弧齿锥齿轮铣齿机主动精度设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弧齿锥齿轮是重要的机械传动基础元件。弧齿锥齿轮铣齿机的结构和加工调整复杂,是复杂制造装备的典型代表。弧齿锥齿轮铣齿机的精度直接影响弧齿锥齿轮的加工精度,进一步影响齿轮副的传动性能和噪声。合理的精度设计是决定产品性价比和设计成功的关键。传统的精度设计主要是根据给定的机床末端执行机构精度求解传动链中各零部件的精度,是面向“装备”的精度设计,不能很好地适应弧齿锥齿轮这类复杂空间曲面零件高精密加工的精度要求。为此,本文从弧齿锥齿轮的加工精度要求和加工原理出发,对弧齿锥齿轮铣齿机精度设计问题进行了探索研究,以期为以数控弧齿锥齿轮铣齿机为典型代表的复杂制造装备的精度设计提供可行、有效的解决方案。论文主要研究内容和成果如下:
     1.构建了面向弧齿锥齿轮加工精度需求的弧齿锥齿轮铣齿机主动精度设计方法,即从加工对象的精度要求和加工原理出发,进行弧齿锥齿轮铣齿机的精度设计。该方法的基本思想是:通过分析弧齿锥齿轮铣齿机的结构及其加工原理,建立铣齿机运动误差与弧齿锥齿轮齿面加工误差之间的映射关系——齿面加工误差模型;基于齿面加工误差模型,建立齿面加工精度模型;依据齿面加工精度模型,将弧齿锥齿轮的加工精度要求向铣齿机各轴运动精度进行分配。
     2.在分析弧齿锥齿轮铣齿机结构和加工原理的基础上,建立了类格里森凤凰I弧齿锥齿轮铣齿机加工模型;并通过虚拟加工,对加工模型进行了验证。
     3.为获得用于建立齿面加工误差模型的弧齿锥齿轮齿面离散点坐标,依据空间坐标变换方法和啮合理论,建立了弧齿锥齿轮齿面方程及基于旋转投影变换求解齿面离散点坐标的计算方法;并通过弧齿锥齿轮齿面三维模型和齿面点坐标理论值与计算值的对比分析,验证了弧齿锥齿轮齿面方程及齿面离散点坐标计算方法的正确性。
     4.在分析弧齿锥齿轮齿面加工误差影响因素的基础上,依据弧齿锥齿轮齿面模型,分析了坐标轴式数控弧齿锥齿轮铣齿机单轴运动误差度对弧齿锥齿轮齿面离散点处加工误差的影响规律;选取齿距偏差为弧齿锥齿轮齿面加工误差检验项目,建立了弧齿锥齿轮齿面加工误差模型。
     5.基于弧齿锥齿轮齿面加工误差模型,建立了弧齿锥齿轮齿面加工精度模型。对弧齿锥齿轮齿面加工精度进行灵敏度分析,获得了齿面加工精度对机床各轴运动精度的灵敏度,结合精度分配和机床精度储备原则,建立了弧齿锥齿轮铣齿机主动精度设计模型。
     6.将上述成果应用于天津第一机床总厂开发的YK2275型坐标轴式数控弧齿锥齿轮铣齿机精度设计,确定了弧齿锥齿轮加工精度要求为6级时,YK2275型数控弧齿锥齿轮铣齿机X、Y、Z直线轴定位精度和A、B回转轴定位精度的设计参考值。
     本文研究的主动精度设计方法,虽然其具体对象是弧齿锥齿轮铣齿机,但就其理念和原理而言,也适用其它基于复杂加工原理的制造装备精度设计,具有一般性意义。
Spiral bevel gear is an important driving component in mechanical engineering. The structure and manufacturing adjustment of spiral bevel gear milling machine tool are complex, it is the typical representative of complex manufacturing equipment. Spiral bevel gear milling machine tool’s precision directly influences spiral bevel gear’s machining precision, and further influences the transmission performance and noise of the gear pair. Reasonable precision design is the key to influence the product’s cost performance and obtain a successful design. The traditional precision design method is primarily to calculate the precision of every machine tool parts in the transmission chain based on the given precision of machine tool’s terminal actuators, it is the precision design which is oriented to the manufacturing equipments, but it can’t meet the machining precision requirement of the complicated space surface part similar to spiral bevel gear. Therefore, this paper explores the issues on spiral bevel gear milling machine tool’s precision design from spiral bevel gear’s precision requirement and machining mechanism, which aims to offer one feasible and effective solution on the problem of precision design of the NC spiral bevel gear milling machine tool, a typical representative of complex manufacturing equipment. The following contributions and main content have been made by this research:
     1. The spiral bevel gear’s machining precision requirement-oriented active precision design method of spiral bevel gear milling machine tool is proposed. It designs spiral bevel gear milling machine tool’s precision from spiral bevel gear’s machining precision requirement and machining mechanism. The basic idea of this method is to establish the mapping relationship between the spiral bevel gear milling machine tool’s motion error and spiral bevel gear’s machining error, the error mapping modle, and then to establish the spiral bevel gear’s machining precision modle based on the error mapping modle. Finally, transform spiral bevel gear’s machining precision requirement to the motion precision of spiral bevel gear milling machine tool’s axis of motion according to the machining precision modle.
     2. The machining model of the spiral bevel gear milling machine tool similar to Gleason Phoenix one is established based on analyzing the spiral bevel gear milling machine tool’s structure and machining mechanism, and it is validated by virtual machining.
     3. In order to obtain the coordinates of discrete points on spiral bevel gear’s tooth surface used to establish the error mapping modle, the equation of spiral bevel gear’s tooth surface and the coordinate calculation method of the discrete points on spiral bevel gear’s tooth surface based on the rotational projection transformation are established with the method of space coordinate transformation and meshing theory. The equation and calculation method are validated by the three dimensional model of spiral bevel gear’s tooth surface and the comparative analysis between the theoretical value and calculated value of the coordinates of discrete points on spiral bevel gear’s tooth surface.
     4. The spiral bevel gear’s tooth surface error model is established, based on analyzing the influencing factors and the influence characteristic of spiral bevel gear milling machine tool’s motion error to spiral bevel gear’s tooth surface machining error, choosing the circular pitch error as spiral bevel gear’s machining error inspection item.
     5. The spiral bevel gear’s machining precision modle is established based on the machining error mapping modle. Active precision design model of spiral bevel gear milling machine tool also is established with the accuracy distribution, machine tool precision reserve principle and sensitivity of spiral bevel gear’s machining precision to the machine tool’s kinematic precision by sensitivity analysis on the machining precision.
     6. The above result is applied to the precision design of YK2275 NC spiral bevel gear milling machine tool developed by Tianjin No.1 Machine Tool Works. And the design reference value of positioning accurcay of X, Y, Z axis and A, B rotation axis of YK2275 is determined as spiral bevel gear’s machining precision grade is six.
     Although the research object of the active precision design method in this paper is spiral bevel gear milling machine tool, but as far as the design concept and principle are concerned, the method is universal and also is applicable to the other manufacturing equipment’s precision design based on the complicated machining mechanism.
引文
[1] Faydor L. Litvin, Alfonso Fuentes. Gear Geometry and Applied Theory ( Second Edition ). Cambridge University Press, 2004.
    [2]北京齿轮厂.螺旋锥齿轮[M].北京:科学出版社,1974.
    [3]曾韬.螺旋锥齿轮设计与加工[M].哈尔滨:哈尔滨工业大学出版社,1989.
    [4]郑昌启.弧齿锥齿轮和准双曲面齿轮—啮合原理、轮坯设计、加工调整和齿面分析计算原理[M].北京:机械工业出版社,1988.
    [5]李敦信,包润阁,王德友.锥齿轮加工简化计算[M].北京:机械工业出版社,1978.
    [6]李铬,梁睦,武良臣,等.弧齿锥齿轮数控加工技术[M].徐州:中国矿业大学出版社,2005.
    [7]天津齿轮机床研究所,西安交通大学.格里森锥齿轮技术资料译文集1、3、5分册[M].北京:机械工业出版社,1986.
    [8]樊奇让·德福.格里森专家制造系统(GEMS)开创弧齿锥齿轮及双曲面齿轮数字化制造新纪元[J].世界制造技术与装备市场,2005, (4):87-93.
    [9]汪劲松,黄田.并联机床-机床行业面临的机遇与挑战[J].中国机械工程,1999,10(10):1103-1107.
    [10]祃琳,黄田,王洋.面向制造的并联机床精度设计[J].中国机械工程,1999,10(10):1114-1118.
    [11]丁红宇,王晓枫.现代精度设计技术之初探[J].机电产品开发与创新,2003,(2):18-20.
    [12]丁红宇.计算机辅助精度设计技术研究[D](硕士学位论文).合肥工业大学,2005.
    [13]张根保,赵健衡.机械产品精度的并行优化设计——数学模型[J].重庆大学学报(自然科学版),1999,21(1):12-20.
    [14]张琳娜,苏智剑,高学军,等.基于面向对象技术的尺寸精度设计专家系统研究[J].机械设计,1999 (4):32-35.
    [15] Hale, Layton Carter, Ph.D. Principles and techniques for designing precision machines [D]. Massachusetts Institute of Technology, 1999.
    [16] Schellekens, P. Rosielle, N.; Vermeulen, H.; Vermeulen, M.; Wetzels, S.; Pril, W. Design for precision: Current status and trends. CIRP Annals - Manufacturing Technology, 1998, 47(2):557-586.
    [17]张根宝.计算机辅助公差设计及其关键技术.全国首届计算机辅助公差设计专题学术会议论文集.杭州,2000:6-14.
    [18] Bjorke, O.Computer-Aided Tolerancing. Tapir publishers, Noway, 1978.
    [19] Bjorke, O.Computer-Aided Tolerancing. 2nded. New York: ASME Press.1989.
    [20] Hillyard R.C. Dimensions and Tolerances in Shape Design. University of Cambridge, UK: Ph.D, Dissertation, 1978.
    [21] Requicha A.A.G. Toward a Theory of Geometric Tolerancing. Int.1. Rob.Res. 1983, 2(4):45-49.
    [22] Weill, R, Clement, A, Hocken, R, et al. Tolerancing for function. Annals of the CIRP, 1998, 37(2):603-610.
    [23] Karolin A.Computer Aided Tolerance Analysis.AUTOFACT 6th Conference Proceedings,Anaheim Ca:Society of Manufacturing Engineers October, 1984.
    [24] Johnson R H, Associates.Dimensioning and Tolerancing Final Report. Arlington, Computer Aided Manufacturing International, Inc, 1985.
    [25] Fainguelern D , Weill R , Bourdet P . Computer Aided Tolerancing and Dimensionin g in process Planning.Annals of the CIRP, 1986, 35(1):381-386.
    [26] ANSI Y14.5M. Dimensioning and tolerancing. ASME, NewYork, 1994.
    [27] Martinsen, K. Statistical process control using vectorial tolerancing. Proceedings of 4th CIRP Seminars on Computer Aided Tolerancing.1995:173-186.
    [28] ISO/TC213. http://www.ds.dk/.
    [29] Mathieu, L., Clement, A., Bourdet, P. Modeling, representation and processing of tolerances, tolerance inspection: a survey of current hypothesis. Proceedings of 5th CIRP Seminars on Computer Aided Tolerancing. 1997:1-33.
    [30] Bennich, P. International standards ford sign tolerancing review and future perspective. Proceedings of 5th CIRP Seminars on Computer Aided Tolerancing. 1997:37-51.
    [31] Nassef, A. Optimal allocation of types and magnitudes of geometric tolerances. [Ph.D. dissertation] Mc Master University, Canada.1997.
    [32] Zhang, H.C. Advanced tolerancing techniques. John Wiley & Sons, Inc.1997.
    [33] Potrman V T and Shuster V G. Computerized synthesis of a theoretical model of a three-plane dimension chain. Soviet Ngineering Research, 1987.
    [34] Guilford J and Turner J U.Advanced tolerance analysis and synthesis for geometric tolerances . Proceedings of the 1993 International Forum on Dimensional Tolerancing and Metrology (ASME). 1993.
    [35] Bourdet P and Ballot E.Geometric behavior laws for computer aided tolerancing. In F.Kimural (ed.), Proceedings of the 4th Design Seminar on Computer-Aided Tolerancing.1995.
    [36] Desrochers A and Verheul S. A thee dimension tolerance transfer methodlogy. The 6th CIRP International Seminar on Computer-Aided Tolreancing, University of Twente, Enschede the Netherlands, 1999.
    [37] Clement, A., R iviere, A., Serre, P. Global consistency of dimensioning and tolerancing. Proceedings of 6th CIRP Seminars on Computer Aided Tolerancing.1999:1-26.
    [38] Tsai, J. C., Wang, W. W. Development of a computer aided tolerancing system in CAD environment. Proceedings of 6th CIRP Seminars on Computer Aided Tolerancing. 1999:47-54.
    [39] Desrochers, A. Verheul, S. A three dimensional tolerance transfer methodology. Proceedings of 6th CIRP Seminars on Computer Aided Tolerancing.1999:83-92.
    [40] Bley, H., Oltermann, R., Thome, O., Weber, C. A tolerance system to interface design and manufacturing. Proceedings of 6th CIRP Seminars on Computer Aided Tolerancing. 1999:149-156.
    [41] Salomons, O.W. Computer support in the design of mechanical products, constraint specification and satisfaction in feature based design for manufacturing. [Ph.D. dissertation]. University of Twente, the Netherlands. 1995.
    [42] Srinivasan, V., An integrated view of geometrical product specification and verification. Proceedings of 7th CIRP Seminars on Computer Aided Tolerancing. France, 2001:7-18.
    [43] Tsai, J.C., A STEP translator toward computer integrated tolerancing. Proceedings of 7th CIRP Seminars on Computer Aided Tolerancing. France, 2001: 255-264.
    [44]杨将新.基于装配成功率的公差优化设计系统研究[D](博士学位论文).浙江大学,杭州,1996.
    [45]刘玉生.基于数学定义的平面尺寸和行为公差建模与表示技术的研究[D] (博士学位论文).浙江大学,杭州,1997.
    [46]方红芳.设计公差和工序公差并行设计的研究[D](博士学位论文).浙江大学,杭州,1997.
    [47]胡洁.基于变动几何约束网络的形位公差与方法的研究[D] (博士学位论文).浙江大学,杭州,2001.
    [48]蔡敏.基于数学定义的圆柱要素公差建模与分析技术的研究[D](博士学位论文).浙江大学,杭州,2002.
    [49]胡洁,吴昭同.计算机辅助形位公差大小的最优分配[J].工程设计学报,2000(4):28-31.
    [50]胡洁,吴昭同.面向功能的三维装配公差链的自动生成[J].工程设计学报,2001(3):131-134.
    [51]刘玉生,吴昭同.基于数学定义的平面尺寸公差数学模型[J].机械工程学报,2001,37(9):12-17.
    [52]胡洁,吴昭同.面向装配的变动几何约束网络的生成方法研究[J].计算机辅助设计与图形学学报,2002,14(1):79-82.
    [53]胡洁,吴昭同.支持并行工程的公差设计与评价研究[J].计算机集成制造系统,2002,8(12):988-992.
    [54]胡洁,吴昭同.计算机辅助形位公差类型的生成方法研究[J].工程设计学报,2003, (3):38-41.
    [55]刘玉生,吴昭同.基于特征的层次式公差信息表示模型及其实现[J].机械工程学报,2003,39 (3):1-7.
    [56]胡洁,熊光楞,吴昭同.基于变动几何约束网络的公差设计研究[J].机械工程学报,2003,39 (5):20-26.
    [57]吴昭同,杨将新.计算机辅助公差优化设计[M].杭州:浙江大学出版社,1999.
    [58]李斌.计算机辅助公差设计中有向功能关系图OFRG功能实现方法及应用[D](博士学位论文).重庆大学,重庆,1998.
    [59]张根保.计算机辅助公差设计综述[J].中国机械工程,1996,7(5):47-50.
    [60] Zhang, G B. Simultaneous tolerancing for design and manufacturing. Advanced to lerancing techniques. John Wiley & Sons, Inc. 1997:207-232.
    [61]李斌,张根保,徐宗俊.有向功能关系图OFRG功能实现的代数方法[J].重庆大学学报,1999,22(1):41-46.
    [62]熊峰.工程表面复合评定与统计公差研究[D](博士学位论文).华中科技大学,武汉,2002.
    [63]黄美发.面向设计和制造的并行公差设计方法研究[D](博士学位论文).华中科技大学,武汉,2004.
    [64]黄美发,徐振高.一种工序公差的并行优化分配方法[J].工程设计学报,2000,(4):39-42.
    [65]彭和平,蒋向前,徐振高,等.基于现值质量损失的相关特征产品的公差设计[J].华中科技大学学报:自然科学版,2009,37(2):71-74.
    [66]闰艳,宁汝新.面向加工环境的公差设计研究与开发[J].计算机辅助设计与制造,2000,(1):57-58.
    [67]闰艳,宁汝新.公差设计特征专家系统[J].工程设计学报,2000,(4):25-27.
    [68]闰艳,宁汝新.并行工程中的公差设计研究与开发[J].计算机集成制造系统,2000,6(5):43-47.
    [69]闰艳.计算机辅助公差设计[D](博士学位论文).北京理工大学,北京,2001.
    [70]王恒,宁汝新.面向精度分析的全语义产品模型研究[J].计算机集成制造系统,2005,11(7):921-926.
    [71]王恒,宁汝新.计算机辅助公差设计与分析的研究现状及展望[J].航空制造技术,2006,(3):73-75,102.
    [72]王恒,宁汝新.面向虚拟装配的产品公差模型[J].计算机集成制造系统,2006,12(7):961-968,975.
    [73]张宇,张洪潮.一种基于质量目标的统计公差和统计公差带的表达[J].工程设计学报,2000, (4):8-10.
    [74]王前洪.统计公差与累积和控制图并行设计方法的研究与应用[D](硕士学位论文).山东理工大学,山东淄博,2006.
    [75]范秀敏,陈明敏.几何尺寸公差的分层优化设计[J].上海交通大学学报,1999,33(7):829-832.
    [76]范秀敏.装配系统的公差建模与优化[D](博士学位论文).上海交通大学,上海,1998.
    [77]孙绍民. CAD环境中公差分析与综合的研究[D](博十学位论文).哈尔滨工业大学,哈尔滨,1997.
    [78]姬舒平.虚拟装配环境下公差并行设计方法的研究[D](博十学位论文).哈尔滨工业大学,哈尔滨,2000.
    [79]蒋庄德,苑国英等.机械精度设计[M],西安:西安交通大学出版社,2000.
    [80]杨铁牛,赵汝嘉.人工神经网络法选择公差与配合[J].机械制造,2001,39(5):13-15.
    [81]杨铁牛.选择公差与配合新方法—神经网络法[J].机械设计,2001,18(1):7-9.
    [82]卢军,赵丽萍.基于知识的公差设计[J].计算机集成制造系统,2001,7(11):50-53.
    [83]张博,李宗斌.采用多色集合理论的公差信息建模与推理技术[J].机械工程学报,2005,41(10):111-116.
    [84]费琼洲.尺寸链标注及其解算法分析[J].合肥工业大学学报:自然科学版,1998,21(2):75-79.
    [85]费琼洲.现代公差设计理论研究[J].合肥工业大学学报:自然科学版,1999,22(1):95-97.
    [86]毕宝庆,曹国安.产品公差——成本优化设计[J].价值工程,2001, (1):31-32.
    [87]胡洁,吴昭同.面向功能的三维装配公差链的自动生成[J].工程设计学报,2001, (3):131-134.
    [88]熊越东,王太勇.统计试验法在汽车零部件三维尺寸及公差设计中的应用[J].汽车技术,2003, (10):18-21.
    [89]张旭堂,刘文剑,金天国.面向并行工程的三维装配公差链分析[J].机械设计与研究,2004,20 (4):59-62.
    [90]曾红,张旭,牟超.基于三维环境的智能化尺寸公差标注系统的开发[J].机床与液压,2005, (2):150-151,88.
    [91]刘玉生,曹衍龙. TolRM:面向三维CAD的公差建模系统[J].计算机辅助设计与图形学学报,2006,18(8):1179-1184.
    [92]许本胜,黄美发,钟艳如,等.基于机器人运动学的三维公差累积建模研究[J].机械设计与制造,2007, (1):105-107.
    [93]孙晓燕,黄克正,张勇.计算机辅助三维公差设计的研究现状[J].工具技术,2007,41(2):15-19.
    [94]孙晓燕.与概念结构生长同步的三维公差设计研究与开发[D] (硕士学位论文).山东大学,济南,2007.
    [95]方红芳,吴昭同.公差理论的成就与动向[J].中国标准化,1996,(5):6-8.
    [96]曹衍龙.面向制造环境的公差稳健设计方法与技术的研究[D](博士学位论文).浙江大学,杭州,2003.
    [97]刘建业.计算机辅助公差设计技术研究及其在CAD平台上的实现. [D](硕士学位论文).机械科学研究院,北京,2003.
    [98]边炳传.基于并行工程的装配模型及公差设计的研究[D](硕士学位论文).山东科技大学,青岛,2003.
    [99]孟庆波.基于概念结构生长型设计的公差设计技术研究[D](硕士学位论文).山东大学,济南,2003.
    [100]刘保军.基于制造资源的公差可制造性评价及其成本模型研究[D](硕士学位论文).浙江大学,杭州,2004.
    [101]吴文.面向产品设计的公差设计方法研究[D](硕士学位论文).长安大学,西安,2004.
    [102]伍懿.一种3-TPS并联机床的尺度综合及精度设计[D](硕士学位论文).东北大学,沈阳,2004.
    [103]方东阳.形位精度数字化设计与评价技术的研究[D](硕士学位论文).郑州大学,郑州,2004.
    [104]张龙.计算机辅助工序尺寸及公差设计的研究[D](硕士学位论文).浙江大学,杭州,2005.
    [105]吴方才.基于蒙特卡罗仿真和遗传算法的公差设计[D](硕士学位论文).武汉理工大学,武汉,2005.
    [106]邹洪富.基于群集智能的产品公差优化设计方法研究[D](硕士学位论文).华中科技大学,武汉,2006.
    [107]张勇.基于同步公差设计的概念结构设计优化[D](博士学位论文).山东大学,济南,2006.
    [108]曹亮.基于不确定性理论的产品精度信息模型的研究[D](硕士学位论文).合肥工业大学,合肥,2006.
    [109]王琦.纳米三坐标测量机的精度设计与误差修正[D](硕士学位论文).合肥工业大学,合肥,2006.
    [110]祃琳. 3-HSS并联机床精度设计与误差补偿方法研究[D](硕士学位论文).天津大学,天津,2000.
    [111]李蓉.基于质量评价的矢量化工程图后处理技术研究[D] (硕士学位论文).西北工业大学,西安,2003.
    [112]彭和平,刘晓军.基于矢量环装配模型的二维公差分析[J].机械传动,2007,31(6):84-86.
    [113]彭和平,刘晓军.考虑形位公差的二维装配公差分析[J].机械传动,2008,32(3):75-77,82.
    [114] Turner J U. A Feasibility Space Approach for Automated Tolerancing. ASME Journal of Engineering for Industry, 115:341-345.
    [115] Wirtz. A Vectorial Tolerancing a Basic element for quality control. Proceeding, 3th CIRP seminar on Computer Aided Tolerancing, Cachan (F), 115-128.
    [116] R G. Willhelm, S. C. Ly. Tolerance systhesis to support concurrent engineering. Annals of the CIRP, 1992,141(1):197-200.
    [117] Zhang G B, Porcher M. An Investigation into a Mathematical Model of Optimal Tolerancing Supporting Concurrent Engineering. The13th ASME Annual International Computer in Engineering Conference and Exposition, SanDiego, C.A., USA, 1993.
    [118]方红芳,吴昭同.并行公差设计与工艺线路技术经济评价方法[J].机械工程学报,2000,36(4):74-77,85.
    [119]黄美发,高咏生.基于工序加工能力的并行公差优化设计[J].中国机械工程,2003,14(5):385-389.
    [120]李舒燕,金健.产品公差的并行优化设计[J].机械设计,2003,20(5):61-62.
    [121]张晶,黄美发,钟艳如,等.基于加工因素和信噪比质量损失的并行公差设计[J].系统仿真学报,2006,(z2):195-198.
    [122]肖人彬,陶振武,邹洪富.基于混合群集智能算法的并行公差优化设计[J].计算机集成制造系统,2007,13(4):668-674,691.
    [123] Srinivasan R S. Geometric Tolerancing in Mechanical Design Using Fractal-based Parameters. Journal of Mechanical Design, 1995,117(3):203-206.
    [124]廖小云,雷闻宇.基于分形的机加工零件表面几何精度与性能分析[J].重庆大学学报,1999,(1):18-23.
    [125]廖小云,程森林,许重庆.分形公差理论及其分形维数的计算方法[J].工程设计,2000,(4):11-12.
    [126]廖小云,唐倩,赵英,等.基于分形和小波的几何型面加工误差综合分析[J].中国工程科学,2002,4(5):75-78.
    [127]王薇.分形理论在表面粗糙度非接触测量中的应用[D](硕士学位论文).吉林大学,长春,2006.
    [128] Ting K L, Long Y F. Performance Quality and Tolerance Sensitivity of Mechanisms. Journal of Mechanical Design, 1996, 118(3):144-150.
    [129] Feng C X. Kusiak A. Robust Tolerance Design with the Integer Programming Approach. Journal of Manufacturing Science and Engineering, 1997, 119(11):603-610.
    [130] Jeang A , Leu E . Robust tolerance design by computer experiment [J].International Journal of Production Research,1999,37(9):1949-1961.
    [131] Jeang A . Robust tolerance design by response surface methodology [J].International Journal of Advanced Manufacturing Technology,1999,15(6):399-403.
    [132] Feng C X,Kusiak A.Robust tolerance synthesis with the design of experiments approach [J].Journal of Manufacturing Science and Engineering,2000,122(3):520-528
    [133]曹衍龙,杨将新,吴昭同.基于模拟试验法的离散公差稳健设计[J].工程设计学报,2003,10(1):11-14,38.
    [134]曹衍龙,杨将新,吴昭同,等.面向制造环境的稳健公差设计方法[J].中国机械工程,2003,14(2):134-137.
    [135]曹衍龙,刘保军,杨将新,等.公差—成本稳健性分析研究[J].工程设计学报,2003,10(3):126-130.
    [136]曹衍龙,杨将新,吴昭同,等.基于模糊质量损失的公差稳健设计方法的研究[J].浙江大学学报,2004,38(1):1-4,10.
    [137]曹衍龙,王移风,应义斌,等.基于可行稳健性的公差设计方法研究[J].浙江大学学报,2005,39(3):364-367.
    [138]周恺,蔡颖,张振家,等.稳健设计理论在公差分析中的应用[J].北京理工大学学报2003,23(5):557-560.
    [139]胡本峰,张娇娜.基于DOE的公差稳健设计方法研究[J].农业装备与车辆工程,2007,(3):29-32.
    [140]王瑜,翟文杰,吴伟国,等.公差稳健优化设计的研究[J].计算机集成制造系统,2007,13(11):2081-2085.
    [141] Chen Xi, Cheraghi, S.Hossein, Arupathi Ravishankar. Dynamic tolerance analysis of multi operation manufacturing process [C]. Proceedings of the IEEE International Symposium on Assembly and Task Planning, ISATP'97. August 7, 1997 - August 9, 1997, Marina del Ray, CA, USA.
    [142]陈志同.动态工艺尺寸设计方法研究[J].北京航空航天大学学报,1999,25(1):68-71.
    [143]谭岱红.用动态公差图解释相关要求初探[J].职业技术教育,2007,(26):47-49.
    [144]崔丽娟.基于动态公差的最大实体原则的原理及应用[J].制造技术与机床,2009, (3):112-115.
    [145] Fan, Q. Computerized Modeling and Simulation of Spiral Bevel and Hypoid Gears Manufactured by Gleason Face Hobbing Process [J]. Journal of Mechanical Design 128 (2006)1315-1327.
    [146]李小清.螺旋锥齿轮数控加工与误差修正技术研究[D](博士学位论文).华中科技大学,武汉,2004.
    [147]吴序堂.齿轮啮合原理M].北京:机械工业出版社,1982.
    [148]王树人.齿轮啮合理论简明教程[M].天津:天津大学出版社,2005.
    [149]肖田元.虚拟制造[M].北京:清华大学出版社,2004.
    [150]严隽琪,范秀敏,蒋祖华.虚拟加工的理论与技术基础研究[J].中国机械工程,1999,10(9):1068-1071.
    [151]李云龙,曹岩.数控机床加工仿真系统VERICUT[M].西安:西安交通大学出版社,2005.
    [152]李荣彬,李建广,张志辉.虚拟精密加工系统开发的研究[J].机械工程学报,2001,37(6):66-71.
    [153]郭晓东,张明德,梁伟.基于AutoCAD的锥齿轮切齿过程仿真及软件开发[J].现代制造工程,2002,(10):34-36.
    [154]殷盛福,曾韬.弧齿锥齿轮的加工仿真研究[J].机械与电子,2004,(1):66-68.
    [155] F. Di Puccio, M. Gabiccini, M. Guiggiani. Generation and curvature analysis of conjugate surfaces via a new approach [J]. Mechanism and Machine Theory, 2006,(41):382-404.
    [156]肖来元,廖道训,易传云.基于MATLAB的数字化共轭曲面求解及仿真研究[J].机械科学与技术,2003,22(3):355-357.
    [157]邱明.基于MATLAB的数字化共轭曲面求解研究[J].江苏大学学报(自然科学版), 2006,27(5):27-30.
    [158] M.Vimercati. Mathematical model for tooth surfaces representation of face-hobbed hypoid gears and its application to contact analysis and stress calculation [J]. Mechanism and Machine Theory, 2007,(42):668-690.
    [159]王军,王小椿,姜虹,等.螺旋锥齿轮齿面的三坐标测量[J].机械工程学报,2003,39(6):151-154.
    [160]杨杰,付淼鑫,王其民,等.基于旋转投影不变矩的字符串识别方法[J].大庆石油学院学报,2005,29(4):67-69.
    [161]袁浩,卢章平,毕伟,等.基于旋转投影变换的三维网格模型坐标标准化[J].农业机械学报,2008,39(11):132-137.
    [162]王传涛,杨建玺,张洛平,等.逆向工程中NURBS曲面重构技术[J].河南科技大学学报:自然科学版,2009,30(2):19-21.
    [163]张楠,王晏民.基于点云数据NURBS曲面重构技术探究[J].北京建筑工程学院学报,2009,25(1):16-20.
    [164]慈瑞梅.基于CMM测量数据的曲面重构关键技术研究与实现[D](博士学位论文).南京理工大学,南京,2006.
    [165]王小椿,王军,姜虹,等.螺旋锥齿轮的齿面测量及机床加工参数修正[J],机械工程学报,2003,39(8):125~128.
    [166] GB 11365-89锥齿轮和准双曲面齿轮精度.北京:中国标准出版社,1989.
    [167] GB/T 17421.2?2000机床检验通则第2部分:数控轴线的定位精度和重复定位精度的确定.北京:中国标准出版社,2000.
    [168]金泰义.精度理论与应用[M].合肥:中国科学技术大学出版社,2005.
    [169]马宏,王金波[M].北京:北京航空航天大学出版社,2009.
    [170]康方,范晋伟.用于精度分配的数控机床误差建模[J],机械制造,2007,45(4):9-12.
    [171]刘又午,章青,王国锋,等.数控机床误差补偿技术及应用—发展动态及展望.制造技术与机床,1998,(12):5-6,21.
    [172] J. Ni. CNC Machine Accuracy Enhancement through Real-time Error Compensation. Journal of Manufacturing Science and Engineering, 1997,119: 717-725.
    [173]刘焕牢.数控机床几何误差测量及误差补偿技术的研究[D](博士学位论文).华中科技大学,武汉,2006.
    [174]孟刚,刘绍舫,李晓东.机器设计的精度储备分析[J],石油矿场机械,2006,35(5):95-96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700