心肌瘢痕化对冠心病陈旧性心肌梗死心功能不全患者外科治疗影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:迄今为止,大多数临床研究采用存活心肌的多少来预测心肌再血管化后的心功能改善,鲜有研究通过瘢痕心肌的多少来探索心功能的改善与提高。本研究拟探讨对比剂延迟强化磁共振显像(late gadolinium-enhanced cardiovascular magnetic resonance imaging, LGE-CMR)在预测冠心病心功能不全患者行冠状动脉旁路移植术(coronary artery bypass grafting, CABG)后心功能改善方面的预测价值。
     方法:2009年11月至2012年9月期间,63例合并心功能不全的冠心病陈旧性心肌梗死患者在我院心外科成人外科中心于术前行LGE-CMR检查,以了解基线心功能情况以及瘢痕心肌大小。所有患者均行首次单纯CABG,术后6个月再次行LGE-CMR检查以评价心功能改善,同时行电子计算机X射线断层血管造影(computed tomography angiography, CTA)检查,了解桥血管通畅情况。然后对影响整体心功能改善的诸多变量进行多因素回归分析。
     结果:11例患者被排除于数据分析之外,包括6例桥血管闭塞,3例拒绝复查,1例在术后安装了植入型自动心律转复除颤器,1例术后死亡。最终纳入52例患者进行分析。基线左室射血分数(left ventricular ejection fraction, LVEF)为(32.7±9.2)%,术后6个月提高至(41.6±11.0)%。所有52例患者中,整体心功能改善的患者32例(LVEF增加≥5%),心功能未改善的患者20例(LVEF增加<5%)。基于美国心脏病协会(American Heart Association, AHA)的17节段分析方法,我们共分析了884个心脏节段,其中688个(77.8%)心脏节段于术前被确定为运动功能不良。CABG术后6个月,305个(44.3%)节段显示出了功能改善。对于存活心且儿以及正常心肌(即LGE≤50%),291/467(62.3%)个节段显示出收缩功能改善,而瘢痕心肌(即LGE>50%),仅14/221(6.3%)个节段有功能改善(P<0.001)。多因素Logistic回归分析显示瘢痕心肌节段数是预测患者心功能改善与否的唯一独立影响因素(0R=2.864,95%CI1.172-6.996,P=0.021).受试者工作特征曲线(Receiver Operator Characteristic, ROC)显示瘢痕心肌节段数≤4可以很好地预测患者心功能改善,敏感性和特异性分别为85.0%和87.5%[曲线下面积(areaunder curve, AUC)=0.91,P<0.001],且瘢痕心肌较存活心肌而言,能更好地预测心功能改善与否(AUC0.91vs0.65,P<0.001)。然后,所有患者依据瘢痕心肌节段数分为两组(瘢痕心肌节段≤4,n=31和瘢痕心肌节段>4,n=21)。本研究的随访中位时间是14.0个月(6-38个月),无一例失访。随访期间,瘢痕心肌节段数≤4的患者中有1例发生非致命性MI,瘢痕心肌节段数>4的患者中有1例因心衰再入院治疗,1例再发心绞痛,2例发生了室性心律失常。Kaplan-Meier生存曲线证实瘢痕心肌节段数≤4的患者的无心血管事件的生存率明显优于瘢痕心肌节段数>4的患者(96.8%vs81.0%,log-rank检验,P=0.020)。
     结论:1.基于LGE-CMR检查的瘢痕心肌节段数可以很好地预测冠心病心功能不全患者外科心肌再血管化后的心功能改善情况。2.通过AHA的17节段分析法我们发现,瘢痕心肌节段≤4的患者的心功能于术后会有明显改善,而瘢痕心肌节段>4的患者的心功能改善不明显。3.本研究的结果将帮助心血管外科医师判断冠心病心功能不全患者中哪一类最有可能从CABG中获益。
     目的:已有文献表明,左室射血分数(left ventricular ejection fraction, LVEF)和左室容积可以影响冠心病陈旧性心肌梗死患者的生存与预后。随着核磁共振技术的飞速发展,运用对比剂延迟强化心血管磁共振显像(late gadolinium-enhanced cardiovascular magnetic resonance imaging, LGE-CMR)对瘢痕化心肌的半定量测量已成为可能。目前,大多数临床研究采用存活心肌的多少来预测缺血心肌再血管化后的心功能改善以及长期预后,鲜有通过瘢痕心肌来探索患者术后生存的研究。本研究拟探讨由LGE-CMR评估的瘢痕心肌组织与冠心病陈旧性心肌梗死患者行冠状动脉旁路移植术(coronary artery bypass grafting, CABG)后心血管事件(cardiovascular events, CVEs)之间的关系。
     方法:2009年4月至2013年5月期间,140例冠心病陈旧性心肌梗死患者在我院心外科成人外科中心于术前行LGE-CMR检查,了解患者的心功能状况、心室大小以及心肌瘢痕化程度,并以美国心脏病协会(AHA)推荐的心脏17节段分析法对所有节段心肌的延迟强化情况进行半定量评分。所有患者均行单.纯CABG术,记录手术结果,并于术后定期进行随访。通过Cox比例风险回归模型,探讨诸多临床及LGE-CMR变量与近远期CVEs之间的关系,同时找出影响CABG术后CVEs发生与否的危险因素。
     结果:排除6例失访患者,最终134例患者进入数据分析。CABG术后1例患者因低心排综合征而行主动脉内球囊反搏(intra-aortic balloon pump,IABP)治疗,2例患者因循环衰竭死亡。平均随访时间为29.2±13.0个月,随访期间发生CVEs的共11人(8.3%),包括因心衰再入院治疗4例,心绞痛复发3例,室性心律失常和非致命性心肌梗死各2例。我们依据围术期和随访期间是否发生CVEs将所有患者分成两组:即发生CVEs的患者(14例)和未发生CVEs的患者(120例)。单因素分析表明:LVEF、左室舒张末期容积指数(left ventricular end-diastolic volume index, LVEDVI)、左室收缩末期容积指数(left ventricular end-systolic volume index, LVESVI)、受累心肌节段数、瘢痕心肌节段数、LGE总分、NYHA心功能均与CABG术后发生CVEs有关。然后,我们通过Cox比例风险回归模型,以CVEs为应变量,以上述有意义的参数为自变量,同时调整诸多可能影响到CABG预后的相关因素(如年龄、性别、合并症等),最终发现,只有瘢痕心肌节段数才是CVEs发生与否最重要的独立危险因素(HR:2.783,95%CI:1.116-6.939,P=0.028)。受试者工作特征曲线(Receiver Operator Characteristic, ROC)显示当患者瘢痕心肌节段数≥6时可以很好地预测近远期CVEs的发生,敏感性为78.6%,特异性为91.7%(area under curve,AUC=0.915,P<0.001)。之后,所有患者依据瘢痕心肌节段数分为两组,即瘢痕心肌节段数<6的患者(n=113)和瘢痕心肌节段数≥6的患者(n=21), Kaplan-Meier曲线证实瘢痕心肌节段数<6的患者的3年累积无CVEs的生存率明显高于瘢痕心肌节段数≥6的患者(97.3%vs47.6%,log-rank检验,P<0.001)。
     结论:1.基于LGE-CMR检查的瘢痕心肌节段数是冠心病陈旧性心肌梗死患者CABG术后CVEs发生的独立危险因素。2.以AHA推荐的17节段分析法为依据,瘢痕心肌节段数≥6的患者有相对较高的CVEs发生率。3.心肌瘢痕化与冠心病陈旧性心肌梗死患者CABG后CVEs的相关性尚需更大规模的临床试验去证实。
     目的:尽管传统的冠状动脉旁路移植术(coronary artery bypass grafting, CABG)已被证明是治疗冠心病心功能不全的有效方法,冠心病功能性室壁瘤伴充血性心力衰竭(congestive heart failure, CHF)的患者仍然预后不佳。传统观念认为在CABG基础上同期行左室成形术(surgical ventricular reconstruction, SVR)能够使这部分患者获益,但是CABG+SVR与单纯CABG (Isolated-CABG, I-CABG)之间究竟孰优孰劣仍存争议。本研究旨在探讨对于冠心病功能性室壁瘤CHF患者,CABG+SVR较1-CABG而言,是否能够进一步改善患者的心功能及长期预后。
     方法:我们回顾性地分析了2009年4月至2013年6月期间,在我院心外科成人外科中心行I-CABG或CABG+SVR的冠心病CHF患者,所有患者的左室射血分数(leftventricular ejection fraction, LVEF)≤35%(心血管磁共振测得)。依据入选条件,术前审阅患者的左心室造影及延迟强化心血管核磁共振显像(lategadolinium-enhanced cardiovascular magnetic resonance imaging, LGE-CMR)资料,选择CABG+SVR患者与那些适合行CABG+SVR而最终仅接受I-CABG治疗的患者进行比较。记录并搜集患者的基线资料,LGE-CMR数据,手术情况、结果以及随访信息。本研究的主要终点定义为心血管事件(cardiovascular events, CVEs),包括随访期间发生的死亡(心源性或非心源性),因心衰再入院治疗,室性心律失常,心绞痛复发和非致命性心肌梗死。次要终点是围术期并发症,随访期间的LVEF/左室舒张末径(left ventricular end-diastolic diameter, LVEDD)改善情况及纽约心脏病协会(New York Heart Association, NYHA)心功能分级。
     结果:依据入选和排除标准,最终共120例患者进入本研究数据分析,接受I-CABG的患者和CABG+SVR的患者各60例。其中男性患者104例,女性患者16例,手术时的平均年龄为58.2±7.6岁。两组患者在基线资料和LGE-CMR数据方面均无统计学差异,匹配性良好。CABG+SVR组的手术时间,体外循环时间和主动脉阻断时间明显高于I-CABG组,分别为226.2±48.4vs246.4±51.4,P=0.028;101.5±24.2vs118.7±36.6,P=0.003;66.4±18.4vs76.2±21.6,P=0.009。然而,CABG+SVR组的远端吻合口数量却明显低于I-CABG组(3.4±0.8vs3.0±0.9,P=0.004)。术后,因低心排综合征而用主动脉内球囊反搏(intra-aortic balloon pump, IABP)治疗的患者在I-CABG组有3例,CABG+SVR组有4例(P=1.000)。虽然I-CABG有2例死亡患者,但两组的手术死亡率相似(3.3%vs0.0%,P=0.476)。平均随访时间28.0±14.8个月,2例患者失访,随访成功率为98.3%。超声心动图测得LVEF改善(定义为随访期间LVEF较术前提高≥5%)患者的比例在I-CABG组有63.2%,在CABG+SVR组有86.4%(P=0.004)。随访期间,I-CABG组比CABG+SVR组有更多的因心衰再入院的患者(19.3%vs6.8%,P=0.045),而NYHA心功能分级Ⅰ/Ⅱ级的患者在I-CABG组所占比例却相对较低(78.9%vs93.2%,P=0.026)。Kaplan-Meier生存曲线显示,I-CABG组的3年无CVEs的生存率明显低于CABG+SVR组(75.9%vs91.7%,log-rank test,P=0.009)。
     结论:1.CABG+SVR与I-CABG相比,可以进一步缓解患者的临床症状,降低因心衰再入院的发生率,提高LVEF以及改善NYHA心功能分级。2.SVR适用于左室明显扩大的功能性室壁瘤CHF患者,该术式在当今临床实践中仍不能废弃。3.I-CABG与CABG+SVR孰优孰劣的问题更有待将来大规模、多中心、前瞻性的随机对照试验去证实。
Objectives:Previous studies have shown that viable myocardium predicts recovery of left ventricular (LV) dysfunction after revascularization. Our aim was to evaluate the diagnostic value of late gadolinium-enhanced cardiovascular magnetic resonance imaging (LGE-CMR) in predicting cardiac functional improvement of patients with coronary artery disease (CAD) and LV dysfunction who underwent coronary artery bypass grafting (CABG).
     Methods:From November2009to September2012,63patients with CAD and LV dysfunction referred for first-time isolated CABG in department of adult cardiovascular surgery of our institute were prospectively enrolled, LV functional parameters and scar tissue were assessed by LGE-CMR at baseline and6months after surgery. Patency of grafts was evaluated by computed tomography angiography (CTA)6months post-CABG. Predictors for global functional recovery were analyzed.
     Results:11patients were excluded, including6with graft failure and5for other reasons, leaving a final study population of52patients. The baseline left ventricular ejection fraction (LVEF) was (32.7±9.2)%, which improved to (41.6±11.0)%6months later. Among all52patients,32had global functional recovery (improved LVEF by≥5%), while20had not (improved LVEF by<5%). Based on the American Heart Association (AHA)17-segment format, a total of884segments were analyzed, of which688(77.8%) segments were determined to be dysfunctional preoperatively. Six months after CABG,305(44.3%) segments showed functional improvement. In viable and normal segments (≤50%LGE),291/467(62.3%) improved contraction, while in scar segments (>50%LGE), only14/221(6.3%) improved contraction post-surgery (P<0.001). Multivariate logistic regression analysis showed that the most significant predictor for global functional recovery was the number of scar segments (Odds Ratio2.864,95%Confidence Interval1.172-6.996, P=0.021). Receiver Operator Characteristic (ROC) analysis demonstrated that≤4scar segments predicted global functional recovery with a sensitivity and specificity of85.0%and87.5%, respectively [(area under curve, AUC)=0.91, P<0.001). Comparison of ROC curves also indicated that scar tissue was superior to viable myocardium in predicting cardiac functional recovery (AUC0.91versus0.65, P<0.001). After multivariate analysis, patients were divided into two groups (<4scar segments, n= 31and>4scar segments, n=21) according to the number of scar segments. The median follow-up time was14.0months (range,6-38months) and no patients lost to follow-up. During follow-up time, one patient suffered from nonfatal myocardial infarction in patients with≤4scar segments. While in patients with>4scar segments, one patient had rehospitalization for heart failure, one had recurrence of angina pectoris, two patients had ventricular arrhythmia. The mid-term cardiovascular events (CVEs)-free survival rate was significantly higher in patients with≤4scar segments than in patients with>4scar segments (96.8%versus81.0%, log-rank test, P=0.020).
     Conclusions:1.Our findings indicated that scar segments based on LGE-CMR is an independent predictor of cardiac functional recovery in patients with impaired LV function who underwent surgical revascularization.2. Based on AHA17-segment format, patients with≤4scar segments could improve global LV function significantly post-fevascularization, while patients with more such segments did not.3. These observations may be helpful for cardiovascular surgeons to determine which patients are most likely to benefit from surgical revascularization.
     Objectives:Left ventricular ejection fraction (LVEF) and left ventricular (LV) volumes have been shown to be significant predictors of cardiovascular events (CVEs) in patients with coronary artery disease (CAD) and chronic myocardial infarction (CMI) in recent years. With the rapid development of late gadolinium-enhanced cardiovascular magnetic resonance imaging (LGE-CMR), precise delineation of infarct size and hemi-quantitative measurement of myocardial scar is now possible. Previous studies have shown that viable myocardium can predict improvement of LV dysfunction as well as long-term prognosis after revascularization therapy. Information on the relative merits of myocardial scar tissue to predict outcome in patients undergoing coronary artery bypass grafting (CABG) is lacking. The purpose of this study was to explore the relationship between myocardial scar assessed by LGE-CMR and adverse CVEs in CABG-treated patients with CMI.
     Methods:A total of140patients with CAD and CMI who underwent CABG in the department of adult cardiovascular surgery of our institute between April2009and May2013were included. LGE-CMR was performed in all patients before surgery. LV function and LV volumes were measured. Scar tissue was derived from LGE-CMR using17-segment analysis suggested by American Heart Association (AHA). The outcome of surgery was documented and follow-up was carried out periodically. In combination with other potential risk factors, Cox proportional hazards analysis was used and conducted to explore the relationship between myocardial scar and adverse CVEs post-surgery.
     Results:Six patients lost to follow-up were excluded from the present study and leaving a final population of134patients. Intra-aortic balloon pump (IABP) therapy was employed in one patient who suffered from low cardiac output syndrome (LCOS). Two death occurred after CABG due to systemic circulation failure. Eleven patients (8.3%) suffered from CVEs during a mean follow-up time of (29.2±13.0) months, including4rehospitalizations for heart failure,3recurrence of angina pectoris,2ventricular arrhythmia and2nonfatal myocardial infarction Patients were divided into two groups according to whether or not CVEs occurred (patients with CVEs, n=14and patients without CVEs, n=120). Univariate analysis showed that LVEF、Left ventricular end-diastolic volume index (LVEDVI)、 Left ventricular end-systolic volume index (LVEDVI)、 spatial extent、 the number of scar segments、 late gadolinium enhancement (LGE) score、 New York Heart Association (NYHA) function class were significantly associated with CVEs after CABG. After adjustment for multiple confounders (such as age, sex, comorbidities etc), Cox proportional hazards analysis revealed that only the number of scar segments as determined by LGE-CMR appeared significantly related with CVEs post-CABG (hazard ratio [HR]2.783,95%confidence interval [CI]1.116-6.939, P=0.028). Receiver Operator Characteristic (ROC) analysis indicated that>6scar segments can predict CVEs after CABG with a sensitivity and specificity of78.6%and91.7%, respectively (area under curve, AUC=0.915, P<0.001). After Cox proportional hazards analysis, all patients were divided into two groups (<6scar segments, n=113and≥6scar segments, n=21) according to the number of scar segments. Kaplan-Meier analysis demonstrated that CVEs-free survival rate was significantly higher in patients with<6scar segments than those with≥6scar segments (97.3%versus47.6%, log-rank test, P<0.001).
     Conclusions:1. The number of scar segments on LGE-CMR is the most significant predictor associated with CVEs in patients with CAD and CMI after CABG.2. The17-segment analysis recommended by AHA demonstrated that patients with≥6scar segments have a higher CVEs rate after surgery.3. Larger clinical trials are needed to prove the certain association between myocardial scar and adverse CVEs in patients with CMI after CABG.
     Objectives:Although coronary artery bypass grafting (CABG) has been shown to be an effective treatment for coronary artery disease (CAD) and left ventricular (LV) dysfunction, patients with congestive heart failure (CHF) as well as LV enlargement are known to have inferior prognosis. Previous published studies have demonstrated that these patients could benefit from CABG combined with surgical ventricular reconstruction (SVR). However, a continuing controversy concerning the best management regimen for patients with CAD and CHF still exists between CABG+SVR and isolated CABG (I-CABG). The purpose of this study was to evaluate whether CABG combined with SVR leads to recovery of function and improvement of prognosis compared withI-CABG for patients withLV aneurysm and CHF.
     Methods:We conducted a retrospective study comparing patients with CHF and left ventricular ejection fraction (LVEF)≤35%(measured by cardiovascular magnetic resonance imaging) who received either I-CABG or CABG+SVR in the department of adult cardiovascular surgery of our institute from April2009to June2013. Patients who underwent CABG+SVR were compared with those control patients who met criteria for CABG+SVR by ventriculogram or late gadolinium-enhanced cardiovascular magnetic resonance imaging (LGE-CMR) but only received I-CABG. Baseline characteristic of all patients, operative data, postoperative outcomes and follow-up were collected by chart review. The primary end points were cardiovascular events (CVEs) occurred during follow-up, including death (cardiac or non-cardiac), rehospitalization for CHF, ventricular arrhythmia (VA), recurrent angina pectoris, nonfatal myocardial infarction. The secondary end points included perioperative complications, improvement in LVEF/left ventricular end-diastolic diameter (LVEDD), and New York Heart Association (NYHA) class during follow-up.
     Results:A total of120patients who met criteria undergoing I-CABG (n=60) versus CABG+SVR (n=60) were included in the present study. There were104male and16female patients with a mean age at operation of58.2±7.6years. I-CABG patients matched very well with those who underwent CABG+SVR and there was no significant difference in all baseline characteristics or LGE-CMR data between these two groups.
     The CABG+SVR patients had significantly longer operation time (226.2±48.4versus246.4±51.4, P=0.028), cardiopulmonary bypass time (101.5±24.2versus118.7±36.6, P=0.003) as well as cross-clamp time (66.4±18.4versus76.2±21.6, P=0.009) than I-CABG patients, but fewer distal anastomoses (3.4±0.8versus3.0±0.9, P=0.004). Intra-aortic balloon pump (IABP) therapy was used in3patients in I-CABG group and4patients in CABG+SVR group (P=1.000). Death occurred in2patients who underwent I-CABG and the operative mortality was similar between these two groups (3.3%versus0.0%, P=0.476). The mean follow-up time was (28.0±14.8) months and2patients were lost to follow-up. The follow-up success rate was98.3%. LVEF (by Echocardiography) improvement≥5%was observed in63.2%of I-CABG patients compared with86.4%for CABG+SVR patients (P=0.004). The I-CABG patients experienced more rehospitalizations for CHF than CABG+SVR patients (19.3%versus6.8%, P=0.045) and78.9%of I-CABG versus93.2%of CABG+SVR patients improved to NYHA class I or II (P=0.026). Kaplan-Meier analysis indicated that the3-year CVEs-free survival rate was significantly lower in I-CABG patients than CABG+SVR patients (75.9%vs91.7%, log-rank test, P=0.009).
     Conclusions:The present study compared the efficacy of I-CABG with that of CABG+SVR in patients with CAD and CHF. Based on our outcomes, we conclude that1. CABG+SVR resulted in decreased symptoms, fewer rehospitalizations for CHF and better improvements in LVEF as well as NYHA class.2. The additional SVR procedure should be offered to appropriately selected patients with LV enlargement and CHF in whom SVR still holds its ground.3. Nevertheless, multicenter, prospective, randomized controlled clinical trials are needed to further compare these two surgical strategies including I-CABG and CABG+SVR.
引文
[1]Hunt SA, Abraham WT, Chin MH, et al.2009 focused update incorporated into the acc/aha 2005 guidelines for the diagnosis and management of heart failure in adults a report of the american college of cardiology foundation/american heart association task force on practice guidelines developed in collaboration with the international society for heart and lung transplantation[J]. J Am Coll Cardiol 2009,53(15):el-e90.
    [2]Alderman EL, Fisher LD, Litwin P, et al. Results of coronary artery surgery in patients with poor left ventricular function (cass)[J]. Circulation,1983,68(4):785-795.
    [3]Veenhuyzen GD, Singh SN, McAreavey D, et al. Prior coronary artery bypass surgery and risk of death among patients with ischemic left ventricular dysfunction[J]. Circulation,2001, 104(13):1489-1493.
    [4]Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction[J]. N Engl J Med,2000,343(20):1445-1453.
    [5]Sawada SG, Dasgupta S, Nguyen J, et al. Effect of revascularization on long-term survival in patients with ischemic left ventricular dysfunction and a wide range of viability[J]. Am J Cardiol, 2010,106(2):187-192.
    [6]Gerber BL, Rousseau MF, Ahn SA, et al. Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction:Impact of revascularization therapy[J]. J Am Coll Cardiol,2012,59(9):825-835.
    [7]Bonow RO, Maurer G, Lee KL, et al. Myocardial viability and survival in ischemic left ventricular dysfunction[J]. N Engl J Med,2011,364(17):1617-1625.
    [8]Wu YW, Huang PJ, Lee CM, et al. Assessment of myocardial viability using f-18 fluorodeoxyglucose/tc-99m sestamibi dual-isotope simultaneous acquisition spect:Comparison with tl-201 stress-reinjection spect[J]. JNucl Cardiol,2005,12(4):451-459.
    [9]White HD, Norris RM, Brown MA, et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction[J]. Circulation,1987, 76(1):44-51.
    [10]Sharir T, Germano G, Kang X, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion spect:Risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction[J]. J Nucl Med,2001,42(6):831-837.
    [11]Kelle S, Roes SD, Klein C, et al. Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging[J]. J Am Coll Cardiol,2009,54(19):1770-1777.
    [12]Mills NL, Everson CT, Hockmuth DR. Technical advances in the treatment of left ventricular aneurysm[J]. Ann Thorac Surg,1993,55(3):792-800.
    [13]Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction:Pathophysiology and therapy[J]. Circulation,2000,101(25)2981-2988.
    [14]Athanasuleas CL, Buckberg GD, Stanley AW, et al. Surgical ventricular restoration in the treatment of congestive heart failure due to post-infarction ventricular dilation[J]. J Am Coll CardioL 2004,44(7):1439-1445.
    [15]Luciani GB, Montalbano G, Casali G, et al. Predicting long-term functional results after myocardial revascularization in ischemic cardiomyopathy[J]. J Thorac Cardiovasc Surg,2000, 120(3):478-489.
    [16]Menicanti L, Castelvecchio S, Ranucci M, et al. Surgical therapy for ischemic heart failure: Single-center experience with surgical anterior ventricular restoration[J]. J Thorac Cardiovasc Surg,2007,134(2):433-441.
    [17]Prucz RB, Weiss ES, Patel ND, et al. Coronary artery bypass grafting with or without surgical ventricular restoration:Acomparison[J]. Ann Thorac Surg,2008,86(3):806-814.
    [18]Jones RH, Velazquez EJ, Michler RE, et al. Coronary bypass surgery with or without surgical ventricular reconstruction[J]. N Engl J Med,2009,360(17):1705-1717.
    [19]Kim HW, Farzaneh-Far A, Kim RJ. Cardiovascular magnetic resonance in patients with myocardial infarction:Current and emerging applications[J]. J Am Coll Cardiol,2009, 55(1):1-16.
    [20]Hundley WG, Btuemke DA, Finn JP, et al. Accf/acr/aha/nasci/scmr 2010 expert consensus document on cardiovascular magnetic resonance:A report of the american college of cardiology foundation task force on expert consensus documents[J]. Circulation,2010,121(22):2462-2508.
    [1]Alderman EL, Fisher LD, Litwin P, et al. Results of coronary artery surgery in patients with poor left ventricular function (cass)[J]. Circulation,1983,68(4):785-795.
    [2]Gerber BL, Darchis J, le Polain de Waroux JB, et al. Relationship between transmural extent of necrosis and quantitative recovery of regional strains after revascularization[J]. JACC Cardiovasc Imaging,2010,3(7):720-730.
    [3]Gerber BL, Rousseau MF, Ahn SA, et al Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction:Impact of revascularization therapy[J]. J Am Coll Cardiol,2012, 59(9):825-835.
    [4]Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction[J]. NEngl.JMed,2000,343(20):1445-1453.
    [5]Sawada SG, Dasgupta S, Nguyen J, et al. Effect of revascularization on long-term survival in patients with ischemic left ventricular dysfunction and a wide range of viability[J]. Am J Cardiol,2010,106(2):187-192.
    [6]Bonow RO, Maurer G, Lee KL, et al. Myocardial viability and survival in ischemic left ventricular dysfunction[J]. NEngl JMed,2011,364(17):1617-1625.
    [7]Wu YW, Huang PJ, Lee CM, et al. Assessment of myocardial viability using f-18 fluorodeoxyglucose/tc-99m sestamibi dual-isotope simultaneous acquisition spect: Comparison with t1-201 stress-reinjection spect[J]. JNucl Cardiol,2005,12(4):451-459.
    [8]Pegg TJ, Selvanayagam JB, Jennifer J, et al. Prediction of global left ventricular functional recovery in patients with heart failure undergoing surgical revascularisation, based on late gadolinium enhancement cardiovascular magnetic resonance[J]. J Cardiovasc Magn Resort, 2010,12(1):56-65.
    [9]Hundley WG, Bluemke DA, Finn JP, et al. Accf/acr/aha/nasci/scmr 2010 expert consensus document on cardiovascular magnetic resonance:A report of the american college of cardiology foundation task force on expert consensus documents[J]. Circulation,2010, 121(22)2462-2508.
    [10]Kim HW, Farzaneh-Far A, Kim RJ. Cardiovascular magnetic resonance in patients with myocardial infarction:Current and emerging applications [J]. J Am Coll Cardiol,2009, 55(1):l-16.
    [11]Bingham SE, Hachamovitch R. Incremental prognostic significance of combined cardiac magnetic resonance imaging, adenosine stress perfusion, delayed enhancement, and left ventricular function over preimaging information for the prediction of adverse events[J]. Circulation,2011,123(14):1509-1518.
    [2]Kwon DH, Halley CM, Carrigan TP, et al. Extent of left ventricular scar predicts outcomes in ischemic cardiomyopathy patients with significantly reduced systolic function:A delayed hyperenhancement cardiac magnetic resonance study[J]. JACC Cardiovasc Imaging,2009, 2(1)34-44.
    [13]Kelle S, Roes SD, Klein C, et al Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging[J]. JAm Coll Cardiol,2009,54(19):1770-1777.
    [14]Bello D, Einhorn A, Kaushal R, et al. Cardiac magnetic resonance imaging:Infarct size is an independent predictor of mortality in patients with coronary artery disease[J]. Magn Reson Imaging,2011,29(1):50-56.
    [15]'Slart RH, Bax JJ, van Veldhuisen DJ, et al. Prediction of functional recovery after revascularization in patients with coronary artery disease and left ventricular dysfunction by gated fdg-pet[J]. J Nucl Cardiol,2006,13(2):210-219.
    [16]Selvanayagam JB, Kardos A, Francis JM, et al.Value of delayed-enhancement cardiovascular magnetic resonance imaging in predicting myocardial viability after surgical revascularization[J]. Circulation,2004,110(12):1535-1541.
    [17]Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart:A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association[J]. Circulation,2002,105(4):539-542.
    [18]Senior R, Lahiri A, Kaul S. Effect of revascularization on left ventricular remodeling in patients with heart failure from severe chronic ischemic left ventricular dysfunction[J]. Am J Cardiol,2001,88(6):624-629.
    [19]Wu YW, Tadamura E, Yamamuro M, et al. Comparison of contrast-enhanced mri with (18)f-fdg pet/201tl spect in dysfunctional myocardium:Relation to early functional outcome after surgical revascularization in chronic ischemic heart disease[J]. J Nucl Med,2007, 48(7):1096-1103.
    [20]Schinkel AF, Poldermans D, Elhendy A, et al. Assessment of myocardial viability in patients with heart failure[J]. J Nucl Med,2007,48(7):1135-1146.
    [21]Schinkel AF, Poldermans D, Rizzello V, et al. Why do patients with ischemic cardiomyopathy and a substantial amount of viable myocardium not always recover in function after revaseularization?[J]. J Thorac Cardiovasc Surg,2004,127(2)385-390.
    [22]Klein C, Nekolla SG, Bengel FM, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging:Comparison with positron emission tomography[J]. Circulation,2002,105(2):162-167.
    [23]Fieno DS, Kim RJ, Chen EL, et al. Contrast-enhanced magnetic resonance imaging of myocardium at risk:Distinction between reversible and irreversible injury throughout infarct healing[J]. JAm CollCardiol,2000,36(6):1985-1991.
    [24]Krittayaphong R, Laksanabunsong P, Maneesai A, et al. Comparison of cardiovascular magnetic resonance of late gadolinium enhancement and diastolic wall thickness to predict recovery of left ventricular function after coronary artery bypass surgery[J]. J Cardiovasc Magn Reson,2008,10(41.
    [25]Bax JJ, Wijns W, Cornel JH, et al. Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease:Comparison of pooled data[J]. J Am Coll Cardiol,1997, 30(6):1451-1460.
    [26]Buckberg GD, Athanasuleas CL. The stich trial:Misguided conclusions[J]. J Thorac Cardiovasc Surg,2009,138(5):1060-1064 e1062.
    [27]Camici PG, Prasad SK, Rimoldi OE. Stunning, hibernation, and assessment of myocardial viability[J]. Circulation,2008,117(1):103-114.
    [28]Yamaguchi A, Ino T, Adachi H, et al. Left ventricular volume predicts postoperative course in patients with ischemic cardiomyopathy[J]. Ann Thorac Surg,1998,65(2):434-438.
    [29]Bax JJ, Schinkel AF, Boersma E, et al. Extensive left ventricular remodeling does not allow viable myocardium to improve in left ventricular ejection fraction after revascularization and is associated with worse long-term prognosis[J]. Circulation,2004,110(11 Suppl 1):Ⅱ18-22.
    [30]Rizzello V, Poldermans D, Boersma E, et al. Opposite patterns of left ventricular remodeling after coronary revascularization in patients with ischemic cardiomyopathy:Role of myocardial viability[J]. Circulation,2004,110(16):2383-2388.
    [31]Cohn PF, Fox KM, Daly C. Silent myocardial ischemia[J]. Circulation,2003, 108(10):1263-1277.
    [32]Hombach V, Grebe O, Merkle N, et al. Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging[J]. Eur Heart J,2005,26(6):549-557.
    [33]McCrohon JA, Moon JC, Prasad SK, et al. Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance[J]. Circulation,2003,108(1):54-59.
    [1]Wu YW, Huang PJ, Lee CM, et al. Assessment of myocardial viability using f-18 fluorodeoxyglucose/tc-99m sestamibi dual-isotope simultaneous acquisition spect:Comparison with t1-201 stress-reinjection spect[J]. JNucl Cardiol,2005,12(4):451-459.
    [2]Slart RH, Bax JJ, de Boer J, et al. Comparison of 99mtc-sestamibi/18fdg disa spect with pet for the detection of viability in patients with coronary artery disease and left ventricular dysfunction[J]. Eur J Nucl Med Mol Imaging,2005,32(8):972-979.
    [3]Yamakawa Y, Takahashi N, Ishikawa T, et al. Clinical usefulness of ecg-gated 18f-fdg pet combined with 99mtc-mibi gated spect for evaluating myocardial viability and function[J]. Ann Nucl Med,2004,18(5):375-383.
    [4]Slart RH, Bax JJ, van Veldhuisen DJ, et al. Prediction of functional recovery after revascularization in patients with coronary artery disease and left ventricular dysfunction by gated fdg-pet[J]. JNucl Cardiol,2006,13(2)210-219.
    [5]Pegg TJ, Selvanayagam JB, Jennifer J, et al. Prediction of global left ventricular functional recovery in patients with heart failure undergoing surgical revascularisation, based on late gadolinium enhancement cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson,2010, 12(56.
    [6]Sharir T, Germano G, Kang X, et al. Prediction of myocardial infarction versus cardiac death by gated myocardial perfusion spect:Risk stratification by the amount of stress-induced ischemia and the poststress ejection fraction[J]. JNucl Med,2001,42(6):831-837.
    [7]White HD, Norris RM, Brown MA, et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction[J]. Circulation,1987, 76(1):44-51.
    [8]Wu E, Ortiz JT, Tejedor P, et al. Infarct size by contrast enhanced cardiac magnetic resonance is a stronger predictor of outcomes than left ventricular ejection fraction or end-systolic volume index:Prospective cohort study[J]. Heart,2008,94(6):730-736.
    [9]Kelle S, Roes SD, Klein C, et al. Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging[J]. JAm Coll Cardiol,2009,54(19):1770-1777.
    [10]Roes SD, Kelle S, Kaandorp TA, et al. Comparison of myocardial infarct size assessed with contrast-enhanced magnetic resonance imaging and left ventricular function and volumes to predict mortality in patients with healed myocardial infarction[J]. Am J Cardiol,2007, 100(6)530-936.
    [11]Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart:A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association[J]. Circulation,2002,105(4)539-542.
    [12]Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction[J]. NEnglJMed,2000,343(20):1445-1453.
    [13]Yang T, Lu MJ, Sun HS, et al. Myocardial scar identified by magnetic resonance imaging can predict left ventricular functional improvement after coronary artery bypass grafting[J]. PLoS One,2013,8(12):e81991.
    [14]Roques F, Nashef SA, Michel P, et al. Risk factors and outcome in european cardiac surgery: Analysis of the euroscore multinational database of 19030 patients[J]. Eur J Cardiothorac Surg, 1999,15(6):816-822.
    [15]Kwong RY, Korlakunta H. Diagnostic and prognostic value of cardiac magnetic resonance imaging in assessing myocardial viability[J]. TopMagn Reson Imaging,2008,19(1):15-24.
    [16]Hombach V, Grebe O, Merkle N, et al. Sequelae of acute myocardial infarction regarding cardiac structure and function and their prognostic significance as assessed by magnetic resonance imaging[J]. Eur Heart J,2005,26(6):549-557.
    [17]Wu KC, Zerhouni EA, Judd RM, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction[J]. Circulation,1998, 97(8):765-772.
    [18]Gerber BL, Garot J, Bluemke DA, et al. Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction[J]. Circulation,2002,106(9):1083-1089.
    [19]Bello D, Fieno DS, Kim RJ, et al. Infarct morphology identifies patients with substrate for sustained ventricular tachycardia[J]. J,Am Coll Cardiol,2005,45(7):1104-1108.
    [20]Yan AT, Shayne AJ, Brown KA, et al. Characterization of the peri-infarct zone by contrast-enhanced cardiac magnetic resonance imaging is a powerful predictor of post-myocardial infarction mortality[J]. Circulation,2006,114(1):32-39.
    [21]Schmidt A, Azevedo CF, Cheng A, et al. Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction[J]. Circulation,2007, 115(15):2006-2014.
    [22]Bello D, Einhorn A, Kaushal R, et al. Cardiac magnetic resonance imaging:Infarct size is an independent predictor of mortality in patients with coronary artery disease[J]. Magn Reson Imaging,2011,29(1):50-56.
    [23]Kwong RY, Sattar H, Wu H, et al. Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction[J]. Circulation,2008,118(10):1011-1020.
    [24]Kim HW, Klem I, Shah DJ, et al. Unrecognized non-q-wave myocardial infarction:Prevalence and prognostic significance in patients with suspected coronary disease[J]. PLoS Med,2009, 6(4):e1000057.
    [25]Bingham SE, Hachamovitch R. Incremental prognostic significance of combined cardiac magnetic resonance imaging, adenosine stress perfusion, delayed enhancement, and left ventricular function over preimaging information for the prediction of adverse events[J]. Circulation,2011,123(14):1509-1518.
    [26]Gerber BL, Rousseau MF, Ahn SA, et al. Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction:Impact of revascularization therapy[J]. J Am Coll Cardiol,2012,59(9):825-835.
    [27]Ketonen M, Pajunen P, Koukkunen H, et al. Long-term prognosis after coronary artery bypass surgery[J]. Int J Cardiol,2008,124(1):72-79.
    [28]Likosky DS, Dacey LJ, Baribeau YR, et al. Long-term survival of the very elderly undergoing coronary artery bypass grafting[J]. Ann Thorac Surg,2008,85(4):1233-1237.
    [29]Krittayaphong R, Laksanabunsong P, Maneesai A, et al. Comparison of cardiovascular magnetic resonance of late gadolinium enhancement and diastolic wall thickness to predict recovery of left ventricular function after coronary artery bypass surgery[J]. J Cardiovasc Magn Reson,2008, 10(41.
    [30]Bengel FM, Higuchi T, Javadi MS, et al. Cardiac positron emission tomography[J]. J Am Coll Cardiol,2009,54(1):1-15.
    [31]Vogel R, Indermuhle A, Reinhardt J, et al. The quantification of absolute myocardial perfusion in humans by contrast echocardiography:Algorithm and validation[J]. J Am Coll Cardiol,2005, 45(5):754-762.
    [32]Baer FM, Voth E, Schneider CA, et al. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18f]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability [J]. Circulation,1995,91(4):1006-1015.
    [33]Klein C, Nekolla SG, Bengel FM, et al Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging:Comparison with positron emission tomography[J]. Circulation,2002,105(2):162-167.
    [34]Schvartzman PR, Srichai MB, Grimm RA, et al. Nonstress delayed-enhancement magnetic resonance imaging of the myocardium predicts improvement of function after revascularization for chronic ischemic heart disease with left ventricular dysfunction[J]. Am Heart J,2003, 146(3):535-541.
    [35]Kaandorp TA, Bax JJ, Schuijf JD, et al. Head-to-head comparison between contrast-enhanced magnetic resonance imaging and dobutamine magnetic resonance imaging in men with ischemic cardiomyopathy[J]. Am J Cardiol,2004,93(12):1461-1464.
    [36]Roes SD, Borleffs CJ, van der Geest RJ, et al. Infarct tissue heterogeneity assessed with contrast-enhanced mri predicts spontaneous ventricular arrhythmia in patients with ischemic cardiomyopathy and implantable cardioverter-defibrillator[J]. Circ Cardiovasc Imaging,2009, 2(3):183-190.
    [1]Mills NL, Everson CT, Hockmuth DR. Technical advances in the treatment of left ventricular aneurysm[J]. Ann Thorac Surg,1993,55(3):792-800.
    [2]Faxon DP, Ryan TJ, Davis KB, et al. Prognostic significance of angiographically documented left ventricular aneurysm from the coronary artery surgery study (cass)[J]. Am J Cardiol, 1982,50(1):157-164.
    [3]Sutton MG, Sharpe N. Left ventricular remodeling after myocardial infarction: Pathophysiology and therapy[J]. Circulation,2000,101(25):2981-2988.
    [4]Di Donato M, Toso A, Maioli M, et al. Intermediate survival and predictors of death after surgical ventricular restoration[J]. Semin Thorac Cardiovasc Surg,2001,13(4):468-475.
    [5]Athanasuleas CL, Buckberg GD, Stanley AW, et al. Surgical ventricular restoration in the treatment of congestive heart failure due to post-infarction ventricular dilation[J]. J Am Coll Cardiol,2004,44(7):1439-1445.
    [6]Jatene AD. Left ventricular aneurysmectomy. Resection or reconstruction[J]. J Thorac Cardiovasc Surg,1985,89(3)321-331.
    [7]Dor V, Saab M, Coste P, et al. Left ventricular aneurysm:A new surgical approach[J]. Thorac Cardiovasc Surg,1989,37(1):11-19.
    [8]Nardi P, Pellegrino A, Scafuri A, et al. Long-term outcomes after surgical ventricular restoration and coronary artery bypass grafting in patients with postinfarction left ventricular anterior aneurysm[J]. J Cardiovasc Med (Hagerstown),2010, 11(2):96-102.
    [9]Calafiore AM, Iaco AL, Abukoudair W, et al. Left ventricular surgical remodeling after the stich trial[J]. Thorac Cardiovasc Surg,2011,59(4):195-200.
    [10]Luciani GB, Montalbano G, Casali G, et al. Predicting long-term functional results after myocardial revascularization in ischemic cardiomyopathy[J]. J Thorac Cardiovasc Surg, 2000,120(3):478-489.
    [11]Menicanti L, Castelvecchio S, Ranucci M, et al. Surgical therapy for ischemic heart failure: Single-center experience with surgical anterior ventricular restoration[J]. J Thorac Cardiovasc Surg,2007,134(2):433-441.
    [12]Athanasuleas CL, Buckberg GD, Stanley AW, et al. Surgical ventricular restoration:The restore group experience[J]. Heart Fail Rev,2004,9(4):287-297.
    [13]Prucz RB, Weiss ES, Patel ND, et al. Coronary artery bypass grafting with or without surgical ventricular restoration:A comparison[J]. Ann Thorac Surg,2008,86(3):806-814; discussion 806-814.
    [14]Jones RH, Velazquez EJ, Michler RE, et al. Coronary bypass surgery with or without surgical ventricular reconstruction[J]. NEng1 JMed,2009,360(17):1705-1717.
    [15]Buckberg GD, Athanasuleas CL. The stich trial:Misguided conclusions[J]. J Thorac Cardiovasc Surg,2009,138(5):1060-1064 e1062.
    [16]Hundley WG, Bluemke DA, Finn JP, et al. Accf/acr/aha/nasci/scmr 2010 expert consensus document on cardiovascular magnetic resonance:A report of the american college of cardiology foundation task force on expert consensus documents [J]. Circulation,2010, 121(22):2462-2508.
    [17]Bingham SE, Hachamovitch R. Incremental prognostic significance of combined cardiac magnetic resonance imaging, adenosine stress perfusion, delayed enhancement, and left ventricular function over preimaging information for the prediction of adverse events[J]. Circulation,2011,123(14):1509-1518.
    [18]Yang T, Lu MJ, Sun HS, et al. Myocardial scar identified by magnetic resonance imaging can predict left ventricular functional improvement after coronary artery bypass grafting[J]. PLoS One,2013,8(12):e81991.
    [19]Conte JV. Surgical ventricular restoration:Technique and outcomes[J]. Congest Heart Fail, 2004,10(5)248-251.
    [20]Kelle S, Roes SD, Klein C, et al. Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging[J]. JAm Coll Cardiol,2009,54(19):1770-1777.
    [21]Roes SD, Kelle S, Kaandorp TA, et al. Comparison of myocardial infarct size assessed with contrast-enhanced magnetic resonance imaging and left ventricular function and volumes to predict mortality in patients with healed myocardial infarction[J]. Am J Cardiol,2007, 100(6):930-936.
    [22]Maceira AM, Prasad SK, Khan M, et al. Normalized left ventricular systolic and diastolic function by steady state free precession cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson,2006,8(3):417-426.
    [23]Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart:A statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the american heart association[J]. Circulation,2002,105(4)539-542.
    [24]Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction[J]. NEnglJMed,2000,343(20):1445-1453.
    [25]Di Donato M, Toso A, Dor V, et al. Surgical ventricular restoration improves mechanical inteaventricular dyssynchrony in ischemic cardiomyopathy[J]. Circulation,2004, 109(21)2536-2543.
    [26]Liu J, Liu Z, Zhao Q, et al. Role of surgical ventricular restoration in the treatment of ischemic cardiomyopathy[J]. Ann Thorac Surg,2013,95(4):1315-1321.
    [27]Marchenko A, Chernyavsky A, Efendiev V, et al. Results of coronary artery bypass grafting alone and combined with surgical ventricular reconstruction for ischemic heart failure[J]. Interact Cardiovasc Thorac Surg,2011,13(1):46-51.
    [28]Oh JK, Velazquez EJ, Menicanti L, et al. Influence of baseline left ventricular function on the clinical outcome of surgical ventricular reconstruction in patients with ischaemic cardiomyopathy[J]. Eur Heart J,2013,34(1):39-47.
    [29]Ascione R, Lim KH, Chamberlain M, et al. Early and late results of partial left ventriculectomy:Single center experience and review of the literature[J]. J Card Surg,2003, 18(3):190-196.
    [30]Bockeria LA, Gorodkov AJ, Dorofeev AV, et al. Left ventricular geometry reconstruction in ischemic cardiomyopathy patients with predominantly hypokinetic left ventricle[J]. Eur J Cardiothorac Surg,2006,29 Suppl 1(S251-258.
    [31]Cooley DA, Collins HA, Morris GC, Jr., et al. Ventricular aneurysm after myocardial infarction; surgical excision with use of temporary cardiopulmonary bypass[J]. J Am Med Assoc,1958,167(5):557-560.
    [32]Daneshmand MA, Milano CA. Surgical treatments for advanced heart failure[J]. Surg Clin North Am,2009,89(4):967-999, x.
    [33]Chen X, Qiu ZB, Xu M, et al. Surgery for left ventricular aneurysm after myocardial infarction:Techniques selection and results assessment[J]. Chin Med J (Engl),2012, 125(24):4373-4379.
    [34]Antunes MJ, Antunes PE. Left-ventricular aneurysms:From disease to repair[J]. Expert Rev Cardiovasc Ther,2005,3(2)285-294.
    [35]Yamaguchi A, Adachi H, Kawahito K, et al. Left ventricular reconstruction benefits patients with dilated ischemic cardiomyopathy[J]. Ann Thorac Surg,2005,79(2):456-461.
    [36]Di Donato M, Sabatier M, Toso A, et al. Regional myocardial performance of non-ischaemic zones remote from anterior wall left ventricular aneurysm. Effects of aneurysmectomy[J]. Eur Heart J,1995,16(9):1285-1292.
    [37]Shapira OM, Hunter CT, Anter E, et aL Coronary artery bypass grafting in patients with severe left ventricular dysfunction--early and mid-term outcomes[J]. J Card Surg,2006, 21(3)225-232.
    [38]Maxey TS, Reece TB, Ellman PI, et al. Coronary artery bypass with ventricular restoration is superior to coronary artery bypass alone in patients with ischemic cardiomyopathy[J]. J Thorac Cardiovasc Surg,2004,127(2):428-434.
    [39]Yamaguchi A, Ino T, Adachi H, et al. Left ventricular volume predicts postoperative course in patients with ischemic cardiomyopathy[J]. Ann Thorac Surg,1998,65(2):434-438.
    [40]Tolis GA, Jr., Korkolis DP, Kopf GS, et al. Revascularization alone (without mitral valve repair) suffices in patients with advanced ischemic cardiomyopathy and mild-to-moderate mitral regurgitation[J]. Ann Thorac Surg,2002,74(5):1476-1480.
    [41]Prucz RB, Weiss ES, Patel ND, et al. The impact of surgical ventricular restoration on mitral valve regurgitation[J]. Ann Thorac Surg,2008,86(3):726-734.
    [42]Hu S, Zheng Z, Fan H. Surgical ventricular reconstruction[J]. N Engl J Med,2009, 361(5)529; author reply 531-522
    [43]Dor V. Left ventricular reconstruction:The aim and the reality after twenty years[J]. J Thorac Cardiovasc Surg,2004,128(1):17-20.
    [44]Bellenger NG, Burgess MI, Ray SG, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable?[J]. Eur Heart J,2000, 21(16):1387-1396.
    [1]Hunt SA, Abraham WT, Chin MH, et al. 2009 focused update incorporated into the acc/aha 2005 guidelines for the diagnosis and management of heart failure in adults a report of the american college of cardiology foundation/american heart association task force on practice guidelines developed in collaboration with the international society for heart and lung transplantation[J]. J Am Coll Cardiol,2009,53(15):el-e90.
    [2]Maclntyre K, Capewell S, Stewart S, et al. Evidence of improving prognosis in heart failure: Trends in case fatality in 66 547 patients hospitalized between 1986 and 1995[J]. Circulation, 2000,102(10):1126-1131.
    [3]Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics-2012 update:A report from the american heart association[J]. Circulation,2012,125(1):e2-e220.
    [4]Velagaleti RS, Pencina MJ, Murabito JM, et aL Long-term trends in the incidence of heart failure after myocardial infarction[J]. Circulation,2008,118(20):2057-2062.
    [5]Levy D, Kenchaiah S, Larson MG, et al. Long-term trends in the incidence of and survival with heart faflure[J]. NEngl JMed,2002,347(18):1397-1402.
    [6]Packer M, Coats AJ, Fowler MB, et al. Effect of carvedilol on survival in severe chronic heart failure[J]. NEngl JMed,2001,344(22):1651-1658.
    [7]Veenhuyzen GD, Singh SN, McAreavey D, et al. Prior coronary artery bypass surgery and risk of death among patients with ischemic left ventricular dysfunction[J]. Circulation,2001, 104(13):1489-1493.
    [8]Allman KC, Shaw LJ, Hachamovitch R, et al. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction:Ameta-analysis[J}. JAm Coll Cardiol,2002,39(7):1151-1158.
    [9]Lytle BW. The role of coronary revascularization in the treatment of ischemic cardiomyopathy[J]. Ann Thorac Surg,2003,75(6 Supp1):S2-5.
    [10]Bittner HB, Savitt MA Off-pump coronary artery bypass grafting decreases morbidity and mortality in a selected group of high-risk patients[J]. Ann Thorac Surg,2002,74(1):115-118.
    [11]Marui A, Okabayashi H, Komiya T, etal. Benefits of off-pump coronary artery bypass grafting in high-risk patients [J]. Circulation,2012,126(11 Suppl 1):S151-157.
    [12]Lamy A, Devereaux PJ, Prabhakaran D, et al. Off-pump or on-pump coronary-artery bypass grafting at 30 days[J]. NEngl JMed,2012,366(16):1489-1497.
    [13]Youn YN, Chang BC, Hong YS, et al. Early and mid-term impacts of cardiopulmonary bypass on coronary artery bypass grafting in patients with poor left ventricular dysfunction:A propensity score analysis[J]. Circ J,2007,71(9):1387-1394.
    [14]Elefteriades J, Edwards R Coronary bypass in left heart failure[J]. Semin Thorac Cardiovasc Surg,2002,14(2):125-132.
    [15]Luciani GB, Montalbano G, Casali G, et al. Predicting long-term functional results after myocardial revascularization in ischemic cardiomyopathy[J]. J Thorac Cardiovasc Surg,2000, 120(3):478-489.
    [16]Vanoverschelde JL, Depre C, Gerber BL, et al. Time course of functional recovery after coronary artery bypass graft surgery in patients with chronic left ventricular ischemic dysfunction[J]. Am J Cardiol,2000,85(12):1432-1439.
    [17]Louie HW, Laks H, Milgalter E, et al. Ischemic cardiomyopathy. Criteria for coronary revascularization and cardiac transplantation[J]. Circulation,1991,84(5 Suppl):Ⅲ290-295.
    [18]Yamaguchi A, Ino T, Adachi H, et al. Left ventricular volume predicts postoperative course in patients with ischemic cardiomyopathy[J]. Ann Thorac Surg,1998,65(2):434-438.
    [19]Bolognese L, Neskovic AN, Parodi G, et al. Left ventricular remodeling after primary coronary angioplasty:Patterns of left ventricular dilation and long-term prognostic implications[J]. Circulation,2002,106(18)2351-2357.
    [20]Athanasuleas CL, Buckberg GD, Stanley AW, et al. Surgical ventricular restoration in the treatment of congestive heart failure due to post-infarction ventricular dilation[J]. J Am Coll Cardiol,2004,44(7):1439-1445.
    [21]Dahlberg PS, Orszulak TA, Mullany CJ, et al. Late outcome of mitral valve surgery for patients with coronary artery disease[J]. Ann Thorac Surg,2003,76(5):1539-1487; discussion 1547-1538.
    [22]Buckberg G, Athanasuleas C, Conte J. Surgical ventricular restoration for the treatment of heart failure[J].Nat Rev Cardiol,2012,9(12):703-716.
    [23]Pfeffer MA. Left ventricular remodeling following myocardial infarction[J]. Cardiologia,1994, 39(12 Supp11):25-26.
    [24]Swynghedauw B. Molecular mechanisms of myocardial remodeling[J]. Physiol Rev,1999, 79(1)215-262.
    [25]Cooley DA, Collins HA, Morris GC, Jr., et al.Ventricular aneurysm after myocardial infarction; surgical excision with use of temporary cardiopulmonary bypass[J]. J Am Med Assoc,1958, 167(5)557-560.
    [26]Jatene AD. Left ventricular aneurysmectomy. Resection or reconstruction[J]. J Thorac Cardiovasc Surg,1985,89(3)321-331.
    [27]Batista RJ, Santos JL, Takeshita N, et al. Partial left ventriculectomy to improve left ventricular function in end-stage heart disease[J]. J Card Surg,1996, 11(2):96-97; discussion 98.
    [28]Carpentier A, Chachques JC, Acar C, et al. Dynamic cardiomyoplasty at seven years[J]. JThorac Cardiovasc Surg,1993,106(1):42-52; discussion 52-44.
    [29]McCarthy PM. New surgical options for the failing heart[J]. J Heart Valve Dis,1999, 8(5):472-475.
    [30]Dor V, Saab M, Coste P, et al. Left ventricular aneurysm:A new surgical approach[J]. Thorac Cardiovasc Surg,1989,37(1):11-19.
    [31]Cooley DA, Frazier OH, Duncan JM, et al. Intracavitary repair of ventricular aneurysm and regional dyskinesia[J]. Ann Surg,1992,215(5):417-423; discussion 423-414.
    [32]Dor V, Sabatier M, Montiglio F, et al. Endoventricular patch reconstruction of ischemic failing ventricle. A single center with 20 years experience. Advantages of magnetic resonance imaging assessment[J]. Heart Fail Rev,2004,9(4)269-286.
    [33]Isomura T, Horii T, Suma H, et al. Septal anterior ventricular exclusion operation (pacopexy) for ischemic dilated cardiomyopathy:Treat form not disease[J]. Eur J Candiothorac Surg,2006,29 Supp11(S245-250.
    [34]Isomura T, Hoshino J, Fukada Y, et al.Volume reduction rate by surgical ventricular restoration determines late outcome in ischaemic cardiomyopathy[J]. Eur J Heart Fail,2011, 13(4):423-431.
    [35]White HD, Norris RM, Brown MA, et al. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction[J]. Circulation,1987, 76(1):44-51.
    [36]Bellenger NG, Burgess MI, Ray SG, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance; are they interchangeable?[J]. Eur Heart J,2000,21(16):1387-1396.
    [37]Mahrholdt H, Wagner A, Parker M, et al. Relationship of contractile function to transmural extent of infarction in patients with chronic coronary artery disease[J]. J Am Coll Cardiol,2003, 42(3)505-512.
    [38]Sun XG, Hansen JE, Stringer WW. Oxygen uptake efficiency plateau best predicts early death in heart failure[J]. Chest,2012,141(5):1284-1294.
    [39]Parrino PE, Kron IL. The role of left ventricular reconstruction for cardiogenic shock[J]. Semin Thorac Cardiovasc Surg,2001,13(4):476-479.
    [40]Dor V, Civaia F, Alexandrescu C, et aL Favorable effects of left ventricular reconstruction in patients excluded from the surgical treatments for ischemic heart failure (stich) trial[J]. J Thorac Cardiovasc Surg,2011,141(4):905-916,916 e901-904.
    [41]Di Donato M, Sabatier M, Toso A, et al. Regional myocardial performance of non-ischaemic zones remote from anterior wall left ventricular aneurysm. Effects of aneurysmectomy[J]. Eur Heart J,1995,16(9):1285-1292.
    [42]Oh JK,Velazquez EJ, Menicanti L, et al. Influence of baseline left ventricular function on the clinical outcome of surgical ventricular reconstruction in patients with ischaemic cardiomyopathy[J]. Eur Heart J,2013,34(1)39-47.
    [43]Di Donato M, Castelvecchio S, Menicanti L. End-systolic volume following surgical ventricular reconstruction impacts survival in patients with ischaemic dilated cardiomyopathy[J]. Eur J Heart Fail,2010,12(4):375-381.
    [44]Michler RE, Rouleau JL, Al-Khalidi HR, et al. Insights from the stich trial:Change in left ventricular size after coronary artery bypass grafting with and without surgical ventricular reconstruction[J]. JThorac Candiovasc Surg,2013,146(5):1139-1145 e1136.
    [45]Suma H, Tanabe H, Uejima T, et al. Surgical ventricular restoration combined with mitral valve procedure for endstage ischemic cardiomyopathy[J]. Eur J Cardiothorac Surg,2009, 36(2)280-284; discussion 284-285.
    [46]Dor V, Civaia F, Alexandrescu C, et al. The post-myocardial infarction scarred ventricle and congestive heart failure:The preeminence of magnetic resonance imaging for preoperative, intraoperative, and postoperative assessment [J]. J Thorac Cardiovasc Surg,2008, 136(6):1405-1412.
    [47]ten Brinke EA, Klautz RJ, Tulner SA, et al. Long-term effects of surgical ventricular restoration with additional restrictive mitral annuloplasty and/or coronary artery bypass grafting on left ventricular function:Six-month follow-up by pressure-volume loops[J]. J Thorac Cardiovasc Surg,2010,140(6):1338-1344.
    [48]O'Neill JO, Starling RC, McCarthy PM, et al. The impact of left ventricular reconstruction on survival in patients with ischemic cardiomyopathy[J]. Eur J Cardiothorac Surg,2006, 30(5):753-759.
    [49]Skelley NW, Allen JG, Arnaoutakis GJ, et al. The impact of volume reduction on early and long-term outcomes in surgical ventricular restoration for severe heart failure[J]. Ann Thorac Surg,2011,91(1):104-111; discussion 111-102.
    [50]Liu J, Liu Z, Zhao Q, et al. Role of surgical ventricular restoration in the treatment of ischemic cardiomyopathy[J]. Ann Thorac Surg,2013,95(4):1315-1321.
    [51]Prucz RB, Weiss ES, Patel ND, et al. Coronary artery bypass grafting with or without surgical ventricular restoration:A comparison[J]. Ann Thorac Surg,2008,86(3):806-814; discussion 806-814.
    [52]Yamaguchi A, Adachi H, Kawahfto K, et al. Left ventricular reconstruction benefits patients with dilated ischemic cardiomyopathy[J]. Ann Thorac Surg,2005,79(2):456-461.
    [53]Jones RH,Velazquez EJ, Michler RE, et al. Coronary bypass surgery with or without surgical ventricular reconstruction[J]. NEngl JMed,2009,360(17):1705-1717.
    [54]Buckberg GD, Athanasuleas CL. The stich trial:Misguided conclusions[J]. J Thorac Cardiovasc Surg,2009,138(5):1060-1064 e1062.
    [55]Zembala M, Michler RE, Rynkiewicz A, et al. Clinical characteristics of patients undergoing surgical ventricular reconstruction by choice and by randomization[J]. J Am Coll Cardiol,2010, 56(6):499-507.
    [56]Bonow RO, Maurer G, Lee KL, et al. Myocardial viability and survival in ischemic left ventricular dysfunction[J]. NEngl JMed,2011,364(17):1617-1625.
    [57]Asrani NS, Chareonthaitawee P, Pelikka PA Viability by mri or pet would not have changed the results of the stich trial[J]. Prog Candiovasc Dis,2013,55(5):494-497.
    [58]Oh JK, Pellikka PA, Panza JA, et al. Core lab analysis of baseline echocardiographic studies in the stich trial and recommendation for use of echocardiography in future clinical trials[J]. J Am Soc Echocardiogr,2012,25(3):327-336.
    [59]Detaint D, Maalouf J, Tribouilloy C, et al. Congestive heart failure complicating aortic regurgitation with medical and surgical management:A prospective study of traditional and quantitative echocardiographic markers[J]. J Thorac Cardiovasc Surg,2008,136(6):1549-1557.
    [60]Carabello BA The changing unnatural history of valvular regurgitation[J]. Ann Thorac Surg, 1992,53(2):191-199.
    [61]Wijns W, Kolh P, Danchin N, et al. Guidelines on myocardial revascularization[J]. Eur Heart J, 2010,31(20)2501-2555.
    [62]Alfieri O, La Canna G, Giubbini R, et al. Recovery of myocardial function. The ultimate target of coronary revascularization[J]. Eur J Cardiothorac Surg,1993,7(6):325-330; discussion 330.
    [63]Zamorano J, Delgado J, Ahneria C, et al. Reason for discrepancies in identifying myocardial viability by thallium-201 redistribution, magnetic resonance imaging, and dobutamine echocardiography[J]. Am J Cardiol,2002,90(5):455-459.
    [64]Wagner A, Mahrholdt H, Holly TA, et al. Contrast-enhanced mri and routine single photon emission computed tomography (spect) perfusion imaging for detection of subendocardial myocardial infarcts:An imaging study[J]. Lancet,2003,361(9355):374-379.
    [65]Klein C, Nekolla SG, Bengel FM, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging:Comparison with positron emission tomography[J]. Circulation,2002,105(2):162-167.
    [66]Gerber BL, Rousseau MF, Ahn SA, et aL Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction:Impact of revascularization therapy[J]. JAm Coll Cardiol,2012,59(9):825-835.
    [67]Gerber BL, Garot J, Bluemke DA, et al. Accuracy of contrast-enhanced magnetic resonance imaging in predicting improvement of regional myocardial function in patients after acute myocardial infarction[J]. Circulation,2002,106(9):1083-1089.
    [68]Pegg TJ, Selvanayagam JB, Jennifer J, et al. Prediction of global left ventricular functional recovery in patients with heart failure undergoing surgical revascularisation, based on late gadolinium enhancement cardiovascular magnetic resonance[J]. J Cardiovasc Magn Reson,2010, 12(56.
    [69]Bello D, Einhorn A, Kaushal R, et al. Cardiac magnetic resonance imaging:Infarct size is an independent predictor of mortality in patients with coronary artery disease[J]. Magn Reson Imaging,2011,29(1)50-56.
    [70]Bingham SE, Hachamovitch R. Incremental prognostic significance of combined cardiac magnetic resonance imaging, adenosine stress perfusion, delayed enhancement, and left ventricular function over preimaging information for the prediction of adverse events[J]. Circulation,2011,123(14):1509-1518.
    [71]Maybaum S, Mancini D, Xydas S, et al. Cardiac improvement during mechanical circulatory support:A prospective multicenter study of the Ivad working group[J]. Circulation,2007, 115(19):2497-2505.
    [72]Levin HR, Oz MC, Chen JM, et al. Reversal of chronic ventricular dilation in patients with end-stage cardiomyopathy by prolonged mechanical unloading[J]. Circulation,1995, 91(11):2717-2720.
    [73]Margulies KR. Reversal mechanisms of left ventricular remodeling:Lessons from left ventricular assist device experiments [J]. J Card Fail,2002,8(6 Suppl):S500-505.
    [74]Yacoub MH. A novel strategy to maximize the efficacy of left ventricular assist devices as a bridge to recovery[J]. Eur Heart J,2001,22(7):534-540.
    [75]Suma H, Isomura T, Horii T, et al. Role of site selection for left ventriculoplasty to treat idiopathic dilated cardiomyopathy[J]. Heart Fail Rev,2004,9(4):329-336.
    [76]Copeland JG,3rd, Smith RG, Arabia FA, et al. Comparison of the cardiowest total artificial heart, the novacor left ventricular assist system and the thoratec ventricular assist system in bridge to transplantation[J]. Ann Thorac Surg,2001,71(3 Suppl):S92-97; discussion S114-115.
    [77]Malliaras K, Marban E. Cardiac cell therapy:Where we've been, where we are, and where we should be headed[J]. BrMed Bull,2011,98(161-185.
    [78]Hu S, Liu S, Zheng Z, et al. Isolated coronary artery bypass graft combined with bone marrow mononuclear cells delivered through a graft vessel for patients with previous myocardial infarction and chronic heart failure:A single-center, randomized, double-blind, placebo-controlled clinical trial[J]. J Am Coll Cardiol,2011,57(24):2409-2415.
    [79]Ott HC, Matthiesen TS, Goh SK, et al. Perfusion-decellularized matrix:Using nature's platform to engineer a bioartificial heart[J]. Nat Med,2008,14(2)213-221.
    [80]Beltrami AP, Barlucchi L, Torella D, et al. Adult cardiac stem cells are multipotent and support myocardial regeneration[J]. Cell,2003,114(6):763-776.
    [81]Chugh AR, Beache GM, Loughran JH, et al. Administration of cardiac stem cells in patients with ischemic cardiomyopathy:The scipio trial:Surgical aspects and interim analysis of myocardial function and viability by magnetic resonance[J]. Circulation,2012,126(11 Supp11):S54-64.
    [82]St John Sutton MG, Plappert T, Abraham WT, et al. Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure[J]. Circulation,2003, 107(15):1985-1990.
    [83]Cleland JG, Daubert JC, Erdmann E, et al. The effect of cardiac resynchronization on morbidity and mortality in heart failure[J]. NEngl JMed,2005,352(15):1539-1549.
    [84]Barnard CN. The operation. A human cardiac transplant:An interim report of a successful operation performed at groote schuur hospital. cape town[J]. S Afr Med J,1967, 41(48):1271-1274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700