金沟岭林场三种林型最优林分结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以金沟岭林场云冷杉针阔混交林、杨桦次生林和人工落叶松三种林型为研究对象,基于14块皆伐标准地、检查法样地274个样点、40块速生丰产林样地、12块杨桦次生林样地和22株大径级解析木数据,运用森林经理学和统计学的方法,构建了金沟岭林场3种林型最优直径结构、最优树高结构、最优树种空间隔离度、最优空间格局和最优竞争结构。得到的主要结论有:
     (1)针叶树种:红皮云杉数量成熟龄112.5年、鱼鳞云杉数量成熟龄135年、冷杉数量成熟龄150年和落叶松数量成熟龄47年。阔叶树种:白桦数量成熟龄46年、枫桦数量成熟龄144年、山杨数量成熟龄43年、椴树数量成熟龄146.5年、水曲柳数量成熟龄160年和色木数量成熟龄186.5年。
     (2)提出并且验证了两种估算林分蓄积的方法——平均实验形数法和地理权重回归分析法。本研究第一次以数学推理角度,理论证明实验形数法的合理性,从树种胸高形率和树干曲线方程理论推导出实验形数方程。本文推算11个树种的实验形数与经验实验形数法得到的差别不大。第一次证明影响实验形数取值的只有树种,常数项K趋于3(变异系数为0.02)。利用平均实验形数法估算林分蓄积精度也很高,其中di为0.46,di为1.34,Srf为1%,saf为3%, R2为0.97,AIC为24.1,预估精度为0.98。同时利用地理权重回归分析模型(GWR)构建二元材积公式。从空间分析角度,研究了模型的胸径、树高与材积三者的关系。地理权重回归分析法(R2=0.94;p=0.92)优选模型的拟合度、预测能力都要高于最小二乘法拟合的优选模型(R2=0.93;p=0.91)。地理权重回归分析模型的变量参数可以反映出在样地内的空间分布规律及其稳定性,地理权重回归分析法反映局部空间信息的能力为最小二乘法所不及。基于地理权重回归分析法拟合得到精度较高的单木材积模型,进而推算得到林分蓄积。
     (3)在估算单木成熟和林分蓄积之后,利用经验和理论模型拟合得到三种林型能够生长达到的每公顷最大胸高断面积,并分成<10、10~20、20~30、30~40、40~50m/hm25个胸高断面积区间,分别比较求算各胸高断面积区间的蓄积生长量。最后利用负指数模型,结合林木径阶能够持续生长的情况,拟合出云冷杉针阔混交林和杨桦次生林最优直径结构;利用weibull分布模型,拟合出人工落叶松林最优直径结构。云冷杉针阔混交林最大胸高断面积约为60m2/hm2,当林分胸高断面积为40m2/hm2,平均Q值为1.4时,林分蓄积生长量最大,为10.5m3/hm2.a。杨桦次生林最大胸高断面积约为45m2/hm2,当林分胸高断面积为20m2/hm2,平均Q值为1.5时,林分蓄积生长量最大,为5.7m3/hm2.a。人工落叶松林最大胸高断面积约为45m2/hm2,当林分胸高断面积为30m2/hm2,平均Q值为1.45时,林分蓄积生长量最大,为8.99m3/hm2.a。
     (4)由于人工落叶松林通过确定林分胸高断面积即可确定空间最优,所以本研究仅讨论云冷杉针阔混交林和杨桦次生林树种的空间隔离度,空间格局和竞争关系。通过系统聚类方法和树种多样性混交度研究两种林型物种空间隔离度和林分畜积生长量的关系。在立地条件、株数密度、混交比、树种种类和树种数量相同时,云冷杉针阔混交林固定样地内林分蓄积生长量与树种空间隔离度呈正比关系:天然杨桦次生林固定样地内林分蓄积生长量与树种空间隔离度呈反比关系。两种林型的大径级林木呈均匀分布,中小径级林木呈聚集分布的格局为最优;林木竞争能力由四周向中心依次增强的排列,即呈锥形的竞争结构为最优。
     (5)基于天然混交林分结构特点,构建适用于当地情况的竞争因子--树种耐阴性竞争指数:并且建立天然混交林竞争指数计算系统。
Spruce-fir mixed forest, birch-aspen secondary forest and larch plantations were studied in this research. Based on14clear-cut sample plots,274sample points of control method plots,40fast-growing forest plots,12birch-aspen secondary forest plots and22big diameter grade analytic trees, applying forest management method and statistics method, the optimal diameter structure, optimal tree height structure, optimal spatial isolation of trees, optimal spatial pattern and optimal competition structure were established for the three forest type. Main conclusions were as follows:
     (1) Coniferous species:maturity age of Koyama Spruce was112.5; maturity age of Yezo Spruce was135; maturity age of fir was150; maturity age of larch was47; Broad-leaf species:maturity age of white birch was135; maturity age of white birch was46; maturity age of ribbed birch was144; maturity age of aspen was43; maturity age of linden was146.5; maturity age of ash was160; maturity age of maple was186.5;
     (2) Experimental form factor and geographically weighted regression were proposed in the research. The Experimental form factor volume formula was first deduced from the theoretical stem curve formula with the breast height form quotient. In a comparison of results obtained by the classical approach, EFF values for11species applying the theoretical derivation marginally differed. The EFF was verified to be affected only by species. Item K was certified to be constant term with a coefficient of variance of0.02. Meanwhile, absolute deviation, relative deviation, absolute mean deviation, mean relative deviation, determination coefficient, AIC and Predictive accuracy are separately0.46,1.34,1%,3%,0.97,24.1and0.98. The standard volume model for sample trees in the north of Changbai Mountains was established by applying geographical weighted regression method. The relationships between diameter at breast height, tree height and individual volume were analyzed from the perspective of spatial analysis. Results show that the geographical weighted regression model (R2=0.94; p=0.92) is superior to the ordinary least square model (R2=0.93; p=0.91) in goodness of fit and prediction ability. The geographical weighted regression model parameters could reflect the spatial distribution rule of trees in the sample plot and their stability, which further reveal the competitive relationship between trees. With the spatial analysis of data, the geographical weighted regression method has the potential to reveal the local patterns in the spatial distribution of a parameter, which would be ignored by the ordinary least square approach. Finally, the whole stand volume estimation model was obtained.
     (3) After the relationship between basal areas at breast height per hectare and stand volume per hectare was analyzed by using different kinds of models, the mixed basal area at breast height per hectare was obtained. Simultaneously, the basal areas at breast height per hectare of the forest were divided for five intervals, such as<10m2/ha,10-20m2/ha,20-30m2/ha,30-40m2/ha and40-50m2/ha. The stand volume growths were separately investigated by the intervals. Applying negative exponential distribution and weibull distribution, the optimal stand structures of three forest types were obtained separately. The largest basal area at breast height of Spruce-fir mixed forest was60m2/hm2. When the basal area at breast height of Spruce-fir mixed forest was40m2/hm2and Q value was1.4, the stand volume growth was the biggest (10.5m3/hm2). The largest basal area at breast height of birch-aspen secondary forest was45m2/hm2. When the basal area at breast height of Spruce-fir mixed forest was20m2/hm2and Q value was1.5, the stand volume growth was the biggest (5.7m3/hm2). The largest basal area at breast height of larch plantations was45m2/hm2. When the basal area at breast height of Spruce-fir mixed forest was30m2/hm2and Q value was1.45, the stand volume growth was the biggest (8.99m3/hm2).
     (4) Due the optimal structure of larch plantations was determined by largest basal area at breast height, spruce-fir mixed forest and birch-aspen secondary forest were only considered in the part of Spatial isolation of trees and Spatial pattern. Applying hierarchical cluster method, the plots were divided by the same diversity of trees and species evenness. Then the relationship between stand volume increment and spatial isolation of trees was analyzed by tree species diversity mingling method. With the same of sit quality, diversity of trees, diversity of tree and mixed proportion, results manifested that stand volume increment in plots increased with the incenseinent of spatial isolation of trees in spruce-fir mixed forest. Nevertheless, stand volume increment in plots declined with the incensement of spatial isolation of trees in birch-aspen secondary forest. The optimal spatial pattern of big diameter grade trees is uniform distribution. Meanwhile, the optimal spatial pattern of small diameter grade trees is clumped distribution. The optimal competition structure is that competition abilities are declined from the center to outside. The outlook is like cone-shape.(5) Based on the characters of mixed forest structure, the fitted competition indices were established, which were called Shadow tolerance competition indices. The equations were as follow:.the calculation system of natural forest competition indices was established.
引文
[1安鸿志.广义线性模型拟合方法的相容性[J].淮北煤师院学报.1989,10(1):45-59.
    [2]蔡聪.马尾松阔叶树混交林物种多样性的初步研究[J].中南林学院学报.1995,15(2):195-200.
    [3]常新华,赵秀海,曾凡勇.长白山针阔混交林主要树种空间分布及其环境解释[J].北京林业大学学报.2009,31(1):7-12.
    [4]陈春雷.二类森林资源调查数据库系统模型探讨[J].华东森林经理.1996,10(1):66-72.
    [5]程勋,杨毅恒,丁建华,等.变异函数在异常空间插值中的应用[J].世杰地质.2007,26(3):298-303.
    [6]段爱国,张建国,童书振.6种生长方程在杉木人工林林分直径结构上的应用[J].林业科学研究.2003,16(4):423-429.
    [7]方国景,汤孟平,章雪莲.天目山常绿阔叶林的混交度研究[J].浙江林学院学报.2008,25(2):216-220.
    [8]方旭东.异龄林林木成熟确定的方法[J].林业科学.2007,43(6):83-87.
    [9]方旭东,李茂臣,程守涛,等.天然林森林成熟确定原理及方法辩析[J].林业勘查设计.2010(1):41-43.
    [10]冯益明,唐守正,李增元.空间统计分析在林业中的应用[J].林业科学.2004,40(3):149-155.
    [11]龚直文.长白山退化云冷衫林演替动态及恢复研究[D].北京林业大学,2009.
    [12]龚直文,亢新刚,顾丽,等.长白山杨桦次生林生长过程与演替动向分析[J].林业科学研究.2009a,22(3):379-384.
    [13]龚直文,亢新刚,顾丽,等.长白山杨桦次生林直径结构研究[J].西北林学院学报.2009b,24(3):1-6.
    [14]龚直文,亢新刚,顾丽,等.长白山云冷杉针阔混交林演替过程空间格局变化[J].东北林业大学学报.2010,38(1):44-53.
    [15]关玉秀,张守攻.竞争指标的分类及评价[J].北京林业大学学报.1992,14(4):1-7.
    [16]国家林业局.中国森林资源[M].北京:中国林业出版社,2005.
    [17]国庆喜,杨光.红松天然种群邻体影响半径[J].应用生态学报.2006,17(12):2302-2306.
    [18]郝云庆,王金锡,王启和,等.柳杉人工林林分不同变量大小比数研究[J].应用生态学报.2006,17(4):751-754.
    [19]何晓群.多元统计分析[M].北京:中国人民出版社,2004.
    [20]胡文力,亢新刚,董景林,等.长白山过伐林区云冷杉针阔混交林林分结构的研究[J].吉林林业科技.2003,32(3):1-10.
    [21]胡云云,亢新刚,高延,等.天然云冷杉针阔混交林的年龄变动及估测精度分析[J].北京林北京林业大学学报.2011,33(4):22-27.
    [22]华网坤,徐冠华.对“立木蓄积量测算技术中的干形控制问题”一文的几点意见[J].林业科学.1965,10(2):188-192.
    [23]黄以黔.贵州天然林保护工程存在的主要问题及对策[J].贵州林业科技.2005(3):49-51.
    [24]惠刚盈,Gadow K. V.,胡艳波.结构化森林经营[M].北京:中国林业出版社,2007.
    [25]惠刚盈,Kllaus V. G., Matthias A角尺度——一个描述林木个体分布格局的结构参数[J].林业科学.1999,35(1):37-42.
    [26]惠刚盈,胡艳波.混交林树种空间隔离程度表达方式的研究[J].林业科学研究.2001,14(1):23-27.
    [27]惠刚盈,克劳斯冯佳多.德国现代森林经营技术[M].北京:中国科学技术出版社,2001:119-134.
    [28]惠刚盈,盛炜彤.林分直径结构模型的研究[J].林业科学研究.1995,8(2):127-131.
    [29]贾秀红,郑小贤.长白山过伐林区云冷杉针阔混交林空间结构分析[J].华中农业大学学报.2006,25(4):436-440.
    [30]蒋伊尹,李风目.兴安落叶松天然林生长与收获的研究[J].林业科学.1989,25(5):476-482.
    [31]金明仕.森林生态学[M].北京:中国林业出版社,1993.
    [32]亢新刚.森林经理学[M].第4版.北京:中国林业出版社,2011.
    [33]亢新刚,罗菊春,孙向阳,等.森林可持续经营的一种模式[J].林业资源管理.1998,特刊: 51-59.
    [34]亢新刚,赵俊卉,刘燕.长白山云冷杉针阔混交过伐林优化结构动态[J].林业资源管理.2008(3):57-62.
    [35]孔雷,亢新刚,刘书剑,等.长白山云冷杉针阔混交林最优直径结构的构建[J].东北林业大学学报.2013,41(1):1-6.
    [36]孔雷,亢新刚,杨华,等.长白山杨桦次生林树种空间隔离度对林分生长的关系[J].中南林业科技大学学报.2012,32(7):14-18.
    [37]孔雷,杨华,亢新刚,等.基于地理权重回归的长白山区云冷杉二院材积式构建[J].东北林业大学学报.2011,39(7):38-41.
    [38]孔雷,杨华,亢新刚,等.林木空间分布格局研究方法综述[J].西北农林科技大学学报(自然科学版).2011,39(5):119-125.
    [39]孔令红,郑小贤.金沟岭林场次生林空间分布格局分析[J].林业调查规划.2007(4):3-7.
    [40]兰士波.天然杨桦林密度效应的研究[J].南京林业大学学报:自然科学版.2007,31(2):83-87.
    [41]李宝银.天然阔叶林标准收获表的研究[J].福建林学院学报.2005,25(4):323-326.
    [42]李凤日.林木直径分布的研究[J].林业译丛.1986,4:12-18.
    [43]李际平,郑柳,赵春燕,等.不同等级廊道杉阔林下植被物种的多样性分析[J].中南林业科技大学学报.2012,32(2):64-69.
    [44]李希菲,唐守正,王松龄.大岗山实验局杉木人工林可变密度收获表的编制[J].林业科学研究.1988,1(4):382-389.
    [45]李序颖,陈宏民.居民收入与城市经济水平的空间自回归模型[J].系统工程理论方法应用.2005,14(5):395-399.
    [46]林吕庚.林木蓄积量测算技术中的干形控制简题[J].林业科学.1964,9(4):365-375.
    [47]林勇明,洪滔,吴承祯,等.桂花次生林群落主要树种种间关联及其对混交度的响应[J].应用与环境生物学报.2007,13(3):327-332.
    [48]刘军,禹明甫.基于Clark-Evans最近邻体分析对果树主要害虫空间分布格局分析[J].广东农业科学.2008,30(4):291-295.
    [49]罗菊春.北京百花山白桦次生林的结构与生产力[J].北京林学院学报.1984(4):8-19.
    [50]骆期邦,宁辉,贺东北,等.二元立木材积动态模型研究[J].林业科学研究.1992,5(2):263-270.
    [51]吕勇,李卫兵,王才喜,等.黄丰桥林场杉木林分直径的结构特征[J].中南林业学院学报.2002,22(2):44-47.
    [52]马晓冬,马荣华,徐建刚.基于ESDA-GIS的城镇群体空间结构[J].地理学报.2004,59(6):1048-1057.
    [53]孟宪宇.二元材积方程的比较[J].南京林产工业学院学报.1982,4:80-87.
    [54]孟宪宇.测树学[M].北京:中国林业出版社,2009.
    [55]潘辉,连欣俐,肖胜,等.森林资源动态管理技术的研究报告[J].林业资源竹理.1997,3:23-29.
    [56]钱迎倩,马克平.生物多样性的原理和方法[M].北京:中国科学技术出版社,1994.
    [57]任瑞娟,亢新刚,杨华.天然林单木生长模型研究进展[J].西北林学院学报.2008,23(6):203-206.
    [58]邵青还.对近自然林业理论的诠释和对我国林业建设的几项建议[J].世界林业研究.2003,16(6):1-5.
    [59]施红英,毅沈.基于随机系数模型的重复测量资料分析方法[J].中国卫生统计.2008,25(3):247-252.
    [60]孙志虎,张彦东.长白落叶松人工林天然更新幼苗分布格局及其研究方法的比较[J].生物数学学报.2009,24(3):556-566.
    [61]覃文忠,王建梅,刘妙龙.混合地理加权回归模型算法研究[J].武汉大学学报·信息科学版.2007,32(2):115-119.
    [62]汤孟平.森林空间结构研究现状与发展趋势[J].林业科学.2010,46(1):117-122.
    [63]汤孟平,唐守正,雷相东,等.IRipley's K(d)函数分析种群空间分布格局的边缘校正[J].植物生态学报.2003,23(8):1533-1538.
    [64]汤孟平,唐守正,雷相东,等.两种混交度的比较分析[J].林业资源管理.2004,8(4):25-27.
    [65]汤孟平,周国模,陈永刚,等.基于Voronoi图的天目山常绿阔叶林混交度[J].林业科学.2009,45(6):1-5.
    [66]唐巍,谭先奇,王仕娣.四川杉木单株木实验形数变化规律的研究[J].四川林勘设计.2007(2):13-17.
    [67]王丽君,梁士楚,李峰,等.桂林岩溶石山桂林白蜡种群点格局分析[J].广西植物.2008,28(5):633-635.
    [68]王立平,任志安.空间计量经济学研究综述[J].湖南财经高等专科学校学报.2007,23(110):25-28.
    [69]王苏颖,叶李灶,陈冬花.新疆西天山巩留林场云杉林空间分布格局研究[J].林业资源管理.2009,6:59-63.
    [70]王新生,李全,郭庆胜,等Voronoi图的扩展、生成及其应用于界定城市空间影响范围[J].华中师范大学学报:自然科学版.2002,36(1):107-111.
    [71]王政权.地统计学及在生态学中的应用[M].北京:科学出版社,1998:35-142.
    [72]尾原干弘,关文彬.树干材积生长量的垂直分配模型及利用该模型互换胸高断面积生长量和树干材积生长量[J].辽宁林业科技.1988,57-60(4).
    [73]邬建国.景观生态学[M].北京:高等教育出版社,2000.
    [74]吴巩胜,王政权.水曲柳落叶松人工混交林中树木个体生长的竞争效应模型[J].应用生态学报.2000,11(5):646-650.
    [75]吴锡麟.森林生态系统管理概述[J].福建林业科技.2002,29(3):84-87.
    [76]向建华.我区现有一二元立木材积表应用偏差问题的探讨[J].中南林业调查规划.1996,15(1):8-10.
    [77]肖益,田大伦,闫文德,等.沅陵3种天然次生林群落乔木层物种多样性研究[J].中南林业科技大学学报.2011,31(5):121-126.
    [78]徐顺强.克里金法在七里坪多金属矿激电测深数据处理中的应用[J].工程地球物理学报.2008,5(6):709-714.
    [79]颜锋华,金亚秋.尺度分布的Getis统计对遥感图像特征参量空间自相关性的研究[J].中国图象图形学报.2006,11(6):191-196.
    [80]杨光,孙建,国庆喜.利用生长释放判定邻体影响半径[J].东北林业大学学报.2009,37(6):20-22.
    [81]叶功富,涂育合,田有圳,等.凹叶厚朴二元立木材积方程的研究[J].北华大学学报:自然科学版.2002,3(6):528-533.
    [82]尤海舟,贾成,樊华,等.格局分析的最新方法——点格局分析[J].四川林业科技.2009,30(6):106-110.
    [83]余加林,肖枝洪.多元统计及SAS应用[M].武汉:武汉大学出版社,2008.
    [84]于政中.森林经理学[M].第2版.北京:中国林业出版社,1993.
    [85]岳永杰,余新晓,秦富仓,等.北京雾灵山保护区蒙椴林空间点格局分析[J].林业资源管理.2009,2:49-54.
    [86]张春雨,赵秀海.随机区块法在空间点格局分析中的应用[J].生态学报.2008,28(7):3108-3115.
    [87]张建国,段爱国,童书振.林分直径结构模拟与预测研究概述[J].林业科学研究.2004,17(6):787-795.
    [88]张金屯.植物种群空间分布的点格局分析[J].植物生态学报.1998,22(4):344-349.
    [89]张金屯,孟东平.卢芽山华北落叶松林不同龄级立木的点格局分析[J].生态学报.2004,24(1):35-40.
    [90]张少昂,王冬梅Richards方程的分析和一种新的树木理论生长方程[J].北京林业大学学报.1992,14(3):99-105.
    [91]赵君卉.长白山云冷杉混交林生长模型的研究[D].北京:北京林业大学,2010.
    [92]钟庆林,范志丽.森林资源档案数据更新的几种方法[J].林业资源管理.1995,6:9-11.
    [93]钟义山,钟云智.利用相对误差最小二乘法估计材积方程参数[J].西北林学院学报.1999,14(1):84-87.
    [94]朱建平.应用多元统计分析[M].北京:科学出版社,2006.
    [95]Altman N S. An introduction to kernel and nearest-neighbor nonparametric regression[J]. Am.Stat. 1992,46:175-185.
    [96]Andrzej J, Rafa P. Modelling irregular and multimodal tree diameter distributions by finite mixture models:an approach to stand structure characterization[J]. Journal of Forest Research.2012,17:79-88.
    [97]Anselin L. Spatial econometrics:methods and models[M]. Dordrecht the Netherlands:Kluwer Academic Publishers,1988.
    [98]Anselin L, Griffith D A. Do spatial effects really matter in regression analysis [J]. Papers of the Regional Science Association.1988,65:11-34.
    [99]Arthur G, Keith O J. The analysis of spatial association by the use of distance Statistics[J]. Geographical Analysis.1992,24:189-206.
    [100]Bates D, Watts D. Nonlinear regression analysis and its applications[M]. New York:Wiley,1988.
    [101]Begon M, Harper J L, Townsend C R. Ecology:Individuals.Populations and Communities[M]. Oxford,Great Britain:Blackwell Science,1996.
    [102]Bella I E. A new competition model for individual trees[J]. Forest Science.1971,17:364-372.
    [103]Benbrahim M, Gavaland A. A new stem taper function for short-rotation poplar[J]. Scandinavian Journal of Forest Research.2003,18:377-383.
    [104]Biging G S, Dobbertin M. A comparison of distance-dependent competition measures for height and basal area growth of individual conifer trees[J]. Forest Science.1992,38(3):695-720.
    [105]Biondi F, Myers D E, Charles C. Avery Geostatistical modeling stem size and increment in an old-growth forest[J]. Canadian Journal of Forest Research.1994,24(7):1354-1368.
    [106]Boltz F, Carter D R. Multinomial logit estimation of a matrix growth model for tropical dry forests of eastern Bolivia[J]. Canadian Journal of Forest Research.2006,36(10):2623-2632.
    [107]Borders B E, Surter R A, Bailey R L E A. Percentile based distributions characterize forest stand tables[J]. Forest Science.1987,33:570-576.
    [108]Bristow M, Vanclay J K, Brooks L, et al. Growth and species interactions of Eucalyptus pellita in a mixed and monoculture plantation in the humid tropics of north Queensland[J]. Forest Ecology and Management.2006,233:285-294.
    [109]Brooks J R, Jiang L, Clark A. Compatible stem taper, volume, and weight equations for young longleaf pine plantations in southwest Georgia[J]. South Journal of Application Forest.2007,31: 187-191.
    [110]Brunsdon C, Fotheringham A S, Charlton M. Geographically weighted regression-Modeling spatial non-stationarity[J]. Statistician.1998,47(3):431-443.
    [111]Bryk A, Raudenbush S, Seltzer M, et al. An introduction to HLM:computer program and user's guide[M]. Chicago:Department of Education, University of Chicago,1986.
    [112]Buongiorno J, Dahir S, Lu H, et al. Tree size diversity and economic returns in uneven-aged forest stand[Jl. Forest Science.1994,40(1):83-103.
    [113]Calama R, Montero G. Multilevel linear mixed model for tree diameter increment in Stone Pine (Pinus pinea):a calibrating approach[J]. Silva Fennica.2005,39(1):143-153.
    [114]Clark P J, Evans F C. Distance to nearest neighbor as a measure of spatial relationships in populations[J]. Ecology.1954,35(4):445-453.
    [115]Claughton-Wallin H, Mcvicker F. The Jonson "Absolute Form Quotient" as an Expression of Taper[J]. Journal of Forest.1920,18:346-357.
    [116]Connell J H. Diversity in tropical rain forests and coral reefs[J]. Science.1978,199:1302-1310.
    [117]Corral J J, Alvarez J G, Hernandez F J. The effect of competition on individual tree basal area growth in mature stands of Pinus cooperi Blanco in Durango(Mexico)[J]. European journal of forest research.2005,124:133-142.
    [118]Daniels R F, Burkhart H E, Clason T R. A comparison of competition measures for predicting growth of loblolly pine trees[J]. Canadian Journal of Forest Research.1986,16:1230-1237.
    [119]Darius M A, Alan R E. Optimizing the management of uneven-aged forest stand[J]. Canadian Journal of Forest Research.1974,4:274-287.
    [120]Diggle P. statistical analysis of spatial point pattens[M].2 ed ed. London:Edward Arnoid publisher,2003.
    [121]Dovciak M, Frelich L E, Reich P B. Discordance in spatial patterns of white pine(Pinus strobus)size classes in a patchy near boreal forest[J]. The Journal of Ecology.2001,89(2):280-291.
    [122]Droessler T D, Burk T E. A test of nonparametric smoothing of diameter distributions[J]. Scandinavian Journal of Forest Research.1989,4:407-415.
    [123]Duncan C, Jones K. Using multilevel models to model heterogeneity:potential and pitfalls[J]. Geographical Analysis.2000,32:279-305.
    [124]Forslund RR. A geometrical tree volume model based on the location of the centre of gravity of the bole[J]. Canadian Journal of Forest Research.1982,12(2):215-221.
    [125]Fotheringham A S. Trends in quantitative methods I:stressing the local [J]. Progress in Human Geography.1997,21:88-96.
    [126]Fotheringham A S, Brunsdon C, Charlton M. Geographically weighted regress ion:the analysis of spatially varying relationships[M]. Washington:Wiley,2002.
    [127]Fuldner K. Strukturbeschreibung von buchen2edellaubholz-mischw ldern[D]. University of G ttingen,1995.
    [128]Gadow V K. Fueldner K. zur Methodik der Bestand beschreibung[R]. Klieken:Vortrag Anlaesslich der Jahrestagung der A G Forsteinrichtung,1992.
    [129]Geary R C. The contiguity ratio and statistical mapping[J]. The Incorporated Statistician.1954,5: 115-145.
    [130]Gerrard D I. Competition quotient:a new measure for the competition affecting individual forest trees[M], Michigan:Agricultural Experiment Station, Michigan State University,1969.
    [131]Goldstein H. Multilevel models in educational and social research[M]. London:Oxford University Press,1987.
    [132]Goldstein H, Rasbash J, Plewis I, et al. A user's guide to MlwiN[M]. London:Institute of Education, University of London,1998.
    [133]Graz F P. The behavior of the species mingling index Msp in relation to species dominance and dispersion [J]. European Journal of Forest research.2004,123(1):87-92.
    [134]Gustafsson L. Indicators and assessment of biodiversity from a Swedish forestry perspective[R]. Forestry Research Institute of Sweden,2000.
    [135]Haara A, Mai tamo M, Tokola T. The nearest neighbor method for estimating basal area diameter distribution [J]. Scandinavian Journal of Forest Research.1997,12:200-208.
    [136]Hanewinke M, Pretzsch H. Modelling the conversion from even-aged to uneven-aged stands of Norway spruce(Picea abies L.Karst.)with a distance-dependent growth simulator[J]. Forest Ecology And Management.2010,134:55-70.
    [137]Hanewinkel M. Sucessful examples of multiple forest use the model of selection forests:Forests in focus:Proceedings Forum, Biodiversity-Treasures in the World's Forests[Z].1998:12,90-93.
    [138]Hanus M L. Modeling Light Competition in the Forests of Western Oregon[D]. Oregon State University,2003.
    [139]Hardle W. Applied nonparametric regression[M]. Cambridge:Cambridge University Press,1989.
    [140]Hasenauer H. Dimensional relationships of open-grown trees in Austria[J]. For.Ecol.Manage. 1997,96:197-206.
    [141]Hegyi F. A simulation model for managing jack-pine stands[J]. Royal College of Forest.1974,4: 74-90.
    [142]Hyink D M, Moser J W. A generalized framework for projecting forest yield and stand structure using diameter distributions [J]. Forest Science.1983,29:85-95.
    [143]Ian B, Andrew J. Contrasting conventional with Multi-Level modeling approaches to meta-analysis:expectation consistency in U K woodland recreation values[J]. Land Economics.2003, 79(2):235-258.
    [144]Inoue A. A model for the relationship between form-factors for stem volume andthose for stem surface area in coniferous species[J]. Journal of Forest Research.2006,11:289-294.
    [145]Kajihara M. Estimation of normal form factor and its application to the measurement of stand volume[J]. Journal of Japanese Forest Socienty.1969,51:49-56.
    [146]Kareiva P. Space:the final frontier for ecological theory [J]. Ecology.1994,75(1):1-5.
    [147]Kelty M J, Larson B C, Oliver C D. The ecology and silviculture of mixed-species forests[M]. Dordrecht:the Netherlands:Kluwer Academic Publishers,1992.
    [148]Kembel S W, Hubbell S P. Modeling spatial variation in tree diameter-height relationships[J]. Ecology.2001,87(7):86-99.
    [149]Kembel S W, Hubbell S P. The phylogeneic structure of a neotropical forest tree community [J]. Ecology.2006,87(7):86-99.
    [150]Kenkel N C, Hoskins J A, Hoskins W D. Local competition in a naturally established jack pine stands[J]. Canadian Journal of Botany.1989,67(9):2630-2635.
    [151]Kong L, Yang H, Kang X G, et al. Correlation analysis between crown width and DBH using Geographically Weighted Regression:seventh international conference on Fuzzy Systems and knowledge discovery[Z]. Yantai,China:the Institute of Electrical and Electronics Engineers, 20101689-1693.
    [152]Kong L, Yang H, Kang X G. Correlation Analysis Between Stand Growth factors and Volume of Stand Using Generalized Linear Models:International Conference of Network Engineering and Computer Science[Z]. Xi'an:2011.
    [153]Kong L, Yang H, Kang X G, et al. Stand Volume Equation Developed from an Experimental Form Factor with the Breast Height Form Quotient[J]. Taiwan Journal of Forest Science.2012,27(4): 351-362.
    [154]Kong L, Yang H, Kang X G, et al. An Algorithm for Influence-Zone Overlap Competition Indices[J]. Journal of Convergence Information Technology.2013,8(1):705-714.
    [155]Lahde E, Laiho O, Norokorpi Y. Diversity oriented silviculture in the boreal zone of Europe[J]. Forest Ecology And Management.1999,118:223-243.
    [156]Ledermann T, Stage R A. Effects of competitior spacing in individual-tree indices of competition[J]. Canadian Journal Of Forest Research.2001,31:2143-2150.
    [157]Lee D T, Gadow K V. Iterative bestimmung der konkurrenzbaume in Pinus densiflora Bestanden[J]. AFJZ.1997,168(4):41-44.
    [158 Leung Y, Mei C L, Zhang W X. Statistical tests for spatial nonstationarity based on the geographically weighted regression model[J]. Environment Plannation.2000,32:9-32.
    [159]Lorimer G C. Test of age-independent competition indices for individual trees in natural hardwood stands[J]. Forest Ecology and Management.1983,6:343-360.
    [160]Macarthur R H, Macarthur J W. On bird species diversity[J]. Ecology.1961,42:594-598.
    [161]Mack R, Harper J L. Interference in dune annuals:spatial pattern and neighborhood effects[J]. journal of Ecology.1977,65:345-364.
    [162]Maltamo M, Kangas A. Methods based on k-nearest neighbor regression in estimation of basal area diameter distribution[J]. Canadian Journal of Forest Research.1998,28:1107-1115.
    [163]Martin D. An assessment of surface and zonal models of population[J]. International Journal of Geographic Information Systems.1996,10(8):973-989.
    [164]Martin G L, Ek A R. A comparison of competition measures and growth models for predicting plantation red pine diameter and height growth[J]. Forest Science.1984,30(3):731-743.
    [165]Mayer H A. Forest Mensuration[M]. Pennsylvania:Pennes valley,1953.
    [166]Mccullagh P, Nelder J A. Generalized Linear Models[M]. New York:Chapman and Hall,1989.
    [167]Melinda M. Characterizing spatial patterns of trees using stem-mapped data [J]. Forest Science. 2001,39(4):756-775.
    [168]Miina J, Pukkala T. Application of ecological field theory in distance-dependent growth modelling[J]. Forest Ecology and Management.2002,161:101-107.
    [169]Miller T E, Weiner J. Local density variation may mimic effects of asymmetric competition on plant size variability[J]. Ecological Society of America.1989,70(4):1188-1191.
    [170]Moeur M. Characterizing spatial patterns of trees using stem-mapped zdata[J]. Forest Science. 1993,39(4):756-775.
    [171]Moran P. The interpretation of statistical maps[J]. Journal of the Royal Statistical Society B.1948, 37:243-251.
    [172]Moran P. Notes on continuous stochastic phenomena[J]. Biometrika.1950,37:17-33.
    [173]Nelder J A, Wedderburn R W. Generalized linear models[J]. Royal Statistics Society.1972,135: 370-384.
    [174]Newnham R M. The development of a stand model for Douglas fir [D]. University of British Columbia,1964.
    [175]Newton P F, Jolliffe P A. Assessing processes of intra-specific competition with spatially heterogeneous black spruce stands[JJ. Canadian journal of forest research.1998,28(2):259-275.
    [176]Odland J. Spatial Autocorrelation[M]. London:Sage Publications,1988.
    [177]Ord J K, Getis A. Local spatial autocorrelation statistics:Distributional issues and an application[J]. Geographical Analysis.1995,27(4):286-306.
    [178]Pickett S T A, Cadanasso M L. Landscape ecology:spatial heterogeneity in ecological system[J]. Science.1995,269(5222):331-334.
    [179]Podlaski R, Zasada M. Comparison of selected statistical distributions for modelling the diameter distributions in near-natural Abies-Fagus forests in the Swietokrzyski National Park (Poland) [J]. European Journal of Forest Research.2008,127:455-463.
    [180]Pretzsch H. Forest dynamics,growth and yieldfM], Berlin:Springer,2009.
    [181]Pukkala T, Lahde E, Laiho O. Optimizing the structureand management of uneven-sized stands in Finland.Forestry[J].2010,83(2):129-142.
    [182]Rasbash J, Woodhouse G. MLN command reference version 1.0[M]. London:Institute of Education, University of London,1995.
    [183]Richards A E, Forrester D I, Bauhus J, et al. The influence of mixed tree plantations on the nutrition of individual species:a review[J]. Tree Physiol.2010,30(9):1192-1208.
    [184]Ripley B D. Modelling spatial patterns[J]. Journal of the Royal Statistical Society (Series B).1977, 39:172-212.
    [185]Rothacher J S. Percentage distribution of tree volume by logs[J]. Journal of Forestry.1948,46: 115-118.
    [186]Rouvinen S, Kuuluvainen T. Structure and asymmetry of tree crowns in relation to local competition in a natural mature Scots pine forest[J]. Canadian Journal of Forest Research.1997,27(6): 890-902.
    [187]Saksa T, Heiskanen J, Miina J, et al. Multilevel modelling of height growthin young norway spruce plantations in southern finland [J]. Silva Fennica.2005,39(1):143-153.
    [188]Schenck C A. forest mensuration[M]. Sewanee:The University press,1905.
    [189]Schwinninga S, Weiner J. Mechanisms determining the degree of size asymmetry in competition among plants[J]. Oecologia.1998,113:447-455.
    [190]Shi H J, Zhang L J, Liu J G. A new spatial attribute weighting function for geographically weighted regression [J]. Canada Journal of Forest Science.2006,36:996-1005.
    [191]Socha J. Estimation of the effect of stand density on scots pine stem form[J]. Acta Sci Pol.2007, 6:59-70.
    [192]Socha J, Kulej M. Variation of the tree form factor and taper in European larch of Polish provenances tested under conditions of the Beskid Sadecki mountain range (southern Poland)[J]. Journal of Forest Science.2007,12:538-547.
    [193]Stage A. An expression for the effect of slope,aspect and habitat type on tree growth[J]. Forest Science.1976,22:457-460.
    [194]Suzuki G. Forest Mensuration[M]. Tokyo:kosho.or.jp,1943.
    [195]Tahvonena O, Pukkalab T, Laihoc O, et al. Optimal management of uneven-aged Norway sprucestands[J].2010,60(1):106-115.
    [196]Ter-Mikaelian M T, Zakrzewski W T, Macdonald G B, et al. Stem profile equations for young trembling aspen in northern Ontario[J]. Annual Journal of Forest Science.2004:109-115.
    [197]Uteau D, Donoso P. Early individual growth of Eucryphia cordifolia and Laurelia sempervirens planted under different competition conditions in southcentral chile[J]. Ciencia Investigacion agraria. 2009,36(1):85-96.
    [198]Uuttera J, Maltamo M. Impact of regerneration met hods on stand struct ure prior to first thinning:Comparat ive study North Karelia,Finland vs.Republic of Karelia,Russian Federation[J]. Silva Fennica.1995,29(4):267-285.
    [199]Wang Q, Ni J, Tenhunen J. Application of a geographically-weighted regression analysis to estimate net primary production of Chinese forest ecosystems[J]. Global Ecology and Biogeography. 2005,14(4):379-393.
    [200]Waring R H, Schlesinger W H. Forest ecosystems:Concepts and Management[M]. Orlando: Academic press,1985.
    [201]Weiner J. Asymmetric competition in plant populations[J]. Trends in Ecology and Evolution. 1990,5(11):360-364.
    [202]Wiegand T, Moloney K A. Rings circles and null-models for point pattern analysis in ecology[J]. Oiko.2004,104:209-229.
    [203]Zhang L J, Gove H J, Liu C, et al. A finite mixture of two Weibull distributions for modeling the diameter distributions of rotated sigmoid,uneven-aged stands[J]. Canadian Journal of Forest Research. 2001,31:1654-1659.
    [204]Zhang L J, Shi H J. Local modeling of tree growth by geographically weighted regression[J]. Forest Science.2004,50(4):225-244.
    [205]Zhao H Y, Kang X G, Lu Y C, et al. A kind of algorithm estimating parameters of unitary non-linearity regression model [C].2011.
    [206]Zhao H Y, Kang X G, Yang H, et al. Design and development of a tool For fitting Weibull distribution function based on EXCEL VBA[C].2011.
    [207]Zhao H Y, Kang X G, Yang H, et al. Design and development of supporting tool for target-tree-operation management[C].2011.
    [208]Zhou L, Kaufmann R K, Tian Y, et al. Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999[J]. Journal of Geophysical Research.2003,108:4004-4010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700