特种形貌超细镍晶材料的制备及其电磁特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为一种重要的多功能磁性金属材料,具有特种形貌的超细镍晶材料在多个领域具有广阔的应用前景,其在电磁屏蔽和吸波研究领域的重要性更是不言而喻。正因为如此,条件温和、操作简单、成本低廉、环境友好且易于实现形貌和结构调控的超细镍晶材料制备方法具有重要的理论和应用价值。为此,本论文开展了以下几个方面的研究工作:
     (1)以蒸馏水为溶剂,利用快捷、温和的液相还原法制备了较大量的超细镍粉,将得到的超细镍粉作为填料制备了复合材料,考察了复合材料的电磁屏蔽和吸波性能。结果表明,所制备的超细镍粉在电磁屏蔽和吸波领域具有很好的应用前景。超细镍粉含量为33.3wt%的树脂基复合材料在130 MHz~1.5 GHz测试频段内的电磁屏蔽性能均高于22 dB;而厚度为2 mm的超细镍粉/石蜡复合材料在7GHz附近的反射率绝对值高达27 dB。与此同时,在具体应用中,作为填料的超细镍粉在复合材料中的分散状态对电磁屏蔽性能具有至关重要的作用。
     (2)在上述工作基础上,研究了搅拌条件下外加磁场对超细镍粉形貌和磁性能的影响;并将在蒸馏水体系中得到的超细镍粉作为填料制备复合材料,评价了复合材料的电磁屏蔽性能和吸波性能。结果表明,同无外加磁场条件下得到的超细镍粉复合材料相比,在外加磁场条件下得到的超细镍粉复合材料的电磁屏蔽性能较优,而吸波性能变差。
     (3)利用金属镍的塑性性质,利用湿法研磨法由微米镍粉得到了片状镍粉,研究了相关研磨参数对片状镍粉形貌和微结构的影响。将得到的片状镍粉作为填料用于制备复合材料,测定了复合材料的电磁参数,并评价了其电磁屏蔽性能。结果表明,片状镍粉复合材料的电磁屏蔽性能不如微米镍粉复合材料,而其吸波性能优于微米镍粉复合材料;厚度为5 mm的片状镍粉/石蜡复合材料的最小反射率小于-27 dB。
     (4)在常压下,采用水合肼还原镍盐的方法成功地制备了长度约为5μm,直径约为250 nm的超细镍链状结构;利用透射电子显微镜(TEM)首次观察了超细镍链状结构的反应过程,并进而分析了一维链状结构在自生磁场诱导作用下的形成机理。所建立的制备方法可望拓展用于其它种类的磁性纳米金属材料的形貌可控制备,具有较为广阔的应用前景。
     (5)在常压下,利用磁场诱导作用,在不同的磁场强度条件下制备了长度从几个微米到几百微米,直径约250 nm的超细镍纳米晶纤维。系统研究了反应条件对产物形貌及磁性能的影响,分别测定了超细镍纳米晶纤维复合材料的电磁参数和电磁屏蔽性能。结果表明,所制备的超细镍纳米晶纤维是一种很有潜力的电磁屏蔽导电填料。
As a kind of important multi-functional magnetic metallic materials,ultrafine nickel nanocrystallites with special morphologies have huge potentials in many fields.In particular,they are of extraordinary significance in the theoretical and experimental investigations of electromagnetic shielding and electromagnetic wave absorption. Needless to say,the study of the controllable synthesis of ultrafine nickel nanocrystallites with special morphologies and the establishment of simple,facile, cost-effective,and environment-friendly synthetic routes are of significant theoretical and practical values.Therefore,the following researches have been conducted and the main conclusions are drawn as below:
     (1)Ultrafine Ni particles were synthesized via a facile and mild chemical route in distilled water.The resulting ultrafine Ni particles were used as a kind of conductive fillers to fabricate conductive composites.The shielding of electromagnetic interference (EMI)and electromagnetic wave absorption behaviors of the composites were evaluated. The results indicated that the ultrafine Ni particles might be potential fillers for shielding of electromagnetic interference and electromagnetic wave absorption as well. The resin-based conductive composite containing 33.3wt%of the ultrafine Ni particles recorded a shielding effectiveness(SE)value as much as above 22 dB within a frequency range of 130 MHz to 1.5 GHz,while the ultrafine Ni particles/wax composite with a thickness of 2 mm had a reflection loss R(dB)of 27 dB at about 7 GHz. Moreover,the distribution state of the ultrafine Ni particles in the composites was found to play a key role in determining the properties in terms of the practical application of the ultrafine nickel particles as fillers for shielding of electromagnetic waves.
     (2)Based on the above-mentioned work,the effect of an external magnetic field on the morphologies and magnetic properties of the targeted ultrafine Ni particles was investigated under stirring condition.At the same time,the electromagnetic shielding effectiveness and the electromagnetic characteristics of the composites filled with ultrafine nickel particles obtained from distilled water were measured.The results showed that the composites filled with nickel particles obtained in the presence of an external magnetic field showed better EMI shielding effectiveness than the composites filled with nickel particles obtained in the absence of an external magnetic field,while the former had poorer electromagnetic wave absorption effectiveness than the letter.
     (3)Flake-like Ni powders were fabricated by wet sand-milling of micro-sized nickel powders and the effect of related milling factors on the morphology and microstructure of the Ni powders was studied.The resulting flake Ni powders were used as a kind of conductive fillers to fabricate conductive composites.It was found that the composites filled with flake-like Ni powders had a lower EMI shielding effectiveness than the composites filled with micro-sized nickel powders.Moreover,the composites filled with flake-like Ni powders had better electromagnetic wave absorption effectiveness than the composites filled with micro-sized nickel powders, and the flake-like Ni powders/wax composites with a thickness of 5 mm registered a reflection loss R(dB)of-27 dB at about 2 GHz.
     (4)Ultrafine chain-like Ni assemblies with a length of about 5μm and an average diameter of about 250 nm were successfully prepared by the reduction of Ni salts with hydrazine hydrate under normal pressure.Moreover,the growth process of the Ni chains was investigated for the first time.Based on the experimental results,the self-assembly mechanisms of the Ni nanocrystallites induced by self-generated magnetic field were investigated for the first time,which could be used as a new general method for the preparation of other magnetic metal nanostructures with a controllable morphologies,so as to fully exploit their peculiar properties and unique applications.
     (5)Under normal pressure,untrafine nanocrystallite Ni fibers with lengths from several microns up to several hundreds of microns and an average diameter of about 250 nm were fabricated in the presence of external magnetic fields with different intensities. The effects of the reaction conditions on the microstructures and magnetic properties of the Ni fibers target products were systematically investigated.Moreover,the electromagnetic shielding effectiveness and electromagnetic characteristics of the Ni fiber reinforced composites were measured.The results showed that the Ni fibers might be potential conductive fillers for shielding of electromagnetic interference(EMI).
引文
1 崔升,沈晓冬,袁林生,等.电磁屏蔽和吸波材料的研究进展.电子元件与材料,2005,24(1):57-61.
    2 刘顺华,郭辉进.电磁屏蔽与吸波材料.功能材料与器件学报,2002,(3):212-217.
    3 K.B.Cheng,S.Ramakrishna,K.C.Lee.Electromagnetic shielding effectiveness of copper/glass fiber knitted fabric reinforced polypropylene composites.Composites A,2000,31:1039-1045;
    C.L.Su,J.T.Chern,Effect of Stainless Steel-Containing Fabrics on Electromagnetic Shielding Effectiveness.Textile.Res.J,,2004,74(1):51-54.
    4 杨士元.电磁屏蔽理论与实践.北京:国防工业出版社,2006:9-10.
    5 沙裵.信息技术设备的电磁辐射及其抑制.安全与电磁兼容,2000,(3):8-12.
    6 管登高.防电磁信息泄密宽频带电磁波屏蔽集成复合材料研究.四川大学博士学位论文,2004.
    7 Y.P.Duan,S.H.Liu,G.Q.Wang,et al.Effect of a Coupling Agent on the Electromagnetic and Mechanical Properties of Carbon Black/Acrylonitrile-Butadiene-Styrene Composites.J.Appl.Polym.Sci.,2006,102:1839-1843.
    8 N.C.Das,T.K.Chaki,D.Khastgir,et al.Electromagnetic Interference Shielding Effectiveness of Ethylene Vinyl Acetate Based Conductive Composites Containing Carbon Fillers.J.Appl.Polym.Sci.,2001,80:1601-1608.
    9 Y.P.Duan,S.H.Liu,H.T.Guan.Investigation of Electromagnetic Characteristics of Polyaniline Composites.J.Compos.Mater.,2006,40:1093-1104.
    10 杨士元.电磁屏蔽理论与实践.北京:国防工业出版社,2006:126-128.
    11 杨士元.电磁屏蔽理论与实践.北京:国防工业出版社,2006:146-148.
    12 刘顺华,刘军民,董星龙,等.电磁波屏蔽及吸波材料.北京:北京工业出版社,2007.
    13 周年,彭万华.从诺贝尔化学奖看20世纪化学的发展--纪念诺贝尔奖颁发100周年.化学通报,2001,(11):735-742.
    14 马利,冯利军,甘孟瑜,等.复合酸掺杂导电聚苯胺的合成及性能.应用化学,2008,25(2): 142-146.
    15 N.C.Das,D.Khastgir,T.K.Chaki,et al.Electromagnetic interference shielding effectiveness of carbon black and carbon fibre filled EVA and NR based composites.Composites A,2000,31:1069-1081.
    16 N.C.Das,T.K.Chaki,D.Khastgir,et al.Electromagnetic Interference Shielding Effectiveness of Conductive Carbon Black and Carbon Fiber-Filled Composites Based on Rubber and Rubber Blends.Adv.Polym.Tech.,2001,20:226-236.
    17 H.M.Kim,K.Kim,C.Y.Lee,et al.Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst J.Appl.Phys.Lett.2004,84:589-591.
    18 M.Gilbert,B.Kandasubramanian.Nickel coated mica for conductive compounds.Macromol.Symp.,2003,194:219-224.
    19 E.G.Han,E.A.Kim,K.W.Oh.Electromagnetic interference shielding effectiveness of electroless Cu-plated PET fabrics.Synthetic.Met.,2001,123:469-476.
    20 Y.P.Mamunya,V.V.Davydenko,P.Pissis,et al.Electrical and thermal conductivity of polymers filled with metal powders.Eur.Polym.J.,2002,38:1887-1897.
    21 何益艳,吴雪艳,杜仕国.复合型导电塑料中导电填料的开发现状与发展.塑料科技 2004,3:50-53.
    22 路庆华,Hirai Keizou.新型导电胶的研究(Ⅱ):耐银迁移导电胶的研究.功能材料,1998,29(4):439-441.
    23 高保娇,高建峰,蒋红梅,等.微米级铜-银合金粉镀层结构及其抗氧化性.物理化学学报,2000,16(4):366-369.
    24 王文福.导电金属填料的制备方法.世界橡胶工业,2001,28(6):9-11.
    25 林硕,吴年强,李志章.铜系复合涂料导电稳定性的研究.功能材料,1999,30(3):288-289.
    26 邓毅.导电碳黑在塑料中的应用.中国塑料,2001,15(4):6-9.
    27 陈耀庭,周明义,王国全,等.炭纤维/聚合物复合材料的导电性及电磁屏蔽性能的研究.塑 料科技,1997,(6):4-7.
    28 刘光炳,梁国明.关于浅色导电颜料的研究.重庆师范学院学报,1998,15(1):33-35.
    29 王晓丽,杜仕国,王胜岩.防静电涂料中导电填料的应用.现代涂料与涂装,2002,(2):29-33.
    30 刘红伟.浅色导电填料.化工新型材料,1996,6:33-35.
    31 蒋红梅,王久芬,高保娇.复合型导电高分子材料研究进展.华北工学院学报,1998,19(3):231-234.
    32 何益艳,杜仕国,姜志博.电磁屏蔽导电塑料的研究进展.材料导报,2003,17(2):49-51.
    33 张晓宁.三明治型屏蔽材料的制备与性能.材料研究学报,2002,(5):536-540.
    34 边蕴静.电磁波屏蔽涂料.化工新型材料,1997,(7):17-19.
    35 施东梅.电磁屏蔽铜系复合导电涂料实验研究.军械工程学院学报,2001,(4):71-73.
    36 D.D.L.Chung.Electromagnetic interference shielding effectiveness of carbon materials.Carbon,2001,(39):279-285.
    37 赵灵智,胡社军,李伟善,等.吸波材料的吸波原理及其研究进展.现代防御技术,2007,35(1):37-41,58.
    38 吴明忠,赵振声,何华辉.隐身与反隐身技术的现状和发展.上海航天,1996,(3):36-42.
    39 高正娟,曹茂盛,朱静.复合吸波材料等效电磁参数计算的研究进展.宇航材料工艺,2004,4:12-15.
    40 范学伟,姚敏琪,舒扬,等.2 GHz铁氧体电磁波吸收材料的研究.宇航材料工艺,2004,3:30-33.
    41 张林昌.发展电磁兼容--历史的必然.http://www.emcchina.org.
    42 吴明忠.雷达吸波材料的现状和发展趋势.磁性材料及器件,1997,28(2):26-30.
    43 毕德显.电磁场理论.北京:电子工业出版社,1985:450-454.
    44 张拴勤,石云龙,黄长庚,等.雷达波吸收剂的包覆改性设计.物理学报,2007,56(3):1231-1237.
    45 秦柏,秦汝虎,金崇君.“广义匹配规律”的论证及在隐身材料中的应用.哈尔滨工业大学学 报,1997,29(4):115-117.
    46 于美,刘建华,李松梅,等.Ni纳米线的制备及其微波吸收电磁性能.金属学报,2007,43(1)99-102.
    47 杨志民,毛昌辉,杨剑,等.低频(3 GHz)微波吸收材料电磁参数匹配特性的研究.稀有金属,2004,28(6):1006-1009.
    48 杨志民,毛昌辉,杜军,等.Fe_4N电磁波吸收剂的合成及其吸波性能的研究.稀有金属,2002,26(2):103-107.
    49 谢伍瑶,江建军,邓联文,等.Fe_x(Co_yNi_(1-y))_(1-x)微细磁粉微波电磁参数的影响因素.磁性材料及器件,2002,10:16-19.
    50 万梅香,李素珍,李军朝,等.新型导电聚合物微波吸收剂的研究.宇航材料工艺,1989,28(2):4-5.
    51 马金库,周馨我,倪基华.可溶性导电高分子的毫米波吸收性能研究.功能材料,1994,25(4):306-309.
    52 郑国禹.导电高分子在隐身材料中的应用.工程塑料应用,2007,35(2):70-73.
    53 沈国柱,徐政,蔡瑞琦.基于铁氧体和炭纤维的双层复合材料吸波性能研究.玻璃钢/复合材料,2007,1:19-23.
    54 孟建华,杨桂琴,严乐美,等.吸波材料研究进展.磁性材料及器件,2004,35(4):11-14.
    55 石敏先,黄志雄.新型吸波材料的研究进展.材料导报,2007,21(3):36-39.
    56 何雄辉,杨剑瑜.金属超细颗粒的微波吸收特性.西安科技学院学报,2000,20(3):257-259;
    傅晓玲.金属磁性超细粉吸波性能研究.山西师大学报(自然科学版),1999,13(1):28-32.
    57 董星龙,钟武波,左芳,等.镍/碳复合纳米颗粒的制备及电磁性能研究.功能材料,2005,36(4):519-521;
    何雄辉,杨剑瑜.金属超细颗粒的微波吸收特性,西安科技学院学报,2000,20(3):257-259.
    58 孙晶晶,李建保,张波,等.陶瓷吸波材料的研究现状.材料工程,2003,2:43-47.
    59 邢丽英.隐身材料.北京:化学工业出版社,2004.
    60 S.P.Ruan,B.K.Xun,H.Suo.Microwave absorpitive behavior of ZnCo-substituted W-type Ba hexaferrite nanocrystalline composites material.J.Magn.Magn.Mater.,2000,212(1-2):175-177.
    61 朱生宾,李永清.磁性多层膜微波吸收剂的制备.航空材料学报,2005,25(1):36-39.
    62 李灿权,张雪峰,王威娜,等.纳米Ni粉的表面改性及电磁波吸收性能研究.材料保护,2007,40(3):11-13.
    63 郑长进,李家俊,赵乃勤,等.吸波材料的设计和应用前景.宇航材料工艺,2004,5:1-5.
    64 焦桓,罗发,周万城.纳米吸波材料研究与发展趋势.宇航材料工艺,2001,31(5):9-11.
    65 娄明连,阚涛.复合磁介质吸波材料.磁性材料及器件,2002,33(5):13-15.
    66 王国强,刘祖黎,邹勇,等.复合轻型吸波涂层电磁参数及吸波性能的研究.华中理工大学学报,2000,28(7):111-113.
    67 孟建华,杨桂琴,严乐美,等.吸波材料研究进展.磁性材料及器件,2004,8:11-14.
    68 王军,陈革,宋永才.以异型碳化硅纤维为吸收剂的结构吸波材料设计.材料工程,2000,(7):27-29.
    69 周永江,程海峰,曹义,等.单层雷达吸波材料研究.材料工程,2006,4:8-11.
    70 邢丽英,刘俊能.电阻渐变型结构吸波材料的研究与发展.航空材料学报,2000,20(3):187-191.
    71 A.N.Yusoff,M.H.Abdullah.Microwave electromagnetic and absorption properities of some LiZn ferfites.J.Magn.Magn.Mater.,2004,269:271-180.
    72 莫美芳.国外隐身飞机和隐身材料的发展.隐身技术发展动态.隐身技术,1992,14(1):1-5.
    73 Y.D.Deng,X.Liu,B.Shen,et al.Preparation and microwave characterization of submicrometer-sized hollow nickel spheres.J.Magn.Magn.Mater.,2006,303:181-184.
    74 C.F.Goh,H.Yu,S.S.Yong,et al.The effect of annealing on the morphologies and conductivities of sub-micrometer sized nickel particles used for electrically conductive adhesive.Thin Solid Films,2006,504:416-420.
    75 H.H.Lee,K.S.Chou,Z.W.Shih.Effect of nano-sized silver particles on the resistivity of polymeric conductive adhesives.Int.J.Adhes.Adhes.,2005,25:437-441.
    76.X.R Shui,D.D.L.Chung.Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness.J.Electron.Mater.,1997,26,928-934.
    77 叶红齐,苏周,周永华.片状金属粉体在颜料及电子浆料中的应用.中国粉体技术,2004,10(1):34-37,41.
    78 杨毅,刘宏英,姜炜等.微纳米片状金属粉制备设备.微纳电子技术,2005,10:477-480.
    79 张柏声.关于导电涂料导电性能的讨论.涂料工业,1996,(1):31-364.
    80 葛副鼎,朱静,陈利民.吸收剂颗粒形状对吸波材料性能的影响.宇航材料工艺,1996,(5):42-49.
    81 谭松庭,章明秋,曾汉民.屏蔽EMI用导电性高分子复合材料.材料工程,1998,(5):6-9.
    82 奚正平,周廉,李建,等.金属纤维的发展现状和应用前景.稀有金属材料与工程,1998,27(6):317-321.
    83 高强.聚丙烯充填黄铜纤维导电复合材料屏蔽效能的研究.塑料工业,1999,27(1):30-32.
    84 赵振声,吴明忠,何华辉.磁场引导水溶还原法制备磁性金属纤维.华中是工大学学报,1998,26(7):74-76.
    85 C.F.Goh,H.Yu,S.S.Yong,et al.Synthesis and cure kinetics of isotropic conductive adhesives comprising sub-micrometer sized nickel particles.Mater.Sci.Eng.B,2005,117:153-158.
    86 邓橙,宋永才.溶胶/凝胶法制各镍纤维及其电磁性能研究.材料工程,2006,11:40-44.
    87 K.S.Chou,K.C.Huang,Z.H.Shih.Effect of Mixing Process on Electromagnetic Interference Shielding Effectiveness of Nickel/Acrylonitrile-Butadiene-Styrene Composites.J Appl.Polym.Sci.,2005,97:128-135.
    88 王群,葛凯勇,毛倩谨.超细镍粉在电磁防护功能材料中的应用.新技术新工艺,2002,(2):41-43.
    89 张雪峰,李哲男,王威娜,等.磁性Fe、Co、Ni纳米颗粒的吸波性能研究.粉末冶金工业,2006,16(1):11-16.
    90 X.F.Zhang,X.L.Dong,H.Huang,et al,Microwave absorption properties of the carbon-coated nickel nanocapsules.Appl.Phys.Lett.,2006,89:053115.
    91.G.Jiang,M.Gilbert,D.J.Hitt,et al.Preparation of nickel coated mica as a condutive filler.Composites A,2002,33:745-751.
    92.何芳,万怡灶,黄远,等.ABS/镀镍炭纤维复合材料电磁屏蔽特性研究.工程塑料应用,2007,35(5):21-24.
    1 张楠,翟秀静,翟玉春.超细镍粉的溶液还原法制备研究.功能材料,1999,30(3):263-264.
    2 Y.Hou,H.Kondoh,T.Ohta,et al.Size-controlled synthesis of nickel nanoparticles.Appl.Sur.Science,2005,241:218-222.
    3 高保娇,高建峰,周加其,等.超微粉的微乳液法制备研究.无机化学学报,2001,17(4):491-495.
    4 江治,李疏芬,赵凤起,等.纳米铝粉和镍粉对复合推进剂燃烧性能的影响.推进技术,2004,25(4):368-372.
    5 王群,葛凯勇,毛倩谨.超细镍粉在电磁防护功能材料中的应用.新技术新工艺,2002,(2):41-43.
    6 陈立宝,贺跃辉,邓意达.镍钴粉末生产现状及发展趋势.粉末冶金技术,2004,22(3):173-177
    7 B.Xia,I.W.Lenggord,K.Okuyama.Preparation of Ni particles by ultrasonic spray pyrolysis of NiCl_2·6H_2O precursor containing ammonia.J.Mater.Science,2001:1701-1705.
    8 K.H.Kim,H.C.Park,S.D.Lee,et al.Preparation of submicron nickel powders by microwave-assisted hydrothermal method Materials.Chemistry and Physics,2005,92:234-239.
    9 王红军,李启厚,何峰,等.超细镍粉的制备、应用现状及发展趋势.http://www.paper.edu.cn.
    10 柳学全,方建锋,黄乃红,等.国内外羰基镍技术进展及市场展望.粉末冶金工业,2003,13(3):10-13.
    11 陈祖耀,陈旼,朱英杰,等.γ-射线辐照从水溶液环境中制得金属镍超细粉的晶粒度和磁学性质.物理化学学报,1997,10(2):26-30.
    12 李鹏,官建国,张清杰,等.1,2丙二醇液相还原法制备纳米镍粉的研究.材料科学与工艺,2001,9(3):259-262.
    13 张传福,湛菁,长谷川良佑,等.超声波喷雾液相还原法制备超细镍粉.矿业工程,2001,21(2):48-51.
    14 姜力强,张晓忠,毛信表,等.超细镍粉电解制备工艺研究.材料科学与工艺,1999,7(1):87-92.
    15 张庆堂,任山.一种具有特殊形貌的超细镍粉制备研究.中山大学学报,2003,42(6):24-26;39.
    16 任山,刘大勇.一种纳米镍粉的液相制备方法.CN200510121349.1,2006-06-28.
    17 K.H.Kim,Y.B.Lee,S.O.Lee,et al.Preparation of fine nickel powders in aqueous solution under wet chemical process.Mater.Scienc Eng.,2004,381(1-2):337-342.
    18 H.G.Zheng,J.H.Liang,J.H.Zeng,et al.Preparation of nickel nanopowders in ethanol-water system(EWS).Mater.Res.Bull.2001,36:947-952.
    19 Y.D.Li,C.W.Li,H.R.Wang,et al.Preparation of nickel ultrafine powder and crystalline film by chemical control reduction.Mater.Chem.Phys.1999,59:88-90.
    20 Y.T.Moon,H.K.Park,D.K.Kim,et al.Preparation of monodisperse and spherical zirconia powders by heating of alcohol-aqueous salt aolutions.J.Am.Ceram.Soc.1995,78:2690-2694.
    21 H.K.Park,Y.T.Moon,D.K.Kim.et al.Formation of monodisperse and spherical TiO_2powders by thermal hydrolysis of Ti(SO_4)_2.J.Am.Ceram.Soc.1996,79:2727-2732.
    22 K.H.Kim,Y.B.Lee,E.Y.Choi,et al.Synthesis of nickel powders from various aqueous media through chemical reduction method.Chem.Phys.2004,86:420-424.
    23 Q. L. Liao, R. Tannenbaum, Z. L. Wang. Synthesis of FeNi_3 Alloyed Nanoparticles by Hydrothermal Reduction. J. Phys. Chem., B 2006,110: 14262-14265.
    24 Y. P. Duan, S. H. Liu, H. T. Guan. Investigation of Electromagnetic Characteristics of Polyaniline Composites. J. Compos. Mater. 2006, 40: 1093-1104.
    25 S. H. Wu, D. H. Chen. Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol. J. Colloid. Interf. Sci., 2003,259:282-286.
    26 K. N. Yu, D. J. Kim, H. S. Chung, et al. Dispersed rodlike nickel powder synthesized by modified polyol process. Mater. Lett., 2003, 57: 3992-3997.
    27 H. Xue, Z. H. Li, X. X. Wang, et al. Dispersed rodlike nickel powder synthesized by modified polyol process. Mater. Lett., 2007, 61: 347-350.
    28 D. D. L. Chung. Electromagnetic interference shielding effectiveness of carbon materials. Carbon, 2001, 39: 279-285.
    29 K. S. Chou, K. C. Huang, Z. H. Shih. Effect of Mixing Process on Electromagnetic Interference Shielding Effectiveness of Nickel/Acrylonitrile~Butadiene~Styrene Composites. J. Appl. Polym. Sci., 2005, 97: 128-135.
    1 Y. Sahoo, M. Cheon, S. Wang, et al. Field-Directed Self-Assembly of Magnetic Nanoparticles. J. Phys. Chem. B, 2004, 108: 3380-3383.
    2 C. Petit, V. Russier, M. P. Pileni. Effect of the Structure of Cobalt Nanocrystal Organization on the Collective Magnetic Properties. J. Phys. Chem. B, 2003,107:10333- 10336.
    3 H. L. Niu, Q. W. Chen, H. F. Zhu, et al. Magnetic field-induced growth and self-assembly of cobalt nanocrystallites. J. Mater. Chem., 2003,13: 1803-1805.
    4 H. L. Niu, Q. W. Chen, M. Ning, et al. Synthesis and One-Dimensional Self-Assembly of Acicular Nickel Nanocrystallites under Magnetic Fields. J. Phys. Chem. B., 2004,108: 3996-3999.
    5 J. Wang, Q.W. Chen, C. Zeng, et al. Magnetic-field-induced growth of single-crystalline Fe_3O_4 nanowires. Adv. Mater. 2004, 16: 137-140.
    6 L. X. Zhang, J. Luo, Q. W. Chen. Magnetic properties of assembled ferrite nanostructures induced by magnetic fields. J. Phys.: Condens. Matter., 2005,17: 5095-5100.
    7 E. K. Athanassiou, P. Grossmann, R. N. Grass, et al. Template free, large scale synthesis of cobalt nanowires using magnetic fields for alignment. Nanotechnology, 2007,18:165606 (7pp).
    8 J. Wang, Q. W. Chen, S. Che. Magnetic properties in BaFe_(12)O_(19) nanoparticles prepared under a magnetic field. J. Magn. Magn. Mater., 2004, 280: 281-286.
    9 J. Wang, Y.J. Zhu, W. P Li, et al. Necklace-shaped assembly of single-crystal NiFe_2O_4 nanospheres under magnetic field. Mater. Lett., 2005, 59:2101-2103.
    10 J. H. Du, C. Sun, S. Bai, et al. Microwave electromagnetic characteristics of a microcoiled carbon fibers/paraffin wax composite in Ku band. J. Mater. Res., 2002, 17 (5): 1232-1236.
    11 C. L. Jiang, G. F. Zou, W. Q. Zhang, et al. Aqueous solution route to flower-like microstructures of ferromagnetic nickel nanotips. Mater. Lett, 2006, 60:2319-2321.
    12 J. H. Hwang, V. P. Dravid, M. H. Teng, et al. Magnetic properties of graphitically encapsulated nickel nanocrystals. J. Mate.r Res., 1997,12: 1076-1082.
    13 G. Q. Zhang, T. Zhang, X. L. Lu, et al. Controlled Synthesis of 3D and 1D Nickel Nanostructures Using an External Magnetic Field Assisted Solution-Phase Approach.J.Phy.Chem C,2007,111(34):12663-12668.
    14 X.P.Shui,D.D.L.Chung.Nickel filament polymer-matrix composites with low surface impedance and high electromagneticinterference shielding effectiveness.J.Electron.Mater.,1997,26:928-934.
    15 王群,葛凯勇,毛倩谨.超细镍粉在电磁防护功能材料中的应用.新技术新工艺,2002,(2):41-43.
    16 Y.P.Duan,S.H.Liu,G.Q.Wang,et al.Effect of a Coupling Agent on the Electromagnetic and Mechanical Properties of Carbon Black/Acrylonitrile-Butadiene-Styrene Composites.App.Polym.Science,2006,102:1839-1843.
    17 秦柏,秦汝虎,金崇君.“广义匹配规律”的论证及在隐身材料中的应用.哈尔滨工业大学学报,1997,29(4):115-117.
    18 郑永春,王世杰,冯俊明,等.天然掺杂铁氧体的电磁参数调控机制分析及其在吸波材料中的应用.中国科学E辑:技术科学,2006,36(5):550-559.
    19 于美,刘建华,李松梅,等.Ni纳米线的制备及其微波吸收电磁性能.金属学报,2007,43(1):99-102.
    1 赵振声,吴明忠,何华辉.磁场引导水溶还原法制备磁性金属纤维.华中理工大学学报,1998,26(7):74-76.
    2 刘爱祥,茹淼焱,孟凡君.多晶铁纤维的合成与微波吸收性能的研究.无机化学学报,2004,20(3):358-362.
    3 李享成,龚荣洲.铁镍纤维的磁场诱导制备及电磁性能研究.功能材料,2006,37(1):27-32.
    4 沈湘黔,景茂祥,王涛平.有机凝胶-热还原法制备超细金属镍、铁纤维.稀有金属材料与工程,2006,36(6):945-949.
    5 X.P.Shui,D.D.L Chung.Nickel filament polymer-matrix composites with low surface impedance and high electromagnetic interference shielding effectiveness.J.Electron.Mater.,1997,26:928-34.
    6 C.Y.Huang,C.W.Chang.The EMI shielding effectiveness of PC/ABS/nickelcoated-carbon-fibre composites.European Polymer Journal,2000,36:2729-2737.
    7 S.S.Tzeng,F.Y.Chang.EMI shielding effectiveness of metal-coated carbon fiber-reinforced ABS composites.Mater.Science Eng.,2001,302(2):258-267.
    8 G.Jiang,M.Gilbert,D.J.Hitt,et al.Preparation of nickel coated mica as a conductive filler. Composite:Part A,2002,33(5):745-751.
    9 X.P.Shui,D.D.L.Chung.Submicron diameter nickel filaments and their polymer-matrix composites.J.Mater.Sci.,2000,35:1773-1785.
    10 N.A.Melosh,A.Boukai,F.Diana,et al.Ultrahigh-density nanowire lattices and circuits.Science,2003,300:112-115.
    11 V.F.Puntes,K.M.Krishnan,A.P.Alivisato.Colloidal nanocrystal shape and size control:The case of cobalt.Science,2001,291:2115-2117.
    12 Q.Gu,C.D.Cheng,S.Suryanarayanan,et al.DNA-templated fabrication of nickel nanocluster chains.Physica E,2006,33:92-98.
    13 A.K.Bentley,M.Farhoud,A.B.Ellis,et al.Template Synthesis and Magnetic Manipulation of Nickel Nanowires.J.Chem.Edu.,2005,82(5):765-768.
    14 J.F.Sun,Y.Zhang,Z.P.Chen,et al.Fibrous Aggregation of Magnetite Nanoparticles Induced by a Time-Varied Magnetic Field.Angew.Chem.Int.Ed.,2007,46:4767-4770.
    15 Y.N.Xia,P.D.Yang,Y.G.Sun,et al.One-dimensional nanostructures:synthesis,characterization,and applications,Adv.Mater.,2003,15(5):353-389.
    16 M.J.Kim,Y.W.Kim,J.S.Lee,et al.Magnetic properties of Ni nanostructures fabricated using anodic aluminum oxide templates.J.Korean.Phys.Soc.,2005,47:313-317.
    17 J.C.Bao,C.Y.Tie,Z.Xu,et al.Template systhesis of an array of nickel nanotubules and its magnetic behavior.Adv.Mater.,2001,13:1631-1633.
    18 R.Hertel,Computational micromagnetism of magnetization processes in nickel nanowires.J.Magn.Magn.Mater.,2002,249:251-256.
    19 N.Cordente,M.Respaud,F.Senocq,et al.Synthesis and Magnetic Properties of Nickel Nanorods.Nano Lett.,2001,1:565-568.
    20 M.Z.Wu,Y.Xiong,Y.S.Jia,et al.Magnetic field-assisted hydrothermal growth of chain-like nanostructure of magnetite.Chem.Phys.Lett.,2005,401:374-379.
    21 Y.Wu,J.Xiang,Ch.Yang,et al.Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures. Nature, 2004, 430 (1): 61-65.
    22 S. Katoa, H. Shinagawa, H. Okada, et al. Application of ferromagnetic nano-wires in porous alumina arrays for magnetic force generator. Sci.Technol. Adv. Mater., 2005, 6: 341-343.
    23 Y. W. Jun, Y. Y. Jung, J. Cheon. Architectural Control of Magnetic Semiconductor Nanocrystals. J. Am. Chem. Soc., 2002, 124: 615-619.
    24 Y. H. Ni, X. W. Ge, Z. C. Zhang, et al. Fabrication and Characterization of the Plate-Shaped γ-Fe_2O_3 Nanocrystals. Chem. Mater., 2002,14:1048-1052.
    25 A. T. Ngo, M. P. Pileni. Assemblies of Ferrite Nanocrystals: Partial Orientation of the Easy Magnetic Axes. J. Phys. Chem. B, 2001,105: 53-58.
    26 B. Martinez, X. Obradors, L. Balcells, et al. Low Temperature Surface Spin——Glass Transition in γ-Fe_2O_3 Nanoparticles. Phys. Rev. Lett, 1998, 80: 181-184.
    27 S. Che, J. Wang, Q. W. Chen. Soft magnetic nanoparticles of BaFe_(12)O_(19) fabricated under mild conditions. J. Phys.: Condens. Matter., 2003,15: 335-339.
    28 H. L. Niu, Q. W. Chen, M. Ning, et al. Synthesis and one-dimensional self-assembly of acicular nickel nanocrystallites under magnetic fields. J. Phys. Chem. B, 2004,108: 3996-3999.
    29 L. X. Sun, Q. W. Chen, Y. Tang, et al. Formation of one-dimensional nickel wires by chemical reduction of nickel ions under magnetic fields. Chem. Commun., 2007:2844-2846.
    30 F. L. Jia, L. Z. Zhang, X. Y. Shang, et al. Non-Aqueous Sol-Gel Approach towards the Controllable Synthesis of Nickel Nanospheres. Nanowires, and Nanoflowers. Adv. Mater., 2008,20: 1050-1054.
    31 J. Wang, Q. W. Chen, B. Y. Hou, et al. Synthesis and magnetic properties of single-crystals of MnFe_2O_4 nanorods. Eur. J. Inorg. Chem., 2004: 1165-1168.
    32 Y. Tang, Q. W. Chen. A simple and practical method for the preparation of magnetite nanowires. Chem. Lett., 2007, 36: 840-841.
    33 H. Q. Cao, L. D. Wang, Y. Qiu, et al. Generation and growth mechanism of metal (Fe, Co, Ni) nanotube arrays. Chem. Phys. Chem., 2006, 7: 1500-1504.
    34 S.H.Ge,C.Li,X.Ma,et al,Approach to fabricating Co nanowire arrays with perpendicular anisotropy:Application of a magnetic field during deposition J.Appl.Phys.,2001,90:509-511.
    35 T.Thurn-Albrecht,J.Schotter,G.A.Kastle,et al.Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates.Science,2000,290:2126-2129.
    36 S.G.Yang,H.Zhu,D.L.Yu,et al.Preparation and magnetic property of Fe nanowire array J.Magn.Magn.Mater.,2000,222:97-100.
    37 葛世慧,黎超,马骁,等.外加磁场对Co纳米线生长过程的影响.物理学报,2001,50(1):149-152.
    38 于美,刘建华,李松梅,等.Ni纳米线的制备及其微波吸收电磁性能.金属学报,2007,43(1):99-102.
    39 唐海涛,陈国华.磁场诱导有序排列和自组装的研究进展.材料导报,2006,20(2):102-105.
    40 李浩,宋慧宇,廖世军.具有特殊形状钴纳米晶的合成研究进展.材料导报,2007,21(4):122-125.
    41 T.Takahashi,A.S.Dimitrov,K.Nagayama.Two-Dimensional Patterns of Magnetic Particles at Air-Water or Glass-Water Interfaces Induced by an External Magnetic Field:Theory and Simulation of the Formation Process.J.Phys Chem.,1996,100(8):3157-3162.
    42 贾广强,张金仓,刘永生,等.磁场诱导制备Bi_2Mn合金的结构和低温磁性研究.低温物理学报,2004,26(3):183-189.
    43 V.M.Prida,M.Hernandez,M.Cervera,et al.Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes.J.Magn.Magn.Mater.,2005,249(2):69-72.
    44 I.O.Shklyarevskiy,P.Jonkheijm,P.C.M.Christianen,et al.Magnetic Alignment of Self-Assembled Anthracene Organogel Fibers.Langmuir,2005,21(6):2108-2112.
    45 F.E.Osterloh.Solution Self-Assembly of Magnetic Light Modulators from Exfoliated Perovskite and Magnetite Nanoparticles.J.Am.Chem.Soc.,2002,124(22):6248-6249.
    46 M.S.Al-Haik,H.Garmestani,D.S.Li,et al.Mechanical Properties of Magnetically Oriented Epoxy.J Polym Sci B:Polym Phys.,2004,42(9):1586-1600.
    47 Y.Sahoo,.M.Cheon,S.Wang,et al.Field-Directed Self-Assembly of Magnetic Nanoparticles.J.Phys Chem.B,2004,108:3380-3383.
    48 C.Petit,V.Russier,M.P.Pileni.Effect of the Structure of Cobalt Nanocrystal Organization on the Collective Magnetic Properties.J.Phys.Chem.B,2003,107:10333-10336.
    49 H.L.Niu,Q.W.Chen,H.F.Zhu,et al.Magnetic field-induced growth and self-assembly of cobalt nanocrystallites.J.Mater.Chem.,2003,13:1803-1805.
    50 J.Wang,Q.W.Chen,C.Zeng,et al.Magnetic-field-induced growth of single-crystalline Fe3O4nanowires.Adv.Mater.2004,16:137-140.
    51 S.L.Xie,L.Xu,N.Gu.Fabrication of One-Dimensional Magnetic Particles Chain of Polycrystalline Nickel under Magnetic Field.Solid State Phenomena,2007,121-123:743-746.
    52 G.J.Cheng,D.Romero,G.T.Fraser,et al.Magnetic-Field-Induced Assemblies of Cobalt Nanoparticles.Langmuir,2005,21:12055-12059.
    53 H.H.Lee,H.T.Kuo,K.S.Chou.Formation of Crystalline Nickel Fibers by Chemical Reduction in the Presence of a Magnetic Field.J.Chin.Inst.Chem.Engrs.,2003,34:327-333;
    K.S.Chou,K.Ch.Huang,K.Y.Huang.Reaction kinetics and mechanism of nickel fiber synthesis.J Chin.Inst.Chem.Engrs.,2005,36(4):399-406.
    54 赵振声,吴明忠,何华辉.磁场引导水溶还原法制备磁性金属纤维.华中科技大学学报,1998,26(7):74-76.
    55 聂彦,赵振声,何华辉.磁场引导羰基热分解法制备多晶铁纤维.华中科技大学学报,2001,29(7):75-77.
    56 L.X.Zhang,J.Luo,Q.W.Chen.Magnetic properties of assembled ferrite nanostructures induced by magnetic fields.J.Phys.:Condens.Matter.,2005,17:5095-5100.
    57 E.K.Athanassiou,P.Grossmann,R.N.Grass,et al.Template free,large scale synthesis of cobalt nanowires using magnetic fields for alignment.Nanotechnology,2007,18:165606(7pp).
    58 Q.L.Liao,R.Tannenbaum,Z.L.Wang.Synthesis of FeNi_3 alloyed nanoparticles by hydrothermal reduction.J.Phys.Chem.B,2006,110:14262-14265.
    59 J.Wang,Q.W.Chen,S.Che.Magnetic properties in BaFe_(12)O_(19)nanoparticles prepared under a magnetic field.J.Magn.Magn.Mater.,2004,280:281-286.
    60 L.P.Zhu,H.M.Xiao,S.Y.Fu.Surfactant-Assisted Synthesis and Characterization of Novel Chain-Like CoNi Alloy Assemblies.Eur.J.Inorg.Chem.,2007,3947-3951.
    61 Z.Y.Tang,N.A.Kotov.One-dimensional assemblies of nanoparticles:preparation,properties,and promise.Adv.Mater.,2005,17:951-962.
    62 C.L Jiang,G.F.Zou,W.Q.Zhang,et al.Aqueous solution route to flower-like microstructures of ferromagnetic nickel nanotips.Mater.Lett.,2006,60:2319-2321.
    63 X.M Liu,S.Y.Fu,C,J.Huang.Fabrication and characterization of spherical Co/Ni alloy particles.Mater.Lett.,2005,59:3791-3794.
    64 J.H.Hwang,V.P.Dravid,M.H.Teng,et al.Magnetic properties of graphitically encapsulated nickel nanocrystals.J.Mater.Res.,1997,12:1076-1082.
    65 J.Bansmann,S.H.Baker,C.Binns,et al.Magnetic and structural properties of isolated and assembled clusters.Surf.Sci.Rep.,2005,56:189-275.
    66 I.Z.Rahman,A.Boboc,K.M.Razeeb,et al.Analysis of magnetic interaction in Ni nanowire array grown using electrodeposition process.J.Magn.Magn.Mater.,2005,290-291:246-249.
    67 I.Yang,S.Y.Savrasov,G.Kotliar.Importance of Correlation Effects on Magnetic Anisotropy in Fe and Ni.Phys.Rev Lett.,2001,87(21):216405-1-4.
    68 H.T.Zhang,G.Wu,X.H.Chen,et al.Synthesis and magnetic properties of nickel nanocrystals.Mater Res.Bull.,2006,41:495-501.
    69 S.Pignard,G.Goglio,A.Radulescu,et al.Study of the magnetization reversal in individual nickel nanowires J.Appl.Phys.,2000,87:824-829.
    70 L.L.P.Diandra,D.R.Reuben.Magnetic Properties of Nanostructured Materials.Chem.Mater.,1996,8:1770-1783.
    71 S.H.Wu,D.H.Chen.Synthesis and characterization of nickel nanoparticles by hydrazine reduction in ethylene glycol.J.Colloid.Interf.Sci.,2003,259:282-286.
    72 K. N. Yu, D. J. Kim, H. S. Chung, et al. Dispersed rodlike nickel powder synthesized by modified polyol process. Mater. Lett, 2003,57: 3992-3997.
    73 H. Lu, E. L. Salabas, F. Sch(U|¨)th. Magnetic Nanoparticles: Synthesis, Protection, Functionalization, and Application. Angew. Chem. Int. Ed, 2007, 46:1222-1244.
    74 H. Chiriac, T. A. Ovari, A. E. Moga, et al. Preparation and magnetic properties of Ni_(80)Fe_(20) nanowair arrays. Adv. Mater., 2003, 5: 257-260.
    75 Y. W. Du, M. X. Xu, J. Wu, et al. Magnetic properties of ultraf ine nickel particles. J. Appl. Phys., 1991,70: 5903-5905.
    76 J. Wang, Y.J. Zhu, W. P. Li, et al. Necklace-shaped assembly of single-crystal NiFe_2O_4 nanospheres under magnetic field. Mater. Lett., 2005, 59: 2101-2103.
    77 V. P. M. S. Kurikka, G. Aharon, P. Ruslan, et al. Sonochemical Preparation and Size-Dependent Properties of Nanostructured CoFe_2O_4 Particles. Chem. Mater., 1998,10: 3445-3450.
    78 P. Fulmer, M. M. Raja, A. Manthiram. Chemical Synthesis, Processing, and characterization of nanostructured Fe-B for the magnetically assisted chemical separation of hazardous waste. Chem. Mater., 2001,13:2160-2168.
    79 G. Q. Zhang, T. Zhang, X. L. Lu, et al. Controlled Synthesis of 3D and 1D Nickel Nanostructures Using an External Magnetic Field Assisted Solution-Phase Approach. J. Phys. Chem. C, 2007, 111: 12663-12668.
    80 H. B. Xia, J. B. Yi, P. S. Foo, et al. Facile Fabrication of Water-Soluble Magnetic Nanoparticles and Their Spherical Aggregates. Chem. Mater., 2007,19: 4087-4091.
    81 X. M. Liu, S. Y. Fu. High-yield synthesis of dendritic Ni nanostructures by hydrothermal reduction. J. Cryst. Growth, 2007, 306: 428-432.
    82 X. M. Ni, Q. B. Zhao, H. G. Zheng, et al. A Novel Chemical Reduction Route towards the Synthesis of Crystalline Nickel Nanoflowers from a Mixed Source. Eur. J. Inorg. Chem., 2005, 4788-4793.
    83 Y. W. Hao, F. Q. Zhu, C. L. Chien, et al. Fabrication and Magnetic Properties of Ordered Macroporous Nickel Structures.J.Electro.Soc,2007,154(2):65-69.
    84 A.E.Berkowitz,W.J.Shuele,P.J.Flanders.Influence of crystallite size on the magnetic properties of acicular γ-Fe_2O_3 particles.J.Appl.Phys.,1968,39:1261-1263.
    85 X.L.Dong,X.F.Zhang,H.Huang,et al.Enhanced microwave absorption in Ni/polyaniline nanocomposites by dual dielectric relaxations.Appl.Phys.Lett.,2008,92:013127-1.
    86 Y.D.Deng,X.Liu,B.Shen,et al.Preparation and microwave characterization of submicrometer-sized hollow nickel spheres,J.Magn.Magn.Mater.,2006,303:181-184.
    87 张雪峰,李哲男,王威娜,等.磁性Fe、Co、Ni纳米粒子的吸波性能研究.粉末冶金工业,2006,16(1):11-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700