for postmortem detection of early myocardial damage.Forensic Sci Int,2006,160(1):11-16
    8郭淼,万立华.心肌脂肪酸结合蛋白在诊断早期心肌梗死的死后稳定性研究.重庆医科大学学报,2008,33(12):1488-1491
    9贾建长,赵子琴,顾云菊,等.家兔急性心肌梗死CTnI免疫组织化学实验研究.法医学杂志,2005,21(2):104-106
    10贾建长,赵子琴,顾云菊.人体冠心病组织cTnI免疫组织化学研究.法医学杂志,2007,23(3):185-187
    11包乌仁吐亚,武彦,耿虹,等.心肌钙蛋白I与脑钠肽在心肌梗死组织中的表达及其意义.包头医学院学报,2011,27(5):350-351
    12Fishbein MC, Wang T, Matijasevic M, et al. Myocardial tissue troponins Tand I. An immunohistochemical study in experimental models ofmyocardial ischemia. Cardiov Pathol,2003,12(2):65-71
    13刘重元.早期心肌缺血与梗死后肌钙蛋白和肌红蛋白的观察.现代生物医学进展,2007,7(6):886-887
    14熊小明,邓世雄.心肌肌钙蛋白T在家兔缺血心肌中的表达及其死后稳定性.法医学杂志,2008,24(2):90-93
    15章诗伟,刘世新,邓立彬,等.急性心肌缺血猝死例左室心肌Cx43脱磷酸化的免疫组化研究.法医学杂志,2004,20(3):136-142
    16陈林,李永宏.心肌连接蛋白Cx43在冠心病心肌梗死病例中的表达.皖南医学院学报,2008,27(5):328-331
    17Hashmi S, Al-Salam S. Loss of dystrophin staining in cardiomyocytes: anovel method for detection early myocardial infarction. Int J Clin ExpPathol,2013,6(2):249-257
    18申成斌,王兆福,胡丙杰.实验性早期心肌梗死的免疫组化研究.河南医学研究,2003,2(12):119-123
    19胡丙杰,冯绮明,汪冠三,等.心肌梗死6项免疫组化指标的死后稳定性比较.中国法医学杂志,2003,4(18):208-221
    20Jiang BH, Zheng JZ, Leung SW, et al. Transactivation and inhibitorydomains of hypoxia-inducible factor1alpha: modulation of transcriptionalactivity by oxygen tension. J Biol Chem,1997,272:19253-19260
    21Semenza GL. Hypoxia-inducible factor1: master regulator of O2homeostasis.Curr Opin Genet Dev,1998,8(5):588-594.
    22胡明,肖新莉,刘勇.低氧诱导因子1研究进展.医学综述,2006,12(21):1283-1285
    23李志刚,王江峰,成建定.缺氧诱导因子1alpha在急性心肌缺血中的表达规律.中山大学学报(医学科学版),2006,27(3):306-309
    24Blanco Pampín J, García Rivero SA, Otero Cepeda XL, et al.Immunohistochemical expression of HIF-1alpha in response to earlymyocardial ischemia. J Forensic Sci,2006,51(1):120-124
    25Zhu BL, Tanaka S, Ishikawa T, et al. Forensic pathological investigation ofmyocardial hypoxia-inducible factor-1alpha, erythropoietin and vascularendothelial growth factor in cardiac death. Leg Med (Tokyo),2008,10(1):11-19
    26杜中波,毛瑞明,高卫民,等.大鼠急性心肌缺血早期缺氧诱导因子-1α的表达.法医学杂志,2012,28(5):327-332
    27Xu XH, Chen JG, Zhu JZ. Primary study of vascular endothelial growthfactor immunohistochemical staining in the diagnosis of early acutemyocardial ischemia.Forensic Sci Int,2001,118(1):11-14
    28马运,刘更新,董洪望. VEGF免疫组化在心性猝死诊断中的应用.济宁医学院学报,2008,31(3):231-232
    29熊小明,邓世雄. VEGF在家兔缺血心肌中的表达及其死后稳定性研究.中国法医学杂志,2008,23(1):16-19
    30毛瑞明,杜中波,高卫民,等.大鼠急性心肌缺血后血管内皮生长因子的表达变化.法医学杂志,2012,28(3):179-184
    31王志勇,李政,陈新山.大鼠急性心肌缺血早期内皮素的免疫组化染色观察.中国法医学杂志,2003,4(18):205-207
    32马孟云,徐小虎.心肌缺血内皮素RT-PCR初步研究及其意义.法医学杂志,2005,21(1):21-26
    33袁翔天,彭雪,靳占峰.急性心肌缺血猝死心肌中FAPα和TGF-β1的表达.法医学杂志,2012,28(1):18-20
    34Dobaczewski M, Chen W, Frangogiannis NG. Transforming growthfactor(TGF)-β signaling in cardiac remodeling. J Mol Cell Cardiol,2011,51(4):600-606
    35孙忠国,张凡,成日青,等. Fn、HSP70在冠心病猝死心肌中表达的诊断意义.河北北方学院学报(医学版),2007,24(1):67-69
    36左立平,梁艳冰,唐皓,等.急性心肌梗死猝死者心肌细胞hsn和HSP70改变的意义.热带医学杂志,2007,44:971-974
    37徐冰,高兴辰,张洋,等.热休克蛋白在冠心病猝死病例心肌和血管中的表达及意义.牡丹江医学院学报,2012,33(3):1-3
    38Raucci A, Palumbo R, Bianchi ME.HMGB1: a signal of necrosis.Autoimmunity,2007,40(4):285-289
    39王文靖,高铁磊,靳占峰,等.心肌缺血猝死心肌中高迁移率族蛋白B-1的表达研究.中国法医学杂志,2012,27(2):104-107
    40梁正,刘瑞清,路一凡,等. Cathepsin-L在缺血心肌中的表达.中国法医学杂志,2012,27(5):364-367
    41Reid A C, Silver R B, Levi R. Renin: at the heart of the mastcell.Immunological Review,2007,217(1):123-140
    42付立平,张付瑶,王涛,等.类胰蛋白酶在冠心病患者尸检心脏组织中的表达.中国体视学与图像分析,2012,17(1):75-80
    43付立平,张付瑶,王涛,等.类胰蛋白酶和类糜蛋白酶表达在过敏反应死亡与冠心病猝死者组织中的表达.中国体视学与图像分析,2012,17(2):173-179
    44Ortmann C, Pfeiffer H, Brinkmann B. A comparative study on theimmunohistochemical detection of early myocardial damage. Int J LegalMed,2000,113(4):215-220
    45胡丙杰,程海鹰,陈玉川,等.早期心肌梗死后诊断若干免疫组织化学指标的敏感性比较.中国组织化学与细胞化学杂志,2001,10(4):406-473
    46Campobasso CP, Dell'Erba AS, Addante A, et al. Sudden cardiac deathand myocardial ischemia indicators: a comparative study of fourimmunohistochemical markers. Am J Forensic Med Pathol,2008,29(2):154-161
    47Jenkins CP, Cardona DM, Bowers JN, et al. The Utility of C4d, C9, andTroponin T immunohistochemistry in acute myocardial infarction. ArchPathol Lab Med,2010,134(2):256-263
    48刘志峰,杨彦华,董明霞,等.心源性猝死病人心肌SOCS-1和C-JUN表达及法医学意义.齐鲁医学杂志,2012,27(3):258-260
    49Cina S J, Brown D K, Smialek J E, et al. A rapid postmortem cardiactroponin T assay:laboratory evidence of sudden cardiac death.Am JForensic Med Pathol,2001,22(2):173-176
    50Zhu BL, Ishikawa T, Michiue T, et al. Postmortem cardiac troponin Tlevels in the blood and pericardial fluid. Part2: analysis for application inthe diagnosis of sudden cardiac death with regard to pathology. Leg Med,2006,8(2):94-101
    51Zhu BL, Ishikawa T, Michiue T, et al. Postmortem cardiac troponin I andcreatine kinase MB levels in the blood and pericardial fluid as markers ofmyocardial damage in medicolegal autopsy. Leg Med(Tokyo),2007,9(5):241-250
    52孙进广,林祥立,郭雪美,等.心肌梗死患者20例死后血液生化值变化的研究.昆明医学院学报,2011,(4):112-115
    53Berestovskaia VS, Eremina MV, Kozlov AV. Cardiac markers in thepericardial fluid in sudden coronary death. Klin Lab Diagn,2003,5:8-10
    54Zhu BL, Ishikawa T, Michiue T, et al. Postmortem pericardial natriureticpeptides as markers of cardiac function in medico-legal autopsies. Int JLegal Med,2007,121(1):28-35
    55Batalis NI, Marcus BJ, Papadea CN, et al. The role of postmortem cardiacmarkers in the diagnosis of acute myocardial infarction. J Forensic Sci,2010,55(4):1088-1091
    56Wang Q, Michiue T, Ishikawa T, et al. Combined analyses of creatinekinase MB, cardiac troponin I and myoglobin in pericardial andcerebrospinal fluids to investigate myocardial and skeletal muscle injury inmedicolegal autopsy cases. Leg Med(Tokyo),2011,13(5):226-232
    57Tomásková E, Vorel F. Some possibilities in the diagnosis of early acuteischaemic changes in the heart muscle in sudden death. Soud Lek,2010,55(3):32-35
    58黄平,黎世莹,李正东,等.傅里叶显微红外光谱成像技术研究进展及其法医学应用.中国法医学杂志,2011,27(6):447-450
    59Yang TT, Weng SF, Zheng N, et al. Histopathology mapping ofbiochemical changes in myocardial infarction by Fourier transforminfrared spectral imaging. Forensic Sci Int,2011,207(1-3): e34-e39
    60郑娜,梁曼,杨天潼,等.红外显微光谱技术分析陈旧性心肌梗死酰胺特征.中国法医学杂志,2012,27(5):356-358
    61冯雪,叶能胜,张荣利,等.大鼠急性心肌梗死模型比较蛋白组学的初步研究.分析试验室,2006,25(5):23-27
    62苗兰,刘建勋,李欣志,等.中国实验小型猪冠心病模型的心肌组织蛋白质组学研究.中国药理学通报,2009,25(7):880-883
    63Gengqian Zhang, Bin Zhou, Yanhua Zheng, et al. Time course proteomicprofile of rat acute myocardial infarction by SELDI-TOF MS analysis. IntJ Cardiol,2009,131(2):225-233
    64张更谦.大鼠急性心肌缺血早期标记物及其差异基因的筛选的研究.成都:四川大学,2007
    65Sparrow P, Merchant N, Provost Y, et al. Cardiac MRI and CT features ofinheritable and congenital conditions associated with sudden cardiac death.Eur Radiol,2009,19(2):259-270
    66Michaud K, Grabherr S, Jackowski C, et al. Postmortem imaging ofsudden cardiac death. Int J Legal Med,2013, Jan16.[Epub ahead of print]
    67Grabherr S, Doenz F, Steger B, et al. Multi-phase post-mortem CTangiography: development of a standardized protocol. Int J Legal Med,2011,125(6):791-802
    68Saunders SL, Morgan B, Raj V, et al. Targeted post-mortem computedtomography cardiac angiography: proof of concept. Int J Legal Med,2011,125(4):609-616
    69Michaud K, Grabherr S, Doenz F, et al. Evaluation of postmortem MDCTand MDCT-angiography for the investigation of sudden cardiac deathrelated to atherosclerotic coronary artery disease. Int J Cardiovasc Imaging,2012,28(7):1807-1822
    70Shiotani S, Yamazaki K, Kikuchi K, et al. Postmortem magnetic resonanceimaging (PMMRI) demonstration of reversible injury phase myocardiumin a case of sudden death from acute coronary plaque change. Radiat Med,2005,23(8):563-565
    71Jackowski C, Warntjes MJ, Berge J, et al. Magnetic resonance imaginggoes postmortem: noninvasive detection and assessment of myocardialinfarction by postmortem MRI. Eur Radiol,2011,21(1):70-78
    72Jackowski C, Hofmann K, Schwendener N, et al. Coronary thrombus andperacute myocardial infarction visualized by unenhanced postmortem MRIprior to autopsy. Forensic Sci Int,2012,214(1-3): e16-9
    73Ruder TD, Bauer-Kreutz R, Ampanozi G, et al. Assessment of coronaryartery disease by post-mortem cardiac MR. Eur J Radiol,2012,81(9):2208-2214

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700