汽车前轮定位参数分析与优化设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合山东某汽车制造厂家资助的“轻型载重货车前轮定位参数优化设计”的课题,建立了前轮定位参数中的主销后倾角和主销内倾角的数学计算模型,提出了考虑回正性能与转向轻便性的主销内倾角与后倾角的优化设计理论,用以改善该轻型货车的转向回正性能和转向轻便性能。
    本文首先运用ADAMS软件建立了该车前后纵置钢板弹簧式非独立悬架模型、转向系模型、发动机模型、车身模型、轮胎模型,并在此基础上建立了轻型货车的整车模型。并对该轻型货车的前悬架进行了运动学仿真分析,得到前轮定位参数、轮距、悬架刚度、悬架侧倾角刚度、车轮轮距等随车轮中心跳动行程的变化关系。
    然后按照国标GB/T6323.1-94~GB/T6323.6-94《汽车操纵稳定性试验方法》,对该车进行了道路试验和仿真试验,试验工况为蛇形试验、转向瞬态响应试验、稳态回转试验、转向回正性能试验和转向轻便性试验。通过仿真试验与道路试验的比较,找出该车操纵稳定性方面的不足,并验证整车仿真模型建立的准确性。
    最后本文利用建立好的主销后倾角和主销内倾角的优化设计理论,对该车进行前轮定位参数的优化设计,修改整车仿真模型前轮定位参数值。重新对优化后的整车模型进行操纵稳定性仿真试验,对比优化前后该车性能的变化,验证该优化设计理论的正确性。
This paper was completed based on the project that “Optimization of FrontWheel Alignment for Light-truck Vehicle” supported by a domestic automanufacturer in Shandong province. In this paper, an optimization theoryfor the relation between steering force, rudimental yaw rate and the casterand kingpin inclination is got by way of function. In virtual of multi-bodysystem dynamics and virtual prototyping technology, all kinds ofthree-dimensions solid models and structure specifications of the light-truckvehicle were imported into ADAMS software after those were redefined inreason, and the virtual prototype of full vehicle was assembled based on allkinds of aforementioned virtual prototype subsystems created. Theexperiment validation were made focus on the Pylon course slalom test,Steering transient response test, Steady static circular test procedure,Returnability test and Steering efforts test procedure. At last, theoptimization theory is logically used on the vehicle. It is proved by test resultthat the returnability and the handiness of the vehicle with optimizedalignment parameters is more perfect.
    The whole article included six chapters:
    In chapter one, we itemized the growing history and future trend of the frontwheel alignment parameters, the influence of the front wheel alignmentparameters to handing stability. We reviewed the relationship of handingstability and the drive safety, the growing history of handing stabilityresearch, the evaluation of handing stability. At last, a brief described theresearch content and significance.
    In chapter two, Analyzed the steering moment on the vehicle front wheelsand a calculation model of self-turning moment and steering resistingtorque is introduced. Based on this model, the relation between steering
    force, rudimental yaw rate and the caster and kingpin inclination is got byway of function. Based on these function, a theory for optimization of thekingpin inclination and caster is brought out.In chapter three, by the theory of multi-body system dynamics and virtualprototyping technology, all kinds of three-dimensions solid models andstructure specifications of the light-truck vehicle were imported into ADAMSsoftware after those were redefined in reason. The virtual prototypes offront and rear leaf-spring dependent suspension were created in ADAMSaccording to spring , damper and bushing characteristics and dealing withthe restriction relations and boundary conditions among of parts. The tire,steer and power system models were established also. Finally, the virtualprototype of full vehicle was assembled based on all kinds of afore-mentioned virtual prototype subsystems created. The kinetic motions of thevirtual prototypes of dependent suspension were simulated and analyzed inADAMS/Car. Therefore, the changes of wheel alignments that areinclination angle, caster angle, camber angle, toe angle and wheel rate,wheel tack were presented when wheels bumped and rebounded in thispaper.In chapter four, the Driver Control Files for the simulation analyses ofcontrollability and stability of full vehicle were defined based on “GB/T6323.1-94~GB/T6323.6-94 controllability and stability test procedure forautomobiles“. Pylon course slalom test, Steering transient response test,Steady static circular test procedure, Returnability test and Steering effortstest procedure. The simulation results were evaluated for the full vehiclemodel based on “QC/T 480—1999 Criterion thresholds and evaluation ofcontrollability and stability for automobiles“. The validation results indicatethat the model has relative high accuracy, so it can be used to prove theresult of optimization design.In chapter five, based on the optimization theory, a reasonable optimizationdesign of the vehicle was brought out. It is proved by test result that thereturnability and the handiness of the vehicle with optimized alignmentparameters are more perfect. Finally, it is proved that the optimizationtheory is rational.Chapter seven is the summarization of the article. Depicted the mainresearch work, related conclusion and meaning of this dissertation, andlisted some of the future research fields.
    In conclusion, the front alignment parameters have critical effect on thehanding stability and driving safety of vehicles. At the same time, we canimprove the driving performance by reasonably optimization design of thefront alignment parameters. In this article, a new optimization theory forfront wheel alignments is analyzed, and several tests on the vehicle showthat the optimization theory is reasonable and for reference of this kind ofvehicle's improvement. In addition, the analysis of the vehicle's dynamicsby virtue of computer simulation also has reference value.
引文
[1]McNorton T,Wheeler F.Camber and toe effect on SBFA heavy truck steering axle tire wear[J].SAE technical paper series,1992,(11):63-6
    [2]Tasuo F,Shunichi Y,Yoshititaka U.Tire wear caused by mild tread slip[J]. Rubber Chemistry and Technology,1997,70(4):572-583.
    [3]Wright C,Pritchett G L,Kuster R J.Laboratory tire wear simulationderived from computer modeling of suspension dynamics[J].Tire Science and Technology, 1991,19(3):122-141.
    [4] Michael W. Sayers, A Generic Multi-body Vehicle Model for Simulating Handling and Braking, Vehicle System Dynamics, 1996.
    [5]元增民.汽车车轮侧滑分析[J].汽车研究与开发,1995,(3):36-30.
    [6]徐安.轿车前轮侧滑统计模型[J].汽车技术,2000,(9):11-13.
    [7]宋健.导向轮胎和定位参数对汽车摆振影响的研究及整车横向动力学优化分析[D]北京:清华大学汽车工程系,1987.
    [8]王学浩.当今世界小汽车实用技术数据大全[M]天津:天津科学技术出版社,1994,87-92.
    [9]殷涌光,郁工瑞,程悦荪,拖拉机前轮摆振及稳定性判定[J]农业机械学报, 1984,15(1):11-13.
    [10]孔明树.解放牌CA10B型汽车前轮前束的改进[J].汽车技术,1986,(3): 19-24.
    [11]管迪华.汽车转向轮摆振的仿真计算研究[J].汽车工程,1982,(1): 33-38
    [12]宋健,管迪华.前轮定位参数与轮胎特性对前轮摆振的影响[J].汽车工程,1995,(3):13-23
    [13]程悦荪,郑联珠,邓石荣.拖拉机前轮定位的作用及数值的合理确定[J]. 拖拉机,1986,(4):11-17
    [14]罗进益,周红军.轿车四轮定位检测与调整[M].北京:人民交通出版社, 2002.121-129
    [15]徐逢源.现代汽车构造原理与使用维护[M].北京:人民交通出版社,1994.
    [16]吴际璋.汽车新结构[M].北京:人民交通出版社,1993.
    [17]钟汉洪.现代汽车前轮定位的变化趋势.公路与汽运:2002,NO.3.
    [18]郭孔辉.汽车操纵动力学,长春:吉林人民出版社,1991.
    [19]Dixon J C, Tyres, Suspension and handling, Cambridge University Press,1991.
    [20] Olley M, Independent wheel suspension-its whys and wherefores, Trans. SAE, Vol34, No.2, March 1934:73-81.
    [21] Evans R D, Properties of tyres affecting riding, steering and handling, Trans, SAE, Vol36, No.2, February 1935:41-49.
    [22] Stonex L, Theoretical prediction and experimental substantiation of the response of the automobile to steering control, Proceedings of the Automobile Division, The institution of Mechanical Engineers, London,No.7, 1956-1957:310-330.
    [23]赵又群等.汽车操纵稳定性闭环方法的发展.汽车工程1996,02。
    [24] International Standard, “Road vehicles-Test procedure for a severe lane-change maneuver”, ISO/3888, 1975.
    [25]靳立强,宋传学,王云成,基于回正和转向轻便性的前轮定位参数优化设计理论.
    [26]阂永军,陈旼,陈宁.前轮定位参数对汽车前轮摆振的影响.南京林业大学学报(自然科学版).Vol.25,No.6 Nov2001.
    [27]王伯良,赵波,周建立等.拖拉机前轮定位设计计算方法研究探讨,农业机械学报Vol.27 No.3,1996.
    [28]ADAMS/Car UER'S GUIDE,VERSION 2003
    [29]秦民.整车动力学控制仿真分析.长春:吉林大学博士学位论文,2003.11,62
    [30]陈潇凯.多体系统动力学应用于轻型客车数字化分析模型的研究.长春:吉林大学硕士学位论文,2002.03,17~18
    [31]汽车工程手册编辑委员会,汽车工程手册·试验篇,人民交通出版社,2001.05,284~285
    [32]Ronald A. Bixel et al. Development in Vehicle Center of Gravity and Inertial Parameter Estimation and Measurement. SAE Transaction 950356.
    [33]张昕.电动助力转向助力特性的仿真分析.长春:吉林大学硕士学位论文,2003.03,41~42
    [34]ADAMS/Tire Option,Version12.0,Mechanical Dynamic,Inc.
    [35]张宗明,吴光强等.应用ADAMS进行整车的动力学分析.1998年ADAMS软件中国地区用户年会论文集,229~230.
    [36]GB/T12534—1990.汽车道路试验方法通则
    [37]GB/T6323.1—1994.汽车操纵稳定性试验方法-蛇形试验
    [38]GB/T6323.3—199.汽车操纵稳定性试验方法-转向瞬态响应试验(转向盘转角脉冲输入)
    [39]GB/T6323.4—1994.汽车操纵稳定性试验方法-转向回正性能试验
    [40]GB/T6323.5—1994.汽车操纵稳定性试验方法-转向轻便性试验
    [41]GB/T 6323.6—1994.汽车操纵稳定性试验方法-稳态回转试验
    [42]QC/T 480—19999.汽车操纵稳定性指标限值与评价方法.
    [43]郭孔辉,汽车操纵稳定性[M].吉林科学技术出版社,1991.12
    [44]李欣业,贺丽娟,董正身,武一民. 解放 CA10 型载货汽车前轮摆振的数值仿真研究. 汽车工程 2004 Vol.26 No.5.
    [45]Allen, R.W. and Szostak, H.T.: Steady State and transient analysis of ground vehicle handling. SAE Paper #870495, 1987.
    [46]赵又群.人-车-路闭环操纵系统主动安全性的客观评价,吉林工业大学博士学位论文,1998年3月.
    [47]W.F. Miliken, jr and F.Dell'Amico ,Standards for Safe Handling Characteristics of Automobile,Joint Symposium on Vehicle and Road Design for Safety ,College of Aeronautics, Cranfield, England,July3— 4, 1968.
    [48]薛立军.前轮定位角对汽车转向回正作用的影响.汽车工程,2003,25(2).
    [49]庄继德.汽车轮胎学.北京:北京理工大学出版社,1996,13(1).
    [50]魏道高.车辆前轮定位参数的算法与试验研究:[学位论文].镇江:江苏大学,2003.
    [51]王伯良,周建立,赵波等.拖拉机前轮定位设计计算方法研究探讨.农业机械学报,1996,27(3).
    [52]周建立,王伯良,赵波等.主销内倾角设计计算方法.洛阳工学院学报,1997,(4).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700