结构有限元分析神经网络计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于传统计算机本身固有的计算与存储之间的“瓶颈”障碍,许多工程力学问题因计算规模大而得不到求解,许多新问题和悬而未决的老问题,由于计算问题等原因还没有突破性进展。因此,需要发展新型的计算力学理论与方法。
     随着确定性结构的数值计算理论日益完善,人们不再满足于对确定性结构的分析,开始在结构分析中考虑结构的不确定因素。结构的不确定性分为两类,一类为随机性,另一类为模糊性。与确定性结构分析相同,对不确定结构的分析主要采用有限元计算方法。到目前为止,随机有限元法的研究已基本成熟。而由于模糊方程组和区间方程组尚没有一个令人满意的求解方法,制约了有限元法在具有模糊参数结构的分析计算中的应用。
     鉴于上述原因,开展结构分析的实时计算和模糊有限元的求解方法的研究,不仅具有重要的理论意义,而且具有十分重要的工程应用价值。
     针对上述问题,在国家自然科学基金(高技术新概念新构思探索)、教育部优秀青年教师资助计划、高等学校全国100篇优秀博士学位论文作者专项基金等的资助下,本文对弹塑性力学问题的动静态的实时计算、模糊有限元的求解方法等问题进行了系统和深入的研究,取得了以下成果:
     (1)根据有限元总刚矩阵经修正后具有正定性的特点以及弹性体势能函数的具体形式,将饱和模式的线性系统(简称为LSSM系统)引入到有限元的神经网络计算中,在理论上实现了有限元神经网络计算的无误差求解。给出了有限元的神经网络计算的电路实现。
     (2)特征值问题是结构动态分析计算的关键之一。本文应用Reyleigh极小值原理,将神经网络的能量函数的极小点对应于广义特征值问题的极小特征值所对应的特征向量,在神经网络向着能量函数极小点运动的同时得到了极小特征向量的精确解答。从特征值的变分特性出发,给出了基于罚函数法的其他特征值的神经网络求解方案。从而在理论上给出了所有特征值的神经网络求解方法。
     (3)在实际工程中,塑性变形是经常发生的。与弹性结构分析相比,对发生塑性变形结构的分析需要更多的计算时间,因此塑性结构的实时计算更为重要。针对已有方法的局限性,以塑性理论中的二阶段最小势能变分原理为基础,对弹塑性力学问题的神经网络有限元计算方法进行了研究,提出了基于二阶段最小势能变分原理的弹塑性力学问题的神经网络求解方法,建立了塑性力学问题的有限元神经网络计算模型。
     (4)针对模糊方程组的求解技术尚不完善,模糊有限元方程组的计算存在着计算量大且将得到的解代回原方程时方程组的两边不平衡等问题,提出了基于模糊系数规划的模糊有限元求解方法。此方法将模糊系数规划与线弹性力学的行为本质——线弹性物体的受力平衡过程为一个二次方程的能量极小化过程相结合,不但物理意义明确,而且经计算机仿真表明,按该方法设计计算,从工程角度看,有利于提高系统的安全储备。
     (5)在基于模糊系数规划的模糊有限元求解方法的基础上,利用神经网络的优化计算能力给出了一种模糊有限元的神经网络计算方法,从而形成了一套较合理的具有模糊参数结构的实时分析计算方法。
     (6)研究了基于模糊变分原理的对模糊宗量进行二阶摄动展开的的摄动模糊有限
    
    元计算方法。对现有文献中没有由单刚矩阵集成总刚矩阵这一过程进行了补充完善。通
    过实例计算和与已有模糊有限元计算方法的比较,说明了该方法的有效性。并指出基于
    模糊变分原理的摄动模糊有限元法是在小扰动情况下进行的一种近似求解方法。当总刚
    矩阵又、总体载荷向量f等不能展开为各模糊源的有限次(一般取为两次)的表达式时,
    随着模糊摄动量的增大,其截断误差将不能接受,此时若采用摄动模糊有限元法进行计
    算,其分析将会失败。
Many problems of engineering mechanics that have large computation scale haven't been solved due to the bottleneck between the computation and memory of the Von Neumann computer. And there still haven't breakthrough in some new or pendent problems because of such reason as computation, etc. Therefore, new theory and method of computational mechanics need to be developed to solve above problems.
    With the increasingly perfecting of numerical calculation theory of definite structure, people are not satisfied with the analysis of definite structure, and begin to take the uncertain factors of structure into account when analyzing the structure. Uncertainty of structure can be classed into two different categories. One is stochastic uncertainty. The other is fuzzy uncertainty. Finite element method is adopted to analyze the uncertain structure the same as to analyze the definite structure. Up to now, the research of stochastic finite element is mature basically. However, the application of finite element in analysis and computation of uncertain structure is to be limited because there hasn't a satisfying solving method to fuzzy equations and interval equations. So, studying on real-time computation of structural analysis and on the solving method of fuzzy finite element not only has important theory significance, but also has important application value in engineering.
    Point to above problems, under the financial support of the National Natural Science Foundation (exploration of high tech and new concept and new conceive), the Excellent Young Teachers Program of Ministry of Education and National Excellent Doctoral Dissertation Special Foundation, the static and dynamic real-time computation of elasticity-plastic mechanics, solving method of fuzzy finite element and other problems were studied in this paper. And some achievement was gained as following:
    (1) Based on the positive definiteness of system stiffness matrix of finite element that was modified and the form of potential energy function of elastic body, the linear system of saturation mode (LSSM) was introduced into the neural computation of finite element, by which the no-error solving of finite element neural net computation was realized in theory. The circuit realization of neural computation of finite element was presented.
    (2) Eigenvalue is very important to dynamic analysis and computation of structure. Based on the theory of Reyleigh minimum, the minimum of energy function of neural network was mapped to the eigenvector that was mapped to the minimal eigenvalue of the generalized eigenvalue problem, by which the precise solution of minimal eigenvalue was gained while the neural network moving to the minimum of energy function. Based on the variational characteristic of eigenvalue, the neural network solving method of other eigenvalues based on penalty function method was presented. Thus, the neural network solving method of all eigenvalues was presented in theory.
    (3) In practical engineering, plastic deformation occurs frequently. Compared with elastic structural analysis, more time is used to analyze the plastic deformation structure. So, the real-time computation of plastic structure is more important than that of elastic structure.
    
    
    
    Point to the limitation of existing method, the neural computation method of finite element of elasticity-plastic mechanics was studied on the base of variational principle of the second order minimal potential energy in plastic theory. The neural network solving method of elasticity-plastic mechanics based on variational principle of the second order minimal potential energy was presented, and the neural network computation model of finite element of plastic mechanics was given.
    (4) Due to the imperfectness of solving the fuzzy equations, complexity in computation of fuzzy finite element equations and imbalance in the two sides of fuzzy finite element equations while the solution was lead back to the original equations, the fuzzy finite element method based on fuzzy coefficient programming was
引文
[1] Turner M J, Clough R W, Martin H C and Topp L J. Stiffness and deflection analysis of complex structures. J. Aeros, 1956, 23 (9) : 805-824
    [2] Clough R W. The finite element method in plane stress analysis. Am. Soc. Civ. Eng, 1960, 87: 345-378
    [3] Melosh R J. Basis of derivation of matrices for the direct stiffness method. AIAA J. 1963, 1 (7) : 1631-1637
    [4] Pian T H H. Derivation of element stiffness matrices by assumed stress distributions. AIAA J. , 1964, 2
    
    (9): 1333~1336
    [5]Herrmann L R. Finite element bending analysis for plates. J. Eng. Mech. Div. , ASCE, 1967, EM5: 13~26
    [6]钟万勰,张柔雷.塑性理论中的二阶段最小变分原理[J].计算力学学报,1987,4(4):1~7
    [7]刘小民,席光,王尚锦.叶片扩压器内三维流场数值计算与实验研究.空气动力学报,1999,14(2):131~134
    [8]肖任贤,罗贤海,许志华.陶瓷泥浆间歇式磁选机磁场有限元分析.陶瓷学报,2000,21(2):86~96
    [9]Haiskes R,Chao E Y S.骨科生物力学有限元分析头10年工作综述.力学进展,1986,16(1):98~116
    [10]钱令希.关于结构力学发展的思考.计算结构力学及其应用,1994,11(1):1~8
    [11]祝家麟.边界元方法—一个老而新的发展中的数值计算方法.数学的实践与认识,1985,3:44~49
    [12]姚振汉,杜庆华.边界元法应用的若干近期研究及国际新进展.清华大学学报,2001,41(4):89~93
    [13]C.A.Brebbia(刘兴业译).边界元法展望.力学进展,1988 18(3):392~395
    [14]刘效尧.样条函数与结构力学.北京:人们交通出版社,1990
    [15]夏永旭.加权残量法在我国的最新进展.力学进展,1996,26(3):407~415.
    [16]李卧东,王元汉,陈晓波.无网格法在断裂力学中的应用.岩石力学与工程学报,2001,20(4):462~466
    [17] 应隆安.无限元方法.北京:北京大学出版社,1992
    [18]Sun Daoheng, Hu Qiao, Xu Hao. A neurocomputing model for the elastoplasticity.Computer Methods in Applied Mechanics and Engineering, 2000, 82: 177~186
    [19]张汝清.并行结构力学的发展与展望.力学进展,1994,24(4):511~517
    [20]陈景良.并行算法引论.北京:石油工业出版社,1992
    [21]刘宁.可靠度随机有限元法及其工程应用.北京:中国水利电力出版社,2001
    [22]王光远.工程软设计理论.北京:科学出版社,1992
    [23]Dubois D, Prade H. Fuzzy Sets and System: Thory and Applications. New York: Academic Press, 1980
    [24]李洪兴,汪群,段钦治,雪家雄.工程模糊数学方法及应用.天津:天津科学技术出版社,1993
    [25]Shinozuka M, Lencc E A. A probabilistic model for spatial distribution of material properties. Engng. Fracture Mech, 1976, 8:217~227
    [26]Yamazaki F, Shinozuka M, Dasgupta G. Neumann expansion for stochastic finite element analysis. J. Engng. Mech, ASCE, 1988, 114 (8): 1335~1354
    [27]Shinozuka M, Deodatis G. Response variability of stochastic finite element systems. J. Engng. Mech, ASCE, 1988, 114 (3): 499~519
    [28]Combou B. Application of first order uncertainty analysis in the finite element method in linear elasticity. Proc. 2nd Inc. Conf. on Applications of Statistics and Probability in Soil and Struct. Engng. London, England, 1972:117~122
    [29]Dendrou B A, Houstis E A. An inference finite element model for field application. Applied Mathematical Modeling, Guildford, England, 1978, 1:49~55
    [30]Handa K, Anderson K. Application of finite element methods in statistical analysis of structures. Proc,
    
    3rd Inc. Conf. On Struct. Safety and Reliability, Trondheim, Norway, 1981:409~417
    [31]Hisada T, Nakagiri S. Stochastic finite element method developed for structural safety and Reliability. Proc. 3rd Inc. Conf. On Struct. Safety and Reliability, Trondheim, Norway, 1981:395~408
    [32]Gawronski W. Fuzzy element. Computers and Structure, 1979, 10 (6): 863~865
    [33]吕恩琳.一种模糊随机有限元法.重庆大学学报,1996,19(5):68~75
    [34]吕恩琳.结构模糊有限元平衡方程的一种新解法.应用数学和力学,1997,18(7):631~638
    [35]王德人,张连生,邓乃杨.非线性方程的区间算法.上海:上海科学技术出版社,1987
    [36]陈怀海.非确定结构系统区间分析的直接优化法.南京航空航天大学学报,1999,31(2):146~150
    [37]Hanss Michael, Willner Kai. Fuzzy arithmetical approach to the solution of finite element problem with uncertain parameters. Mechanics Research Communications, 2000, 27 (3): 257~272
    [38]王柏生.单源模糊数及其运算.模糊系统与数学,1998,12(2):49~54
    [39]Liu Changhong, Chen Qiu. Method of solving the fuzzy finite element equations in monosource fuzzy numbers. Applied Mathematics and Mechanics, 2000, 21 (11): 1272~1276
    [40]谢志成,杨学忠,钱振东等.摄动有限元法解一般轴对称壳几何非线性问题.应用数学和力学,1984,5(5):709~722
    [41]Thompson J M T, Walker A C. The non-linear perturbation analysis of discrete structural systems. Intemational Journal of Solids and Structures, 1968, 4 (8): 757~768
    [42]Yokoo Y T, Nakamura K Uetani. The incremental perturbation method for large displacement analysis of elastic-plastic structures. Int. J. Numerical Methods in Engineering, 1976, 10 (3): 503~525
    [43]谢志成,王瑞五,杨学忠等.在材料非线性问题中的摄动有限元法.应用数学和力学,1983,4(1):123~134
    [44]陈虬,刘先斌.随机有限元法及其工程应用.成都:西南交通大学出版社,1993
    [45]Kaminski M. Stochastic perturbation approach to engineering structure vibrations by the finite difference method. Journal of Sound and Vibration, 2002, 251(4): 651~670
    [46]杨绿峰.模糊随机有限元方法及其应用:[博士学位论文].武汉:武汉工业大学,1998
    [47]陈原,钱江.含模糊参数结构有限元方程的一种新解法.力学季刊,2002,23(2):210~218
    [48]雷震宇,陈虬.模糊结构有限元分析的一种新方法.工程力学,2001,18(6):47~53
    [49]程相君,王春宁,陈生潭.神经网络原理及其应用.北京:国防工业出版社,1995
    [50]史忠植.神经计算.北京:电子工业出版社,1993
    [51]陈耀武,汪乐宇,龙洪玉.基于组合式神经网络的短期电力负荷预测模型.中国电机工程学报,2001,21(4):79~82
    [52]罗援,赵勇,王柏祥等.一种新的动态心电数据的神经网络压缩方法中国生物医学工程学报,1999,18(2):159~164
    [53]吴微,陈维强,刘波.用BP神经网络预测股票市场涨跌.大连理工大学学报,2001,41(1):9~15
    [54]张承福.对当前神经网络研究的几点看法.力学进展,1994,24(2):181~186
    [55]王伟.人工神经网络原理—入门与应用.北京:北京航空航天大学出版社,1995
    [56]焦李成.神经网络计算.西安:西安电子科技大学出版社,1996
    [57]陈新,孙道恒,黄洪钟.结构分析有限元系统与神经网络.起重运输机械,1999,(6):6~8
    [58]A..加卢什金(阎平凡译).神经网络理论.北京:清华大学出版社,2002
    [59]钱令希.谈计算力学.力学与实践,1995,17(4):2~4
    
    
    [60] Hajela P, Berke L. Neurobiological computational models in structural analysis and design. Computers and Structures, 1991, 41:657~667
    [61] Szewcyzk Z P, Noor A K. A hybrid neurocomputting/numerical strategy for nonlinear structural analysis. Computers and Structures, 1996, 58 (4): 661~677
    [62] 陆金桂,余俊,王浩等.基于人工神经网络的结构近似分析方法研究,中国科学(A辑),1994,24:653~658
    [63] Omar T, Wskandarian A, Bedewi N. Vehicle crash modeling using recurrent neural networks. Mathematical and Computer Modeling, 1998, 28 (9): 31~42
    [64] Wang Li-Xin, Jerry M. Parallel Structured Networks for Solving a wide Variety of Matrix Algebra Problems. Journal of Parallel and Distributed Computing, 1992, 14 (2): 236~247
    [65] Li sui xiang. SCNN solver for finite element analysis with neural network elements. Proceedings of the Sixth International Conference on the Application of Artificial Intelligence to Civil and Structural Engineering, 2001, 33~34
    [66] Li sui xiang. Global flexibility simulation and element stiffness simulation in finite element analysis with neural network. Computer Methods in Applied Mechanics and Engineering, 2000, 186 (1): 101~108
    [67] Kim D J. Optimization of the irregular shape rolling process with an artificial neural network. Journal of Materials Processing Technology, 2001, 113 (15): 131~135
    [68] 胡俏.神经网络在结构疲劳过程分析和监测中的应用.沈阳:东北大学博士后研究工作报告,1995
    [69] Mochizuki Y, Yagawa G, Yoshimura S. Inverse analysis by means of the combination of multiplayer neural network and computational mechanics—study on learning and estimating process and its application to defect indetification. JSME (A), 1991, 57:236~243
    [70] Todoroki A, Iimura A, Kobayashi H. Research on smart structures for detecting cracks using neural network. JSME (A), 1994, 60:290~295
    [71] Theocaris P S, Panagiotopoulos P D. Neural network for computing in fracture mechanics, methods and prospects of applications. Computer Methods in Applied Mechanics and Engineering, 1993, 106: 213~228
    [72] Consolazio, Gary R. Iterative equation solver for bridge analysis using neural networks. Computer-Aided Civil and Infrastructure Engineering, 2000, 15 (2), 107~119
    [73] Liu S W, Sunq J C, Lee C C. Detection of cracks using neural networks and computational mechanics. Computer Methods in Applied Mechanics and Engineering, 2002, 191 (25~26): 2831~2845
    [74] Troudet T, Merrill W. Areal time neural net estimator of fatigue life. In: Walter F, Bart K. ed. Proc. of International Joint Conference on Neural Network, San Diego, 1990, New York: Institute of Electrical and Electronics Engineers, Inc, 1990:59~64
    [75] 胡俏,孙道恒,徐灏.应用神经网络的疲劳裂纹实时监测方法初探.中国机械工程,1994,5:348~349
    [76] Shi Qinzhong, Haqiwara Ichiro, Su Xiang. System identification using neural network and computational mechanics. Nippon Kikai Gakkai Ronbunshu, C Hen/Transactions of the Japan Society of Mechanical Engineers, Part C, 2002, 68 (3): 54~760 (in Japanese)
    
    
    [77] Hu Xiao, Vian John, Choi. Propulsion vibration analysis using neural network inverse modeling. Proceedings of the International Joint Conference on Neural Networks, 2002, 2866~2871
    [78] Lin J C. Prediction of rolling force and deformation in three-dimensional cold rolling by using the finite-element method and a neural network. International Journal of Advanced Manufacturing Technology, 2002, 20 (11): 799~806
    [79] Theocaris P S, Panagiotopoulos P D. Neural network for computing in fracture mechanics, methods and prospects of applications. Computer Methods in Applied Mechanics and Engineering, 1993, 106: 213~228
    [80] 曾攀.走向21世纪的中国力学:中国科协第9次“青年科学家论坛”报告文集.北京:清华大学出版社,1996
    [81] Yagawa G, Okuda H. Finite element solutions with feedback network mechanics through direct minimization of energy functionals. Int. J. Numerical Meth. In Engr. 1996, 39:213~228
    [82] Lou K N, Perez P A. A novel application of artificial neural networks to structural analysis. Art Intel Eng, 1995, 9 (3): 211~219
    [83] 孙道恒,胡俏,徐灏.弹性力学的实时神经计算原理与数值仿真.力学学报,1998,30(3):348~353
    [84] 高行山,杨雄,叶天麒.CG神经网络在结构分析中的应用.西北工业大学学报,2001,19(2):251~253
    [85]罗发龙,李衍达,王哲.一类正定矩阵特征矢量的神经网络求解.中国科学,1994,24(1):83~88
    [86]章毅,王平安,周明天.用神经网络计算矩阵特征值与特征向量.计算机学报,2000 23(1):71~76
    [87] Yang H B, Jiao L C. Neural network for solving generalized eigenvalues of matrix pair. ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing- Proceedings, 2000, 3478~3481
    [88] 黄祖兰,蒋耀林,陈明敏,林小拉.基于动力学方程求解复矩阵特征值问题的并行实现.计算机学报,2002,25(7):716~722

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700