镍、氧化镍及氢氧化镍纳米材料的制备和表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在查阅大量文献的基础上,总结了纳米材料的结构、性质、应用及制备技术的进展。本论文中,在水热和溶剂热的基础上,我们发展了几种纳米材料的控制合成技术,制备了海胆状及线状镍纳米晶体、空心块状及纤维状草酸镍纳米晶体、氧化镍棒束、花状β-氢氧化镍及花状氧化镍微晶。应用了XRD、TEM、SEM等测试方法对这些材料进行了物相和形貌表征。
     论文主要内容如下:在水体系中用超声还原法制备了球形金属镍纳米微粒,粒径分布均匀。在乙二醇体系下用水合肼还原镍盐成功合成了海胆状和一维线状镍纳米晶体,并研究了不同溶剂对产物形貌产生的影响。研究了海胆状镍的磁学性质,发现海胆形镍纳米晶体比块体材料具有明显增强的矫顽力。在无水乙醇体系中制备出了空心块状和纤维状草酸镍前驱体,然后用水合肼还原纤维状草酸镍前驱体制备出了一维线状镍纳米晶体。
     通过热分解棒状丁二酮肟镍前驱体制备出由纳米粒子组成的氧化镍棒束,热分解温度和时间对氧化镍棒的形貌影响很小,但随着温度的升高和时间延长,氧化镍粒子的粒径变大。氧化镍棒束的光学带隙(E_g)的值约为3.51eV。
     发展了一种水热络合沉淀法在140℃下反应4小时成功合成了花状形貌β-氢氧化镍晶体,发现每个花是由许多纳米薄片组成。络合剂乙二胺(en)对产物形貌起着关键作用。并研究了反应温度和表面活性剂聚乙烯吡咯烷酮(PVP)对产物形貌影响。热解花状氢氧化镍前驱体成功合成了花状氧化镍晶体,分解产物氧化镍基本维持了前驱体氢氧化镍的形貌。并用合成的花状氧化镍粉末作为活性物质制作成氧化镍电极,循环伏安(CV)测试表明花状氧化镍粉末可以用来作超电容器电极材料。
Based on detailed investigation of a great deal of related literature, the structure, property, application and synthetic method of nanomaterials have been reviewed. In this paper, on the basis of hydrothermal and solvothermal techniques, we developed several controllable synthetic techniques to fabricate urchin-like and wire-like nickel nanocrystalline, NiC_2O_4·2H_2O nanoboxes and nanofibres, NiO rods, flower-like β-Ni(0H)2 and flower-like NiO crystals. The crystallinities and morphologies of the products were characterized by XRD TEM, SEM, etc. The major contents can be summarized as follows:Metal nickel nanoparticles have been prepared by ultrasonic reduction in water. The prepared particles are spherical and their size is well-distributed. Urchin-like and wire-like nickel nanocrystallites have been synthesized by hydrazine reduction in ethylene glycol. The results reveal that solvent and reaction time play important roles in the morphology control of nickel nanocrytallites. The thus-prepared urchin-like nickel showed a much-enhanced coercivity than bulk nickel.NiC_2O_4 2H_2O nanoboxes and nanofibres have been prepared by a solvothermal method in absolute ethanol. And we have synthesized wire-like nickel nanocrystals through the reduction of nickel oxalate nanofibres by hydrazine hydrate.NiO rods which consist of nanoparticles have been synthesized via thermal decomposition of rod-like nickel dimethylglyoximate precursor. The calcining time and temperature have less effect on the morphology of NiO rods. With increasing the calcining time and temperature, the size of particles became larger. The optical absorption band gap of the NiO nanoparticles was 3.51 eV.Flower-like /?-Ni(0H)2 crystals have been successfully prepared by a hydrothermal complexing-precipitation process at 140 °C for 4 h. Each flower is constructed with dozens of flakes, which are connected with each other. Ethylenediamine plays an important role on the flower-like morphology of the product. The influences of reaction temperature and surfactant (PVP) to β-Ni(OH)_2 morphology were also studied. Flower-like NiO nanocrystals have been synthesized by the thermal decomposition of Ni(OH)_2 precursor. Cyclic voltammogram(CV) shows flower-like NiO may be used as a good electrode material for supercapacitor.
引文
[1] 张立德,牟季美,纳米材料和纳米结构,科学出版社,2001.
    [2] 王世敏,许祖勋,傅晶,纳米材料制备技术,化学工业出版社,2001.
    [3] A. Henglein, Chem. Rev. 1989, 89, 1861.
    [4] D. W. Parker, Adv. Mater. & Proc. 1991, 139, 68.
    [5] J. Stichlmair, J. Schmidt, J. Propleschr, Chem. Eng. Sci. 1992, 47, 3015.
    [6] R. A. Webb, Phys. Rev. Lett. 1985, 54, 2696.
    [7] H. W. Kroto, Nature, 1985, 318, 162.
    [8] 李新勇,李树本,化学进展,1996,8,231.
    [9] V. G. Gryaznov, L. I. Trusov, Prog. Mater. Sci. 1993, 37, 289.
    [10] Y. Zhu, R. Birringer, U. Herv, H. Gleiter, Phys. Rev. 1987, B35, 9085.
    [11] H. Gleiter, Prog. Mater. Sci. 1989, 33, 223.
    [12] J. Epperson, R. Siegel, Mater. Res. Soc, Symp. Proc. 1989, 132, 15.
    [13] D. Li, D. Ping, Q. Ye, X. Wu, Mater. Lett. 1993, 18, 29.
    [14] 裘式纶,瞿庆洲,肖丰收,张宗涛,化学研究与应用,1998,10,331.
    [15] A. E. Berkoowitz, J. R. Mitchell, M. J. Carey, Phys. Rev. Lett. 1992, 68, 3745.
    [16] J. Q. Xiao, J. S. Jiang, C. L. Chien, Phys. Rev. Lett. 1992, 68, 3749.
    [17] R. Brringer, H. Gleiter, H. P. Klein, P. Marquit, Phys. Lett. 1984, 102A, 365.
    [18] G. T. Fei, L. Liu, X. Z. Ding, et al., J. Alloys and Compounds, 1995, 229, 280.
    [19] J. L. Shi, et al. J. Mater. Sci. 1995, 30, 793.
    [20] J. A. Switzer, M. L. Shane, R. Phillips, Science, 1990, 247, 444.
    [21] P. Deshev, Mater. Res. Bull. 1987, 13, 1167.
    [22] X. T. Dong, G. Y. Hong, et al., J. Mater. Sci. Technol. 1997, 13, 113.
    [23] K. R. Venkatachari, et al., J. Mater. Res. 1995, 10, 248.
    [24] Z. L. Cui, et al., Nanostructured Mater. 1995, 5, 829.
    [25] 蔺思惠,李新勇等,无机材料学报,1996,11,157.
    [26] M. P. Pileni, Adv. Colloid Interface Sci. 1993, 46, 139.
    [27] X. L. Li, X. Y. Zhu, T. L. Duan, Y. T. Qian, Solid State Commun. (In Press).
    [28] R. J. Tonucci, B. L. Justus, A. J. Campillo, et al., Science, 1992, 258, 783.
    [29] K. Hiruma, M. Yazawa, T. Katsuyama, et al., J. Appl. Phys. 1995, 77, 447.
    [30] K. S. Suslick, S. B. Choe, A. A. Cichowals et al., Phys. Today, 1991, 44, 17.
    [31] K. S. Suslick, S. B. Choe, A. A. Cichowals et al., Nature, 1991, 353, 414.
    [32] 林金谷,邹炳锁,王月菊等,科学通报,1995,40,1370.
    [33] J. Belloni, M. O. Delcourt, Nouv. J. Chim. 1982, 6, 507.
    [34] J. L. Marignier, J. Belloni, M. O. Delcourt, et al., Nature, 1985, 317, 344.
    [35] A. Henglein, Tausch-Treml, J. Colloid Interface Sci. 1981, 80, 84.
    [36] G. Mills, A. Henglein, Radiat. Phys. Chem. 1985, 26, 385.
    [37] S. Mosseri, A. Henglein, E. Janata, J. Phys. Chem. 1989, 93, 6791.
    [38] J. Khatouri, M. Mostafavi, J. Amblard, et al., Chem. Phys. Lett. 1992, 191, 351.
    [39] M. Michaelis, A. Henglein, J. Phys. Chem. 1992, 96, 4719.
    [40] B. G. Ershov, A. Henglein, J. Phys. Chem. 1993, 97, 3434.
    [41] 叶向阳,郭奇珍,化学通报,1996,2,10.
    [42] M. S. Gudiksen, J. F. Wang, C. M. Lieiber, J. Phys. Chem. B 2001, 105, 4062.
    [43] M. S. Gudiksen, C. M. Lieber, J. Am. Chem. Soc. 2000, 122, 8801.
    [44] Y. Cui, L. J. Lauhon, M. S. Gudiksen, et al., Appl. Phys. Lett. 2001, 78, 2214.
    [45] T. J. Trentler, K. M. Hickman, S. C. Goel, A. M. Viano, P. C. Gibbons, W. E. Buhro, Science, 1995, 270, 1791.
    [46] W. E. Buhro, K. M. Hickman, T. J. Trentler, Adv. Mater. 1996, 8, 685.
    [47] 施尔畏,夏长泰,王步国,仲维卓,无机材料学报,1996,11,193.
    [48] 苏勉曾,谢高阳,申泮文等译,固体化学及其应用,复旦大学出版社,1989.
    [49] Q. W. Chen, Y. T. Qian, Appl. Phys. Lett. 1995, 66, 1608.
    [50] E. W. Shi, J. Mater. Res. 1994, 9, 2915.
    [51] R. L. Wells, W. L. Gladfelter, J. Cluster Sci. 1997, 8, 217.
    [52] K. Yanagisawa, M. Nishioka, J. Nucl. Sci. Tech. 1986, 23, 550.
    [53] K. Yanagisawa, M. Nishioka, J. Nucl. Sci. Tech. 1989, 26, 395.
    [54] Z. R. Li, X. L. Li, X. X. Zhang, Y. T. Qian, J. Crystal Growth, 2006, 291, 258.
    [55] X. L. Li, T. L. Duan, X. Y. Zhu, Y. T. Qian, Materials Letters (In Press).
    [56] Y. Xie, Y. T. Qian, W. Z. Wang, et al., Science, 1996, 272, 1926.
    [57] Y. D. Li, Y. T. Qian, et al., J Am Chem Soc. 1997, 119, 7869.
    [58] Y. D. Li, Y. T. Qian, et al., Science, 1998, 281, 246.
    [59] J. Hu, Q. Lu, K. Tang, B. Deng, R. Jiang, Y. Qian, et al., J. Phys. Chem. B, 2000, 104, 5251.
    [60] W. S. Sheldrick, M. Wachhold, Angew. Chem. Int. Ed. Engl. 1997, 36, 206.
    [61] H. Yamane, M. Shimada, S. J. Clarke, et al., Chem. Mater. 1997, 9, 413.
    [62] Y. Li, H. Liao, Y. Ding, et al., Chem. Mater. 1998, 10, 2301.
    [63] Y. Li, Y. Ding, Y. Qian, et al., Inorg. Chem. 1998, 37, 2844.
    [64] S. Yu, Y. Wu, J. Yang, et al., Chem. Mater. 1998, 10, 2309.
    [65] 莫茂松,中国科学技术大学博士论文,2003。
    [66] 李凤生,超细粉体技术,国防工业出版社,2000.
    [67] 吴旻,张秋禹,罗正平,等,化学物理学报,2001,14,597.
    [68] 黄家明,李维,黄劲松,等,稀有金属与硬质合金,1999,137,1.
    [69] 袁公昱,人造金刚石合成与金刚石工具制造,中南工业大学出版社,1992.
    [70] 王亚明,黄若华,洪少波,化学通报,1996,5,20.
    [71] 王文生,电子元件与材料,1994,13,7.
    [72] 王炳根,四川有色金属,1997,4,10.
    [73] 李华,龚伟,物理学报,1991,40,1356.
    [74] 陈祖耀,陈旼,朱英杰,等,化学物理学报,1997,10,26.
    [75] 梁焕珍,化工冶金,1995,16,307.
    [76] K. S. Chou, K. C. Huang, J. Nanop. Res. 2001, 3, 127.
    [77] 高宝娇,高建峰,周加其,等,无机化学学报,2001,17,491.
    [78] B. Xia, I. W. Lenggoro, K. Okuyama, J. Am. Ceram. Soc. 2001, 84, 1425.
    [79] E. G. Bahbraj, K. T. Hubert, F. H. S. Fores, J. Alloy Compd. 1997, 257, 146.
    [80] H. Ferkel, B. Muller, W. Riehemann, Mater. Sci. Eng. A 1997, 234-236, 474.
    [81] M. Bockrath, W. Liang, D. Bozovic, J. H. Hafner, C. M. Lieber, M. Tinkham, H. Park, Science, 2001, 291, 283.
    [82] B. R. Martin, D. J. Dermody, B. D. Reiss, M. Fang, L. A. Lyon, M. J. Natan, T. E. Mallouk, Adv. Mater. 1999, 11, 1021.
    [83] V. M. Cepak, C. R. Martin, Chem. Mater. 1999, 11, 1363.
    [84] Y. J. Han, J. M. Kim, G. D. Stucky, Chem. Mater. 2000, 12, 2068.
    [85] M. J. Edmondson, W. Zhou, S. A. Sieber, I. P. Jones, I. Gameson, P. A. Anderson, P. P. Edwards, 2001, 13, 1608.
    [86] P. M. Ajayan, S. Iijima, Nature, 1993, 361, 333.
    [87] S. Bhattacharry, S. K. Saha, D. Chakravorty, Appl. Phys. Lett. 2000, 76, 3896.
    [88] D. Zhang, L. Qi, J. Ma, H. Cheng, Chem. Mater. 2001, 13, 2753.
    [89] E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph, Nature, 1998, 391, 775.
    [90] C. J. Murphy, N. R. Jana, Adv. Mater. 2002, 14, 80.
    [91] S. Liu, J. Yue, A. Gedanken, Adv. Mater. 2001, 13, 656.
    [92] J. J. Zhu, X. H. Liao, X. N. Zhao, H. Y. Chen, Mater. Lett. 2001, 49, 91.
    [93] L. Sun, P. C. Searson, C. L. Chien, Appl. Phys. Lett. 2001, 79, 4429.
    [94] C. R. Martin, Science, 1994, 266, 1961.
    [95] M. N. Wu, Y. T. Qian, et al., Inorg. Chem. Commun. 2002, 5, 971.
    [96] J. C. Bao, Z. Xu, et al., Adv. Mater. 2001, 13, 1631.
    [97] Z. P. Liu, Y. T. Qian, et al., Adv. Mater. 2003, 15, 1946.
    [98] H. L. Niu, Q. W. Chen, et al., J. Phys. Chem. B, 2004, 108, 3996.
    [99] X. M. Ni, H. G. Zheng, et al., Chemistry Letters, 2004, 33, 1564.
    [100] X. M. Ni, H. G. Zheng, et al., J. Crystal Growth, 2003, 252, 612.
    [101] D. E. Zhang, H. G. Zheng, et al., Materials Letters, 2005, 59, 2011.
    [102] X. M. Ni, H. G. Zheng, et al., J. Crystal Growth, 2005, 280, 217.
    [103] X. F. Zhang, et al., J. Crystal Growth, 2005, 274, 113.
    [104] X. M. Ni, Q. B. Zhao, J. Cheng, H. G. Zheng, B. B. Li, D. E. Zhang, Chem. Lett. 2005, 34, 1408.
    [105] Y. T. Qian, et al., Adv. Mater. 1999, 11, 1101.
    [106] Y. Xie, Y. T. Qian, W. Z. Wang, et al., Science, 1996, 272, 1926.
    [107] J. Hu, Q. Lu, K. Tang, B. Deng, R. Jiang, Y. Qian, et al., J. Phys. Chem. B, 2000, 104,5251.
    [108] Z. P. Liu, S. Peng, Q. Xie, Z. K. Hu, Y. Yang, S. Y. Zhang, Y. T. Qian, Adv. Mater. 2003, 15,936.
    [109] S. H. Wu, D. H. Chen, J. Colloid and Interface Science 2003, 259, 282.
    [110] K. N. Yu, et al., Materials Letters, 2005, 57, 3992.
    [111] G. Z. Shen, D. Chen, K. B. Tang, F. Q. Li, Y. T. Qian, Chem. Phys. Lett. 2003, 370, 334.
    [112] F. Pfeiffer, C. Radeloff, J. Magn. Magn. Mater. 1980, 19, 190.
    [113] 刘兆平,中国科技大学博士论文,2003。
    [114] J. H. Hwang, V. P. Dravid, M. H. Teng, J. J. Host, B. R. Elliott, D. L. Johnson, T. O. Mason, J. Mater. Res. 1997, 12, 1076.
    [115] A. P. Alivisatow, Science, 1996, 271, 933.
    [116] H. O. Cao, Z. Xu, H. Sang, C. Y. Tie, Adv. Mater. 2001, 13, 121.
    [117] K. S. Napolsky, A. A. Eliseev, A. V. Knotko, A. C. Lukahsin. A. A. Vertegel, Y. D. Tretyakov, Mater. Sci. Eng. 2003, C. 23, 151.
    [118] Y. Zhang, H. Dai, Appl. Phys. Lett. 2000, 77, 3015.
    [119] S. Mishima, M. Kawamura, S. Matsukawa, T. Nakajima, Chem. Lett. 2002, 30, 1092.
    [120] X. Zheng, Y. Xie, L. Zhu, X. Jiang, A. Yan, Ultranson. Sonochem. 2002, 9, 311.
    [121] L. Qi, J. Li, J. Ma, Adv. Mater. 2002, 14, 300.
    [122] X. L. Li, J. F. Liu, Y. D. Li, Mater. Chem. Phys. 2003, 80, 222.
    [123] X. L. Li, X. X. Zhang, Z. R. Li, Y. T. Qian, Solid State Commun. 2006, 137, 581.
    [124] S. Iijima, Nature, 1991, 354, 56.
    [125] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Science, 2001, 292, 1897.
    [126] Z. L. Wang, Adv. Mater. 2000, 12, 1295.
    [127] N. A. Melosh, A. Boukai, F. Diana, B.Gerardot, A. Badolato, P. M. Petroff, J.
     R. Heath, Science, 2003, 300, 112
    [128] X. Y. Chen, X. X. Li, Y. Jiang, C. W. Shi, X. L. Li, Solid State Commun. 2005, 136, 94.
    [129] Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H. Q. Yan, Adv. Mater. 2003, 15, 353.
    [130] 张立德,解思深,纳米材料和纳米结构,化学工业出版社,2005.
    [131] H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films, 1993, 236, 27.
    [132] M. M. Natile, A. Glisenti, Chem. Mater. 2003, 15, 2502.
    [133] C. H. Chen, J. Liu, M. E. Stoll, G. Henriksen, D. R. Vissers, K. Amine, J. Power Sources, 2004, 128, 278.
    [134] I. Hotovy, J. Huran, L. Spiess, S. Hascik, V. Rehacek, Sensors and Actuators B, 1999, 57, 147.
    [135] H. Kamal, E. K. Elmaghraby, S. A. Ali, K. Abdel-Hady, J. Crystal Growth 2004, 262, 424.
    [136] T. Seto, H. Akinaga, F. Talano, K. koga, T. Orii, M. Hirasawa, J. Phys. Chem. B, 2005, 109, 13403.
    [137] P. Lunkenheimer, A. Loidl, Phys. Rev. B, 1991, 44, 5927.
    [138] R. C. Makkus, K. Heroines, J. H. W. D. Wir, J. Electrochem. Soc. 1994, 141, 3429.
    [139] X. Wang, J. M. Song, L. S. Gao, J. Y. Jin, H. G. Zheng, Z. D. Zhang, Nanotechnology, 2005, 16, 37.
    [140] Y. M. Lu, W. S. Hwang, J. S. Yang, H. C. Chuang, Thin Solid Films, 2002, 420-421, 54.
    [141] K. Nakaoka, J. Ueyama, K. Ogura, J. Electroanal. Chem. 2004, 571, 93.
    [142] Y. Lin, T. Xie, B. C. Cheng, Bo Y. Geng, L. D. Zhang, Chem. Phys. Lett. 2003, 380, 521.
    [143] Y. R. Park, K. J. Kim, J. Crystal Growth, 2003, 258, 380.
    [144] C. F. Zhang, J. Zhan, J. H. Wu, C. J. Li, Trans. Nonferrous Met. Soc. China, 2004, 14, 713.
    [145] C. K. Xu, G. D. Xu, G. H. Wang, J. Mater. Sci. 2002, 38, 779.
    [146] A. Hagfeldt, M. Gratzel, Chem. Rev. 1995, 95, 49.
    [147] D. Adler, J. Feinlieb, J. Phys. Rev. B, 1970, 2, 3112.
    [148] G. Boschloo, A. Hagfeldt, J. Phys. Chem. B, 2001, 105, 3039.
    [149] 任学佑,电池,2002,32.112.
    [150] 袁安保,张鉴清,曹楚南,电源技术,2001,25,53.
    [151] J. Y. Zhang, D. Y. Yan, Chin. J. Power Sources, 2002, 26, 69.
    [152] X. Z. Huan, D. Wang, X. B. Fan, et al. Chin. J. Power Sources, 2002, 26,125.
    [153] R. Etchenique, E. Calvo, J. Electrochem. 2001, 148, 361.
    [154] X. X. Yuan, N. J. Xu, Appl. Electrochem. 2001, 31, 1033.
    [155] R. S. Tayashree, P. K. Vishnu, J. Power Sources, 2002, 120.
    [156] D. A. Corrigan, R. M. Bendert, Electrochem. Soc. 1989, 136, 723.
    [157] K. Watanabe, T. Kikoka, J. Appl. Electrochem.1995, 25, 219.
    [158] E. David, J. Alvin, R. Peter, et al. J. Power Source, 1997, 65, 231.
    [159] G. J. C. Carpenter, Z. S. Wronski, Nanostructured Materials, 1999, 11, 67.
    [160] S. L. Chou, F. Y. Cheng, J. Chen, Eur. J. Inorg. Chem. 2005, 20, 4035.
    [161] Y. Wang, Q. S. Zhu, H. G. Zhang, Chem. Commun. 2005, 41, 5231.
    [162] W. Y. Li, S. Y. Zhang, J. Chen, J. Phys. Chem. B, 2005, 109, 14025.
    [163] D. L. Chen, L. Gao, Chem. Phys. Lett. 2005, 405, 159.
    [164] D. B. Wang, C. X. Song, Z. S. Hu, X. Fu, J. Phys. Chem. B, 2005, 109, 1125.
    [165] Z. L. Tian, Q. Z. Jiao, Chin. J. Inorg. Chem. 2004, 20, 1449.
    [166] M. Meyer, A. Bee. D. Talbot, V. Cabuil, J. M. Boyer, B. Repetti, R. Garrigos, J. Colloid Interface Sci. 2004, 277, 309.
    [167] X. H. Liu, L. Yu, Mater. Lett. 2004, 58, 1327.
    [168] I. Zhitomirsky, J. Appl. Electrochem. 2004, 34, 235.
    [169] X. J. Han, X. M. Xie, C. Q. Xu, D.R. Zhou, Y. L. Ma, Opt. Mater. 2003, 23,465.
    [170] Z. H. Liang, Y. J. Zhu, X. L. Hu, J. Phys. Chem. B, 2004, 108, 3488.
    [171] D. N. Yang, R. M. Wang, M. S. He, J. Zhang, Z. F. Liu, J. Phys. Chem. B,2005, 109, 7654.
    [172] K. Matsui, T. Kyotani, A. Tomita, Adv. Mater. 2002, 14, 1216.
    [173] F. S. Cai, G. Y. Zhang, J. Chen, X. L. Gou, H. K. Liu, S. X. Dou, Angew.Chem. Int. Edit. 2004, 43, 4212.
    [174] B. E. Conway, Electrochem. Soc. 1991, 138, 1539.
    [175] 王小峰,孔祥华,刘庆国,等,电源技术,2001,25,166.
    [176] J. P. Zheng, J. Huang, T. R. Jow, J. Elecrocem. Soc. 1997, 144, 2026.
    [177] V. Srinivasan, J. W. Weidner, J. Elecrocem. Soc. 2000, 147, 880.
    [178] K. C. Liu, M. A. Anderson, J. Elecrocem. Soc. 1996,143, 124.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700