方坯连铸宏观传输现象复合数值模拟的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连铸钢液的凝固过程中伴随着液相流动、固相移动、固液相及两相区传热以及溶质传输等复杂的物理现象,它们是影响连铸生产的重要环节。采用计算机数值仿真技术对其加以研究,已成为研究连铸工艺和铸坯质量的重要手段。
    本论文针对连铸过程中发生的各种宏观传输现象,首次提出了复合数值模拟研究方法。在拉坯方向上将整个铸机空间划分为两个独立的计算区域,即上部计算域和下部计算域,前者作为三维稳态流动、传热及溶质传输耦合数学模型的计算域空间,后者则作为二维非稳态凝固传热数学模型的计算域空间,在数值计算过程中对两者进行了有机地统一。通过整个铸机空间内的复合数值模拟,为二冷制度的合理设计提供了必要的理论依据和实现手段。该研究方法应用范围较广,不仅适用于方坯连铸,对于板坯、薄板坯连铸也同样适用。
    在连铸二冷制度的设计中,考虑到中间包浇铸温度在实际连铸生产中的波动以及不同季节内二冷水温度的变化,提出了一种形式新颖的二次冷却控制模型框架。除通常的模型框架中所采用的拉坯速度外,还引入了两个新的控制变量,即:
    
    在该模型框架中,为水量,为拉速,为过热度,、和为与拉速有关的系数,为与过热度有关的系数,为与二冷水温有关的系数。
    采用热分析仪和高温热模拟机,分别测试了方坯试样的高温热物理性能和机械力学性能,并进行了扫描电镜分析,为数值仿真过程中相关热物理性质及冶金限制准则的合理确定提供了实验依据。另外,还测试了二冷喷嘴的冷态及热态性能,为二冷区传热边界条件的准确定义提供了必要的依据。
    对影响宏观传输模型精度的三个最重要的钢种热物理性质(即密度、导热系数和溶质分配系数),采用了新的、考虑更为全面的取值方法。局部混合密度取为各相密度的调和平均值,详细考虑了各相密度随温度和溶质浓度的变化关系;局部有效导热系数取为串联型和并联型导热系数的算术平均值,通过引入对流影响系数来描述了流动对传热的影响效果;对于二元合金,溶质分配系数在平衡凝固条件下由二元相图直接读取,在非平衡凝固条件下则取为与温度有关的值。
    根据典型微观凝固单元体内的溶质质量守恒,并经严格的推导,建立了二元包晶/共晶合金微观偏析半解析数学模型。模型中,详细考虑了反向扩散和粗化对液相浓度的稀释效果。对于Q235钢,该微观偏析模型的求解过程相当繁琐、费时。本文首次按两种不同模式(对应于包晶点前后的两个凝固温度区间)对凝固路径进行了回归分析,为宏观传输模型中非平衡凝固路径的确定提供了理论根据。
    在复合数值模拟研究中,首先基于单区域连续介质理论和固定网格方法,建立了方坯连铸凝固过程三维稳态钢液流动、凝固传热及溶质传输耦合数学模型;
    
    
    然后基于有限厚度薄片层思想和微观单元体的进出热量平衡关系,建立了方坯连铸过程二维非稳态传热模型。在三维耦合模型中,依据临界固相分数将两相区分别视为非牛顿半固相流体和多孔介质,在等轴晶区和柱状晶区分别采用各向同性和各向异性渗透率来描述多孔介质的渗透特性,在能量方程中首次考虑了速度粘性耗散项;在二维传热模型中,没有耦合钢液流动和溶质传输的计算,而是根据浇铸温度、拉坯距离和局部固相分数来近似描述了钢液流动对传热的影响效果。
    综合应用三维耦合模型和二维传热模型,针对涟钢1号方坯铸机进行了复合数值模拟研究,获得了优化的二冷控制模型以及铸坯相应的流场、温度场和溶质浓度场。仿真结果表明:入流钢液形成向上和向下两个流股,随着拉坯距离的增加,钢液流股由强烈的湍流形式逐渐演变成充分发展的平推型流动;拉坯方向上,铸坯表面温度的总体波动相对较小,表面温度范围及其变化速率均满足冶金限制准则的要求;铸坯断面上会发生溶质元素的宏观偏析,中心偏析程度随着拉坯距离和拉速的增加而相应增大。另外为便于对比分析,还应用单纯的二维传热模型对整个连铸过程进行了数值仿真运算。结合已有的实际生产数据可知,复合数值模拟方法较之单纯二维模拟方法,具有更好的仿真精度和实用价值。
    相关的仿真研究成果已经应用于涟钢的实际生产中。从铸机改造后的生产状况来看,铸坯质量得到了明显的改善,铸机拉速有了显著提高,其最高拉速在3.8~4.0m/min左右,连铸生产稳定,在投产后的四个月内获得的经济总效益相对头年同期为750余万元。生产数据表明,连铸机的二冷优化改造取得了非常可观的经济效益,达到了改造的预期目的。说明本文在进行二冷优化设计和连铸过程仿真时,所采用的复合数值模拟方法具有较好的合理性和实用性。
    综上所述,本文所建立的复合数值模拟研究方法,兼顾了两种数学模型的优势,既可充分地保证数值仿真运算的精度,又可大幅度降低仿真运算的成本,促进了仿真精度和计算成本的有机统一。该研究方法适用于各种连铸工艺的过程仿真及二冷设计,具有较高的理论及实用价值。
Solidification process of continuous casting (CC) steel liquid involves complex physical phenomena, such as liquid flow, solid movement, heat transfer in solid phase, liquid phase & mushy zone and solute transport, etc., which are important influencing factors for CC process. It has become a significant research instrument on CC process and slab quality to make study on the mentioned solidification process based on numerical simulation techniques.
    A hybrid numerical simulation approach has been put forward firstly in this thesis, according to the various macro-transport phenomena in CC process, in which, the whole length of caster is divided into two independent calculation domains along withdrawing direction, viz., the upper domain which is specially for the 3-D steady conjugated flow, heat transfer & solute transport mathematical model of billet CC and the lower domain which is for the 2-D unsteady heat transfer mathematical model of billet CC, and there is an organic unity of them during numerical calculation. The necessary theoretical foundation & implemental means have been provided for reasonable design of secondary cooling system, by the hybrid numerical simulation within range of whole length of caster. This method can be used in a wide range, which adapts not only to billet CC, but also to slab & thin slab CC.
    By consideration of fluctuations of casting temperature in tundish in actual CC process and changes of temperature of secondary cooling water in different seasons, an original frame of secondary cooling control model has been developed for the design of secondary cooling system. Besides casting speed used in normal frame of control model, two new control variable have been imported into this new model frame, as described as below:
    
    in which, refers to water flowrate, refers to casting speed, refers to superheat, , & are coefficients related to casting speed, is coefficient related to superheat, is coefficient related to temperature of cooling water.
    Thermal physical properties and mechanical properties of the billet samples have been measured by thermo-analyzer and thermo-simulator respectively, and scanning electron microscope analysis has also been executed for the samples, which provide the experimental gists for reasonable determining of thermo-physical properties and
    
    
    metallurgical rules in numerical simulation, In addition, the normal temperature performance and high temperature performance of the spraying nozzles have been tested to provide the necessary basis for accurate defining of heat transfer conditions in secondary cooling zone.
    Three thermo-physical properties, which are most important for accuracy of macroscale transport model, have been determined by new & more considerate methods, which include density, thermal conductivity and solute partition coefficient. Local mixing density is set to be the harmonic average of density of each phase, in which, evolution of phase density with temperature & solute concentration has been considered detailedly. Local effective thermal conductivity equals to the arithmetic average of series-wound thermal conductivity and shunt-wound thermal conductivity, in which a convection affecting coefficient is imported to depict the effect of steel liquid flow to heat transfer. For binary alloy system, in condition of equilibrium solidification, solute partition coefficient is decided directly from phase diagram, but in nonequilibrium condition, it’s changing with temperature.
    A semi-analytic microsegreation mathematical model for binary peritectic/eutectic alloy system has been erected by strict derivation, in terms of mass balance pricinple of solute in the typical micro-solidification volume element, in which, the dilution effects of back diffusion & coarsening to solute concentration in liquid phase have been considered detailedly. For Q235 carbon steel, numerical solution of the microsegregation model will be very difficult and take a long time. A regressive analysis has been executed firstly according to two different modes (
引文
[1] Indira V. Samarasekera, Cindy Chow. Continuous Casting of Steel Billets. The Making, Shaping and Treating of Steel, 11th Edition – Casting Volume, Alan Cramb, ed. (Pittsburgh, PA: Assoc. of Iron & Steel Engineers, 2003), ISBN=0-930767-04-7, Chapter 17
    [2] Manfred M. Wolf. Historical Aspects and Key Technologies. The Making, Shaping and Treating of Steel, 11th Edition – Casting Volume, Alan Cramb, ed. (Pittsburgh, PA: Assoc. of Iron & Steel Engineers, 2003), ISBN=0-930767-04-7, Chapter 1
    [3] B.G. Thomas. Continuous Casting. The Encyclopedia of Materials: Science and Technology, K.H. J. Buschow, R. Cahn, M. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, ed., Elsevier Science Ltd., Oxford, UK. 2001. Vol. 2. pp1595-1599
    [4] M.M. Wolf. History of Continuous Casting. in Steelmaking Conference Proceedings 75, Iron & Steel Society, Warrendale, PA, 1992. pp83-137
    [5] P.A. Levin. Analytical Model for Continuous Caster Profile Optimisation. Ironmaking and Steelmaking. 2001. 28 (4). pp342-346
    [6] Ken-ichi Miyazawa. Continuous Casting of Steels in Japan. Science and Technology of Advanced Materials. 2001. 2. pp59-65
    [7] Brian G. Thomas. Modeling of Continuous Casting. The Making, Shaping and Treating of Steel, 11th Edition – Casting Volume, Alan Cramb, ed. (Pittsburgh, PA: Assoc. of Iron & Steel Engineers, 2003), ISBN=0-930767-04-7, Chapter 5
    [8] R. Sánchez-Perez, R.D. Morales, M. Díaz-Cruz, O. Olivares-Xometl, J. Palafox-Ramos. A physical Model for the Two-phase Flow in a Continuous Casting Mold. ISIJ International. 2003. 43 (5). pp637-646
    [9] A. Theodorakakos, G. Bergeles. Numerical Investigation of the Interface in a Continuous Steel Casting Mold Water Model. Metallurgical and Materials Transactions B. 1998. 29B (12). pp1321-1327
    [10] Dipak Mazumdar, Roderick I.L. Guthrie. The Physical and Mathematical Modelling of Continuous Casting Tundish Systems. ISIJ International. 1999. 39 (6). pp524-547
    [11] D. Xu, W.K. Jones Jr., J.W.Evans, D,P. Cook. Mathematical and Physical Modeling of Systems for Metal Delivery in the Continuous Casting of Steel and DC Casting of Aluminum. Applied Mathematical Modelling. 1998. 22. pp883-893
    [12] Brian G. Thomas. Process Modeling. Advanced Physical Chemistry for Process Metallurgy, M. Maeda, ed., Academic Press, 1997. ISBN 0-12-618920-X. pp253-279
    
    [13] Sridhar Seetharaman. Pertinent Properties for Metals and Slags in Continuous Casting. The Making, Shaping and Treating of Steel, 11th Edition – Casting Volume, Alan Cramb, ed. (Pittsburgh, PA: Assoc. of Iron & Steel Engineers, 2003), ISBN=0-930767-04-7, Chapter 2
    [14] N. Chakraborti, R. Kumar, D. Jain. A Study of the Continuous Casting Mold Using a Pareto-Converging Genetic Algorithm. Applied Mathematical Modelling. 2001. 25. pp287-297
    [15] K.H. Spitzer, K. Harste, B. Weber, P. Monheim, K. Schwerdtfeger. Mathematical Model for Thermal Tracking and On-line Control in Continuous Casting. ISIJ International. 1992. 32 (7). pp848-856
    [16] Carlos A. Santos, Jaime A. Spim Jr., Maria C.F. Ierardi, Amauri Garcia. The Use of Artificial Intelligence Technique for the Optimisation of Process Parameters Used in the Continuous Casting of Steel. Applied Mathematical Modelling. 2002. 26. pp1077-1092
    [17] Richard A. Hardin, Kai Liu, Atul Kapoor, Christoph Beckermann. A Transient Simulation and Dynamic Spray Cooling Control Model for Continuous Steel Casting. Metallurgical and Materials Transactions B. 2003. 34B (3). pp297-306
    [18] C. Eck, P. Knabner, S. Korotov. A Two-Scale Method for the Computation of Solid-Liquid Phase Transition with Dendritic Microstructure. Journal of Computational Physics. 2002. 178 (1). pp58-80
    [19] R. Sasikumar, H.E. Exner. Coupling of Microsegregation Models to Heat Flow Simulations in Castings. Modelling and Simulation in Materials Science and Engineering. 1992. 1 (1). pp19-27
    [20] J.K. Brimacombe. Empowerment with Knowledge — toward the Intelligent Mould for the Continuous Casting of Steel Billets. Iron and Steelmaker. 1993. pp35-47
    [21] N.M. Vanaparthy, Malur N. Srinivasan. Modelling of Solidification Structure of Continuous Cast Steel. Modelling and Simulation in Materials Science and Engineering. 1998. 6 (5). pp237-249
    [22] J.A. Dantzig. Solidification Modeling: Status and Outlook. JOM. 2000. 52 (12). pp18-21
    [23] Seppo Louhenkilpi. Modelling of Heat Transfer in Continuous Casting. Materials Science, Testing and Informatics, Trans Tech Publications Ltd., Brandrain 6, CH-8707 Uetikon a.s. Switzerland. 2003. pp445-454
    [24] 荆德君, 蔡开科. 连铸结晶器内铸坯温度场和应力场耦合过程数值模拟. 北京科技大学学报. 2000. 22 (5). pp417-421
    [25] S. Kumar, J.A. Meech, I.V. Samarasekera, J.K. Brimacombe. Knowledge Engineering an Expert Systems to Troubleshoot Quality Problems in the Continuous Casting of Steel Billets. Iron and Steelmaker. 1993. pp29-36
    [26] B. Filipic, B. Sarler. Continuous Casting Simulator — a Tool for Improved Quality and
    
    
    Productivity. In: Proceedings of the 2nd International Metallurgical Conference Continuous Casting of Billets, Trinec, Czech Republic, 1997. pp161-168
    [27] B. Filipic, B. Sarler. Evolving Parameter Setting for Continuous Casting of Steel. In: Proceedings of the 6th European Congress on Intelligent Techniques and Soft Computing — EUFIT’98, Aachen, Germany, Sept 7-10, Vol.1, 1998. pp444-449
    [28] B. Lally, L.T. Biegler, H. Henein. Optimisation and Continuous Casting: Part 1. Problem Formulation and Solution Strategy. Metallurgical Transactions B. 1991. 22B. pp641-648
    [29] N. Cheung, A. Garcia. The Use of a Heuristic Search Technique for the Optimization of Quality of Steel Billets Produced by Continuous Casting. Engineering Applications of Artificial Intelligence. 2001. 14. pp229-238
    [30] Brian G. Thomas. Casting Process Simulation and Visualization: A JOM-e Perspective. JOM. 2002. 54 (1). On-line
    [31] Philippe Thevoz, Matthias Gaumann, Marco Gremaud. The Numerical Simulation of Continuous and Investment Casting. JOM. 2002. 54 (1). On-line
    [32] Rüdiger Schwarze, Frank Obermeier, Dieter Janke. Numerical Simulation of Fluid Flow and Disperse Phase Behaviour in Continuous Casting Tundishes. Modelling and Simulation in Materials Science and Engineering. 2001. 9 (4). pp279-287
    [33] Víctor D. Fachinotti, Alberto Cardona. Constitutive Models of Steel under Continuous Casting Condition. Journal of Materials Processing Technology. 2003. 135. pp30-43
    [34] Henrik Saxén, Markku Sillanp??. A Model for Decision Support in Continuous Steel Casting. Modelling and Simulation in Materials Science and Engineering. 1994. 2 (1). pp79-98
    [35] X.K. Lan, J.M. Khodadadi. Liquid Steel Flow, Heat Transfer and Solidification in Mold of Continuous Casters during Grade Transition. International Journal of Heat and Mass Transfer. 2001. 44. pp3431-3442
    [36] Heung Nam Han, Jung-Eui Lee, Tae-Jung Yeo, Young Mok Won, Kyung-Hyun Kim, Kyu Hwan Oh, Jong-Kyu Yoon. A Finite Element Model for 2-Dimensional Slice of Cast Strand. ISIJ International. 1999. 39 (5). pp445-454
    [37] A.E. Huespe, A. Cardona, V. Fachinotti. Thermomechanical Model of a Continuous Casting Process. Computer Methods in Applied Mechanics and Engineering. 2000. 182. pp439-455
    [38] R. Kageyama, James W. Evans. Development of a Three Dimensional Mathematical Model of the Electromagnetic Casting of Steel. ISIJ International. 2002. 42 (2). pp163-170
    [39] Jiunn-Lin Yeh, Weng-Sing Hwang, Chang-Long Chou. The Development of a Mathematical Model to Predict Composition Distribution in Casting Slab and Intermix Slab Length during Ladle Changeover Period and Its Verification by Physical Model. ISIJ International. 1993. 33
    
    
    (5). pp588-594
    [40] Haiwen Luo, L. Pentti Karjalainen, David A. Porter, Heidi-Marja Liimatainen, Yan Zhang. The Influence of Ti on the Hot Ductility of Nb-bearing Steels in Simulated Continuous Casting Process. ISIJ International. 2002. 42 (3). pp273–282
    [41] I.K. Craig, F.R. Camisani-Calzolari, P.C.Pistorius. A Contemplative Stance on the Automation of Continuous Casting in Steel Processing. Control Engineering Practice. 2001. 9. pp1013-1020
    [42] Klaus J. Schwerdtfeger. Heat Withdraw in Continuous Casting of Steel. The Making, Shaping and Treating of Steel, 11th Edition – Casting Volume, Alan Cramb, ed. (Pittsburgh, PA: Assoc. of Iron & Steel Engineers, 2003), ISBN=0-930767-04-7, Chapter 4
    [43] Herbert L. Gilles. Primary and Secondary Cooling Control. The Making, Shaping and Treating of Steel, 11th Edition – Casting Volume, Alan Cramb, ed. (Pittsburgh, PA: Assoc. of Iron & Steel Engineers, 2003), ISBN=0-930767-04-7, Chapter 18
    [44] Hasse Fredriksson, Jessica Elfsberg. Thoughts about the Initial Solidification Process during Continuous Casting of Steel. Scandinavian Journal of Metallurgy. 2002. 31 (5). pp292-297
    [45] Brian G. Thomas. Continuous Casting: Complex Model. The Encyclopedia of Materials: Science and Technology, K.H. J. Buschow, R. Cahn, M. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, ed., Elsevier Science Ltd., Oxford, UK. 2001. 2. pp1599-1609
    [46] F. R. Camisani-Calzolari, I. K. Craig, P. C. Pistorius. Speed Disturbance Compenation in the Secondary Cooling Zone in Continuous Casting. ISIJ International. 2000. 40 (5). pp469–477
    [47] Brian G. Thomas. Continuous Casting of Steel. Chapter 15 in Modeling for Casting and Solidification Processingx, O. Yu, eds., Marcel Dekker, New York, NY, 2001. pp499-540
    [48] P.A. Levin. Analytical Model for Continuous Caster Profile Optimisation. Ironmaking and Steelmaking. 2001. 28 (4). pp342-346
    [49] B.G. Thomas, W.R. Storkman. Mathematical Models of Continuous Slab Casting to Optimize Mold Taper. Modeling and Control of Casting and Welding Processes – IV, Palm Coast, FL, April 17-22, 1988, AF Giamei and GJ Abbaschian, eds., The Metallurgical Society, Warrendale, PA, 1988. pp287-297
    [50] 冯科. Q235钢方坯高拉速连铸二次冷却制度的研究[硕士论文] . 重庆大学. 重庆大学材料科学与工程学院. 2000
    [51] 徐宝升. 连续铸锭装置. 第一版. 北京. 冶金工业出版社. 1959
    [52] 蔡开科. 浇注与凝固. 第一版. 北京. 冶金工业出版社. 1987
    [53] Savage J, Pritchard W H. The Problem of Rupture of the Billet in the Continuous Casting of Steel. J. Iron and Steel Inst. 1954. 179. pp267-277
    [54] Brimacombe J K, Lait J E, Weinberg F. Pool Profile, Liquid Mixing and Cast Structure in Steel,
    
    
    Continuously Cast in Curved Moulds. Ironmaking and Steelmaking. 1974. 1. pp35-42
    [55] 蔡开科, 吴元增. 连续铸锭板坯凝固传热数学模型. 金属学报. 1983. 19 (1). pp33-40
    [56] R.D. Pehlke. Mold Heat Transfer Coefficents in Continuous Casting of Steel. The University of Michigan. August 2003. On-line Paper
    [57] R.D. Pehlke. Computer Simulation of Heat Transfer during Continuous Casting — A Summary of the Development and Application of a Computer Model for Heat Transfer during Continuous Casting of Steel Using Finite Differences Approximations. Prepared for McLouth Steel Corporation, Trenton, MI, June 15, 1967
    [58] R.D. Pehlke. Heat Transfer during Continuous Casting — Calculation of Slab Surface Temperature and Heat Transfer Rates in the Spray Zone of a Continuous Casting Machine. Prepared for McLouth Steel Corporation, Trenton, MI, September 26, 1967
    [59] R.D. Pehlke. Heat Transfer during Continuous Casting — A Study of Mold Heat Transfer and the Effect of Water Cooling Passage Configurations. Prepared for McLouth Steel Corporation, Trenton, MI, March, 1968
    [60] R.D. Pehlke. Computer Simulation of Heat Transfer during Continuous Casting — A Modification of the Spray Zone Heat Transfer Calculation and Evaluation of Heat Transfer during a Stopped Cast. Prepared for McLouth Steel Corporation, Trenton, MI, August 19, 1968
    [61] D.R. Glass, P.O. Hays, R.D. Pehlke. Experimental Study of Heat Transfer during Water Spraying of Hot Steel Surfaces. Prepared for McLouth Steel Corporation, Trenton, MI, June, 1968
    [62] I.V. Samarasekera, J.K. Brimacombe. “The Continuous Casting Mould”, Continuous Casting Volume Two, Heat Flow, Solidification and Crack Formation, J.K. Brimacombe, I.V. Samarasekera and J.E. Lait, Iron and Steel Society of AIME, Warrendale, PA, 1984. pp33-44
    [63] J.E. Kelly, K.P. Michalek, T.G. O’Connor, B.G. Thomas, J.A. Dantzig. Initial Development of Thermal and Stress Fields in Continuously Cast Steel Billets. Metallurgical Transactions A. 1988. 129A. pp2589-2602
    [64] Herbert Steinrück, Christian Rudischer, Wilhelm Schneider. Modelling of Continuous Casting Process. Nonlinear Analysis, Theory, Methods & Applications. 1997. 30 (8). pp4915-4925
    [65] V. Alexiades, A. Solomon. Mathematical Modeling of Melting and Freezing Processes. Washington. Hemisphere Publishing Corporation. 1993
    [66] Brian.G. Thomas. Modeling of the Continuous Casting of Steel — Past, Present and Future. Brimacombe Lecture, 59th Electric Furnace Conf., Pheonix, AZ, Iron & Steel Soc., 2001. pp3-30
    [67] Carlos Cicutti, Robert Boeri. A Simple Estimation Method for Shell Thickness at the Mold Exit
    
    
    in the Continuous Casting of Steel. ISIJ International. 2001. 41 (3). pp311-313
    [68] Gábor Fehérvári, Mihály Réger, Balázs Ver?. Analysis of the Effect of Casting Parameters on Continuous Steel Casting. Materials Science, Testing and Informatics, Trans Tech Publications Ltd., Brandrain 6, CH-8707 Uetikon a.s. Switzerland, 2003. pp395-404
    [69] 曹广畴主编. 现代板坯连铸. 第一版. 北京. 冶金工业出版社. 1994
    [70] 叶枫. 连铸工艺操作. 连铸. 1999. 1. pp41-45
    [71] Clyne T W. Numerical Modelling of Directional Solidification of Metallic Alloys. Metal Science. 1982. 16. pp441-450
    [72] Miyazawa K, Muichi I. Theoretical Analysis on the Solidification Profile os Slab in Straight Type Continuous Casting Machine. Tetsu-to-Hagane. 1974. 60 (7). pp1000-1006
    [73] Sasaki K, Sugitani Y, Kawasaki M. Heat Transfer in Spray Cooling on Hot Surface. Tetsu-to-Hagane. 1979. 65 (1). pp90-96
    [74] Mizikar E A. Spraying Cooling Investigation for Continuous Casting of Billets and Blooms. Iron and Steel Engineer. 1970. 47 (6). pp53-66
    [75] Miyazawa K, Mudi I. Theoretical Analysis on the Solidification Profile os Slab in Circular-arc Type Continuous Casting Machine. Tetsu-to-Hagane. 1974. 60 (7). pp1007-1012
    [76] Nozak T. A Secondary Cooling Pattern for Preventing Surface Crack of Continuous Casting Slabs. Trans. ISIJ. 1978. 18. pp330-338
    [77] 蒋冠珞. 连铸板坯传热的计算机模拟. 武钢技术. 1980. 4. pp6-18
    [78] 蔡开科, 杨吉春. 连铸二冷区喷雾冷却特性研究. 钢铁. 1990. 25 (2). pp9-12
    [79] Winzell B. Finite Element Galerkin Method for Multiphase Stefan Problem. Appl. Math. Modelling. 1983. 7. pp329-344
    [80] 张学军, 张风禄. 连铸二冷区气—水喷雾冷却传热模型. 北京科技大学学报. 1991. 13 (4). pp318-322
    [81] 陈登福, 冯科, 徐楚韶, 孙海峰. 高效连铸二次冷却喷嘴的性能. 冶金能源. 2002. 21 (2). pp5-7
    [82] 廖建云, 冯科, 陈登福. 铸坯表面热交换系数的测定. 冶金能源. 2003. 22 (2). pp61-63
    [83] 陈登福. 薄板连铸坯的温度与应力状态的研究[博士论文]. 重庆大学. 重庆大学材料科学与工程学院. 1997
    [84] A Ghosh. Segregation in Cast Products. Sādhanā. 2001. 26. Part 1 & 2. Frbruary-April. pp5-24
    [85] Merton C. Flemings, Toshihiko Koseki. Solidification of Steel. The Making, Shaping and Treating of Steel, 11th Edition – Casting Volume, Alan Cramb, ed. (Pittsburgh, PA: Assoc. of Iron & Steel Engineers, 2003), ISBN=0-930767-04-7, Chapter 6
    [86] Christoph Beckermann. Modeling of Solidification. Purdue Heat Transfer Celebration, West
    
    
    Lafayette, IN, April 3-5, 2002. pp19-22
    [87] W. Kurz, C. Bezen?on, M. G?umann. Columnar to Equiaxed Transition in Solidification Processing. Science and Technology of Advanced Materials. 2001. 2. pp185-191
    [88] Warren J. Poole, Fred Weinberg. Observation of the Columnar-to-Equiaxed Transition in Stainless Steel. Metallurgical and Materials Transactions A. 1998. 29A (2). pp855-861
    [89] W. Kurz, D.J. Fisher. Fundamentals of Solidification, 4th ed., Trans Tech, Switzerland, 1998, pp. 247
    [90] M. M’Hamdi, H. Combeau, G. Lesoult. Modelling of Heat Transfer Coupled with Columnar Dendritic Growth in Continuous Casting of Steel. International Journal of Numerical Methods for Heat & Fluid Flow. 1999. 9 (3). pp296-317
    [91] Shozo Mizoguchi. Structural Control of Casting. The Making, Shaping and Treating of Steel, 11th Edition – Casting Volume, Alan Cramb, ed. (Pittsburgh, PA: Assoc. of Iron & Steel Engineers, 2003), ISBN=0-930767-04-7, Chapter 11
    [92] L. Nastac. Numerical Modeling of Solidification Morphologies and Segregation Patterns in Cast Dendritic Alloys. Acta Mater. 1999. 47 (17). pp4253-4262
    [93] Andrew M. Mullis. The Effects of Fluid Flow on Secondary Arm Coarsening during Dendritic Solidification. Journal of Materials Science. 2003. 38. pp2517-2523
    [94] J. Alkemper, P.W. Voorhees. Three-Dimensional Characterization of Dendritic Microstructures. Acta Mater. 2001. 49 (5). pp897-902
    [95] C. Beckermann, Q. Li, X. Tong. Microstructure Evolution in Equiaxed Dendritic Growth. Science and Technology of Advanced Materials. 2001. 2. pp117-126
    [96] C. Cicutti, R. Boeri. On the Relationship between Primary and Secondary Dendrite Arm Spacing in Continuous Casting Products. Scripta Materialia. 2001. 45. pp1455-1460
    [97] M. El-Bealy, B.G. Thomas. Prediction of Dendrite Arm Spacing for Low Alloy Steel Casting Processes. Metallurgical and Materials Transactions B. 1996. 27B (8). pp689-692
    [98] Kim K, Yeo T, Oh K H, Lee D N. Effect of Carbon & Sulfur in Continuously Cast Strand on Longitudinal Surface Cracks. ISIJ International. 1996. 36 (3). pp284-289
    [99] Nakagawa T, Umeda T, Murate T. Strength and Ductility of Solidifying Shell during Casting. Trans. Iron Steel Inst. Jpn. Int.. 1995. 35. pp723-728
    [100] Young Mok Won, Tae-jung Yeo, Dong Jin Seol, Kyu Hwan Oh. A New Criterion for Internal Crack Formation in Continuously Cast Steel. Metallurgical and Materials Transactions B. 2000. 31B (8). pp779-793
    [101] A.K. Singh, B. Basu. On Convection in Mushy Phase and Its Effect on Macrosegregation. Metallurgical and Materials Transactions A. 2000. 31A (6). pp1687-1691
    
    [102] Tangthieng C. Macroscopic and Microscopic Modeling of Freeze-Coating of a Binary Solution on a Moving Continuous Object. [Ph.D. Dissertation]. Pennsylvania State University. University Park. 2002
    [103] Schwabe D, Scharmann A, Preisser F, Oeder R. Experiments on Surface Tension Driven Flow in Floating Zone Melting. J. Crystal Growth. 1978. 43. pp305-312
    [104] Thompson M E, Szekely J. Mathematical and Physical Modeling of Double-diffusive Convection of Aqueous Solutions Crystallizing at a Vertical Wall. J. Fluid Mech.. 1988. 187. pp409-433
    [105] J.C. Heinrich, S. Felicelli, P. Nandapurkar, D.R. Poirier. Thermosolutal Covection during Dendritic Solidification of Alloys: Part II. Nolinear Covection. Metallurgical and Materials Transactions B. 1989. 20B (6). pp883-891
    [106] Zhiqiang Han, Baicheng Liu. Modeling on Thermosolutal Convection and Freckle Formation in Upward Unidirectional Solidification of Fe-C Binary Alloys. Proceedings of the 65th World Foundry Congress, Gyeongju, Korea, 2002. pp669-678
    [107] S Mazumdar, S K Ray. Solidification Control in Continuous Casting of Steel. Sādhanā. 2001. 26. Parts 1 & 2. February-April. pp179-198
    [108] 崔忠圻主编. 金属学与热处理. 第一版. 北京. 机械工业出版社. 1994
    [109] N.H Pryds, X. Huang. The Effect of Cooling Rate on the Microstructures Formed during Solidification of Ferritic Steel. Metallurgical and Materials Transactions A. 2000. 31A (12). pp3155-3166
    [110] Masana Imagumbai. Relationship between Primary- and Secondary- Dendrite Arm Spacing of C-Mn Steel Uni-directionally Solidified in Steady State. ISIJ International. 1994. 34 (12). pp986-991
    [111] Lasse Makkonen. Spacing in Solidification of Dendritic Arrays. Journal of Crystal Growth. 2000. 208. pp772-778
    [112] G. Phanikumar, K. Chattopadhyay. Solidification Microstructure Development. Sādhanā. 2001. 26. Part 1 & 2. Frbruary-April. pp25-34
    [113] Liang D, Jie W Q, Jones H. The Effect of Growth Velocity on Primary Spacing of Al3Fe Dendrites in Hypereutectic Al-Fe Alloys. Journal of Crystal Growth. 1994. 135. pp561-564
    [114] Young K P, Kirkwood D H. The Dendrite Arm Spacing of Aluminum-Copper Alloys Solidified under Steady-state Conditions. Metallurgical Transactions. 1975. 6A. pp197-205
    [115] Kurz W, Fisher D J. Dendrite Growth at the Limit of Stability: Tip Radius and Spacing. Acta Metall.. 1981. 29. pp11-20
    [116] C. Cicutti, P. Bilmes, R. Boeri. Estimation of Primary Dendrite Arm Spacings in Continuous
    
    
    Casting Products. Scripta Materialia. 1997. 37 (5). pp599-604
    [117] J.H. Kim, J.W. Park, C.H. Lee, E.P. Yoon. Numerical Modeling of Microsegregation in Binary Alloys. Journal of Crystal Growth. 1997. 173. pp550-560
    [118] J.M. Cabrera-Marrero, V. Carreno-Galindo, R.D. Morales, F. Chavez-Alcala. Macro-Micro Modeling of the Dendritic Microstructure of Steel Billets Processed by Continuous Casting. ISIJ International. 1998. 38 (8). pp812-821
    [119] X. Tong, C. Beckermann. A Diffusion Boundary Layer Model of Microsegregation. Journal of Crystal Growth 1998. 187. pp289-302
    [120] M.C. Schneider, C. Beckermann. A Numerical Study of the Combined Effects of Microsegregation, Mushy Zone Permeability and Flow, Caused by Volume Contraction and Thermosolutal Convection, on Macrosegregation and Eutectic Formation in Binary Alloy Solidification. Int. J. Heat Mass Transfer. 1995. 38 (18). pp3455-3473
    [121] Masana Imagumbai, Tetsuo Takeda. Influence of Calcium-treatment on Sulfide- and Oxide-inclusions in Continuous-cast Slab of Clean Steel — Dendrite Structure and Inclusions. ISIJ International. 1994. 34 (7). pp574-583
    [122] J.F. Hétu, D.M. Gao, K.K. Kabanemi, S. Bergeron, K.T. Nguyen, C.A. Loong. Numerical Modeling of Casting Process. Advanced Performance Materials. 1998. 5. pp65-82
    [123] Young Mok Won, Kyung-hyun Kim, Tae-jung Yeo, Kyu Hwan Oh. Effect of Cooling Rate on ZAT, LIT and ZDT of Carbon Steels near Melting Point. ISIJ International. 1998. 38 (10). pp1093-1099
    [124] Young-Mok Won, B.G. Thomas. Simple Model of Microsegregation during Solidification of Steels. Metallurgical and Materials Transactions A. 2001. 32A (7). pp1755-1767
    [125] Thomas P. Battle, Robert D. Pehlke. Mathematical Modeling of Microsegregation in Binary Metallic Alloys. Metallurgical Transactions B. 1990. 21B (4). pp357-374
    [126] V.R. Voller. A Semi-analytical Model of Microsegregation and Coarsening in a Binary Alloy. Journal of Crystal Growth. 1999. 197. pp333-340
    [127] R. Trivedi, Yunxue Shen, Shan Liu. Cellular-to-Dendritic Transition during the Directional Solidification of Binary Alloys. Metallurgical and Materials Transactions A. 2003. 34A (2). pp395-401
    [128] Mortensen A. On the Rate of Dendrite Arm Coarsening. Metallurgical Transactions A. 1991. 22A. pp569-574
    [129] H?vard J. Thevik, Asbj?rn Mo. The Influence of Micro-scale Solute Diffusion and Dendrite Coarsening upon Surface Macrosegregation. Int. J. Heat Mass Transfer. 1997. 40 (9). pp2055-2065
    
    [130] S. Chakraborty, P. Dutta. Effects of Dendritic Arm Coarsening on Macroscopic Modelling of Solidification of Binary Alloys. Materials Science and Technology, 2001. 17 (12). pp1531-1538
    [131] Mihály Réger, Seppo Louhenkilpi. Characterizing the Inner Structure of Continuously Cast Sections by Using a Heat Transfer Model. Materials Science, Testing and Informatics, Trans Tech Publications Ltd., Brandrain 6, CH-8707 Uetikon a.s. Switzerland, 2003. pp461-470
    [132] B. Chalmers. Principles of Solidification. Wiley. New York. 1964. pp255
    [133] C.A. Siqueira, N. Cheung, A. Garcia. The Columnar to Equiaxed Transition during Solidification of Sn-Pb Alloys. Journal of Alloys and Compounds. 2003. 351. pp126-134
    [134] Alicia E. Ares, Sergio F. Gueijman, Carlos E. Schvezov. Semi-empirical Modeling for Columnar and Equiaxed Growth of Alloys. Journal of Crystal Growth. 2002. 241 pp235-240
    [135] Ch.-A. Gandin. From Constrained to Unconstrained Growth during Directional Solidification. Acta Mater.. 2000. 48. pp2483-2501
    [136] Cláudio A. Siqueira, Noé Cheung, Amauri Garcia. Solidification Thermal Parameters Affecting the Columnar-to-equiaxed Transition. Metallurgical and Materials Transactions A. 2002. 33A (7). pp2107-2117
    [137] M. G?umann, C. Bezen?on, P. Canalis, W. Kurz. Single-Crystal Laser Deposition of Superalloys: Processing-Microstructure Maps. Acta Mater.. 2001. 49. pp1051-1092
    [138] S.K. Choudhary, A. Ghosh. Morphology and Macrosegregation in Continuously Cast Steel Billets. ISIJ International. 1994. 34 (4). pp338-345
    [139] Michele De Santis, Alessandro Ferreti. Thermo-Fluid-Dynamics Modelling of the Solidification Process and Behavior of Non-Metallic Inclusions in the Continuous Casting Slabs. ISIJ International. 1996. 36 (6). pp673-680
    [140] Wei Shyy. Multi-Scale Computational Heat Transfer with Moving Solidification Boundaries. International Journal of Heat and Fluid Flow. 2002. 23. pp278-287
    [141] H. Yoo, R. Viskanta. Effect of Anisotropic Permeability on the Transport Process during Solidification of a Binary Mixture. Int. J. Heat Mass Transfer. 1992. 35. pp2335-2346
    [142] S. Ganesan, D.R. Poirier. Conservation of Mass and Momentum for the Flow of Interdendritic Liquid during Solidification. Metallurgical Transactions B. 1990. 21B (2). pp173-181
    [143] C. Beckermann. Modelling of Macrosegregation: Applications and Future Needs. International Materials Reviews. 2002. 47 (5). pp243-261
    [144] D.R. Poirier. Permeability for Flow of Dendritic Liquid in Columnar-Dendrite Alloys. Metallurgical Transactions B. 1987. 18B. pp245-255
    [145] P.C. Carman. Flow of Gases through Porous Media. London. Butterworths Scientific
    
    
    Publications. 1956
    [146] J. Ni, C. Beckermann. A Volumnar-Averaged Two-Phase Model for Transport Phenomena during Solidification. Metallurgical and Materials Transactions B. 1991. 22B (3). pp349-361
    [147] N. Ahmad, H. Combeau, J.L. Desbiolles, T. Jalanti, G. Lesoult, J. Rappaz. Numerical Simulation of Macrosegregation: A Comparison between Finite Volume Method and Finite Element Method Predictions and a Confrontation with Experiments. Metallurgical and Materials Transactions B. 1998. 29B (1). pp617-630
    [148] H.J. Thevik, A. Mo. The Effect of Coarsening upon Macrosegregation Close to a Cast Surface. In Modeling of Casting, Welding and Advanced Solidification Processes VII, eds M. Cross and J. Campbell. Warrendale, PA, 1995, TMS. pp557-564
    [149] S.G.R. Brown, J.A. Spittle, D.J. Jarvis, R. Walden-Bevan. Numerical Determination of Liquid Flow Permeabilities for Eqiaxed Dendritic Structures. Acta Mater.. 2002. 50. pp1559-1569
    [150] T.S. Piwond, M.C. Flemings. Pore Formation in Solidification. Trans. Met. Soc. AIME.. 1966. 236 (8). pp1157-1165
    [151] M. Simpson, M.C. Flemings. Effect of Gravity on Interdendritic Flow: an Analytic Approach. Metallurgical Transactions A. 1984. 15A. pp2095-2097
    [152] T. Fujii, D.R. Poirier, M.C Flemings. Macrosegregation in a Multicomponent Low Alloy Steel. Metallurgical Transactions B. 1979. 10B (9). pp331-339
    [153] 顾江平, 刘庄, 陈晓慈. 定向凝固钢锭中宏观偏析的预测. 金属学报. 1997. 33 (5). pp461-466
    [154] J.E. Drummond, M.I. Tahir. Laminar Viscous Flow through Regular Arrays of Parallel Solid Cylinders. Int. J. Multiphase Flow. 1984. 10. pp515-540
    [155] A.S. Sangani, A. Acrivos. Slow Flow past Periodic Arrays of Cylinders with Application to Heat Transfer. Int. J. Multiphase Flow. 1982. 8. pp193-206
    [156] 张红伟, 王思刚, 赫冀成. 方坯连铸过程中钢液流动、凝固及溶质分布的耦合数值模拟. 金属学报. 2002. 38 (1). pp99-104
    [157] Deok-Soo Kim, Woo-Seung Kim, Kee-Hyeon Cho. Numerical Simulation of the Coupled Turbulent Flow and Macroscopic Solidification in Continuous Casting with Electromagnetic Brake. ISIJ International. 2000. 40 (7). pp670-676
    [158] P. Nandapurkar, D.R. Poirier, J.C. Heinrich, S. Felicelli. Thermosolutal Covection during Dendritic Solidification of Alloys: Part I. Linear Stability Analysis. Metallurgical and Materials Transactions B. 1989. 20B (5). pp711-721
    [159] T. Kajitani, J.-M. Drezet, M. Rappaz. Numerical Simulation of Deformation-Induced Segregation in Continuous Casting of Steel. Metallurgical and Materials Transactions A. 2001.
    
    
    32A (6). pp1479-1491
    [160] A.K. Singh, B. Basu. Numerical Study of Effect of Cooling Rate on Double-Diffusive Convection and Macrosegregation in Iron-Carbon System. ISIJ International. 2001. 41 (12). pp1481-1487
    [161] L. Arnberg, G. Chai, L. Backerud. Determination of Dendritic Coherency in Solidifying Melts by Rheology Measurements, Mater. Sci. Eng. A. 1993. 173. pp101-103
    [162] Mahmut D. Mat, Olusegun J. Ilegbusi. Application of a Hybrid Model of Mushy Zone to Macrosegregation in Alloy Solidification. Int. J. Heat Mass Transfer. 2002. 45. pp279-289
    [163] 许庆彦, 冯伟明, 柳百成, 熊守美. 铝合金枝晶生长的数值模拟. 金属学报. 2002. 38 (8). pp799-803
    [164] Doru M. Stefanescu. Methodologies for Modeling of Solidification Microstructure and Their Capabilities. ISIJ International. 1995. 35 (6). pp637-650
    [165] Hou Shuping, Zhao Weimin, Ren Fuzhan. Progress in the Micro – Moeling of the Casting Solidification Process. Journal of Materials Processing Technology. 2002. 123. pp361-370
    [166] 曾卫建, 赵国平, 蒋宗宇. 国内外铸件微观组织数值模拟研究概况. 江苏理工大学学报. 1999. 20 (3). pp58-60
    [167] A. Ludwig. Thermophysical Properties Necessary for Advanced Casting Simulation. International Journal of Thermophysics. 2002 23 (5). pp1131-1146
    [168] W. Oldfield. A Quantitative Approach to Casting Solidification Freezing of Cast Iron. ASM Trans.. 1966. 59. pp945-961
    [169] D.M. Stefanescu, G. Upadhya, D. Bandyopadhyay. Heat Transfer – Solidification Kinetics Modeling of Solidification of Castings. Metallurgical Transactions A. 1990. 21A. pp997-1005
    [170] D.M. Stefanescu. Critical Review of the Second Generation of Solidification Models for Casting: Macro Transport – Transformation Kinetics Codes. Modeling of Casting, Welding and Advanced Solidification Processes VI, edited by T.S. Piwonka et al., TMS, Davos, Switzerland, 1993. pp3-20
    [171] P.H. Thevoz, J.L. Desbiolles, M. Rappaz. Modeling of Equiaxed Microstructure Formation in Casting. Metallurgical Transactions A. 1989. 20A. pp.11-22
    [172] J.D. Hunt. Steady State Columnar and Equiaxed Growth of Dendrites and Eutectics. Mater. Sci. Engr. . 1984. 65. pp75-83
    [173] Long-Sun Chao, Wu-Chang Du. Macro – Micro Modeling of Solidification. Proc. Natl. Sci. Counc. Roc(A). 1999. 23 (5). pp622-629
    [174] Byungsoo Kim. Development of Macrosegregation during Solidification of Binary Metal Alloys [Ph.D. Dissertation]. The Department of Mechanical Engineering of Pennsylvania State
    
    
    University. Pennsylvania State, USA. 2002
    [175] H. Esaka, W. Kurz. Modeling of Columnar Dendritic Growth. Journal of Crystal Growth. 1984. 69. pp362
    [176] J. Zou, S. Shivkumar, D. Apelian. Modeling of Porosity Formation in Grain Refined Aluminum Castings. In Materials Processing in the Computer Age (Edited by V.R. Voller, M.S. Stachowicz and B.G. Brian), TMS/AIME, PA, 1991, pp389-401
    [177] B.Q. Li, P.N. Anyalebechi. A Micro/Macro Model for Fluid Flow Evolution and Microstructure Formation in Solidification Processes. International Journal of Heat and Mass Transfer. 1995. 38 (13). pp2367-2381
    [178] M. Avrami. Kinetics of Phase Change II. Transformation - Time Relations for Random Distribution of Nuclei. Journal of Chemical Physics. 1940. 8. pp212-224
    [179] N.H. Pryds, X. Huang. The Effect of Cooling Rate on the Microstructures Formed during Solidification of Ferritic Steel. Metal. Mater. Trans. A. 2000. 31A (12) pp3155-3166
    [180] D.D. Goettsch, J.A. Dantzig. Modeling Microstructure Development in Gray Iron Casting. Modeling of Casting, Welding and Advanced Solidification Processes V, edited by M. Rappaz and M.R. Ozgu, TMS, Davos, Switzerland. 1991. pp377-385
    [181] D.D. Goettsch, J.A. Dantzig. Modeling Microstructure Development in Gray Cast Irons. Metallurgical and Materials Transactions A. 1994. 25A. pp1063-1079
    [182] Yun-Ho Shin, Sung-Bin Kim. Numerical Models for the Prediction of Solidification Structures and Mechanical Properties in Casting Process. Proceedings of the 65th World Foundry Congress, Gyeongju, Korea, 2002. pp687-694
    [183] L. Nastac. Numerical Modeling of Solidification Morphologies and Segregation Patterns in Cast Dendritic Alloys. Acta Mater.. 1999. 47 (17). pp4253-4262
    [184] Ch.-A. Gandin, M. Rappaz. A Coupled Finite Element-Cellular Automaton Model for the Prediction of Dendritic Grain Structures in Solidification Process. Acta Mater.. 1994. 42 (7). pp2233-2246
    [185] V. Laxmanan. Comments on Undercooling Effects in Microsegregation Modelling. Scripta Materialia. 1997. 36 (6). pp687-692
    [186] G.P. Ivantsov. Temperature Field around Spherical, Cylindrical, and Needle-shaped Crystals which Grow in Supercooled Melts. Dokl. Akad. Nauk., USSR. 1947. pp56-58
    [187] B.Q. Li, J.C. Liu, J.A. Brock. Numerical Simulation of Transient Fluid Flow and Solidification Phenomena during Continuous Casting of Aluminum. In Materials Processing / EPD Congress (Edited by J.P. Hager), TMS/AIME, PA, 1993. pp841-857
    [188] V.R. Voller, C. Beckermann. A Unified Model of Microsegregation and Coarsening.
    
    
    Metallurgical and Materials Transactions A. 1999. 30A (4). pp2183-2189
    [189] Adam J. Papworth, David B. Knorr, David B. Williams. The Evolution of the Segregation Behavior of Alloying Elements in a Low-alloy Steel. Scripta Materialia. 2003. 48. pp1301-1305
    [190] Wan-Hong Yang, Wei Chen, Keh-Minn Chang, Sarwan Mannan, John De Barbadillo. Monte Carlo Sampling for Microsegregation Measurements in Cast Structures. Metallurgical and Materials Transactions A. 2000. 31A (10). pp2569-2574
    [191] Ernst Kozeschnik. A Scheil-Gulliver Model with Back-Diffusion Applied to the Microsegregation of Chromium in Fe-Cr-C Alloys. Metallurgical and Materials Transactions A. 2000. 31A (6). pp1682-1684
    [192] H. Yoo, C.J. Kim. A Refined Solute Diffusion Model for Columnar Dendritic Alloy Solidification. Int. J. Heat Mass Transfer. 1998. 41. pp4379-4383
    [193] S. Sundarraj, V.R. Voller. The Binary Alloy Problem in an Expanding Domain: the Microsegregation Problem. Int. J. Heat Mass Transfer. 1990. 36. pp713-723
    [194] T. Kraft. Y.A. Chang. Discussion of “Effect of Dendrite Arm Coarsening on Microsegregation”. Metallurgical and Materials Transactions A. 1998. 29A (5). pp2447-2450
    [195] Wanqi Jie. Solute Redistribution and Segregation in Solidification Process. Science and Technology of Advanced Materials. 2001. 2.. pp29-35
    [196] X. Doré, H. Combeau, M Rappaz. Modelling of Microsegregation in Ternary Alloys: Application to the Solidification of Al-Mg-Si. Acta Mater.. 2000. 48. pp3951-3962
    [197] A.A. Howe, D.H. Kirkwood. Computer Prediction of Microsegregation in Peritectic Alloy Systems. Materials Science and Technology. 2000. 16 (9). pp961-967
    [198] M.A. Martorano, J.D.T. Capocchi. Mathematical Modelling of Microsegregation in Eutectic and Peritectic Binary Alloys. Materials Science and Technology. 2000. 16 (5). pp483-490
    [199] M.C. Flemings. Solidification Process. McGraw-Hill. New York. 1984
    [200] G.M. Gulliver. Metallic Alloys. Griffen. London. 1922
    [201] I. Ohnaka. Microsegregation and Macrosegregation. Metals handbook 9th edn (Am. Soc. Mater. Int.). 1988. 15. pp136-141
    [202] H.D. Brody, M.C. Flemings. Solute Redistribution during Dendritic Solidification. Trans. Met. Soc. AIME. 1966. 236. pp615-624
    [203] I. Ohnaka. Mathematical Analysis of Solute Redistribution during Solidification with Diffusion in Solid Phase. ISIJ International. 1986. 26. pp1045-1051
    [204] T.W. Clyne, W. Kurz. Solute Redistribution during Solidification with Rapid Solid State Diffusion. Metallurgical Transactions A. 1981. 12A. pp965-971
    
    [205] T.W. Clyne, M. Wolf, W. Kurz. The Effect of Melt Composition on Solidification Cracking of Steel, with Particular Reference to Continuous Casting. Metallurgical Transactions B. 1982. 13B (6). pp259-266
    [206] V.R. Voller. On a General Back-diffusion Parameters. Journal of Crystal Growth. 2001. 226. pp562-569
    [207] V.R. Voller. A Semi-analytical Model of Microsegregation in a Binary Alloy. Journal of Crystal Growth. 1999. 197. pp325-332
    [208] C.Y. Wang, C. Beckermann. Unified Solute Diffusion Model for Columnar and Equiaxed Dendritic Alloy Solidification. Materials Science and Engineering. 1993. 171. pp199-211
    [209] V.R. Voller, C. Beckermann. Approximate Models of Microsegregation with Coarsening. Metallurgical and Materials Transactions A. 1999. 30A (11). pp3016-3019
    [210] Toshiaki Himemiya, Takateru Umeda. Solute Redistribution Model of Dendritic Solidification Considering Diffusion in Both the Liquid and Solid Phases. ISIJ International. 1998. 38 (7). pp730-738
    [211] A. Mortensen. On the Influence of Coarsening on Microsegregation. Metallurgical Transactions A. 1989. 20A. pp247-253
    [212] Hoseon Yoo, Raymond Viskanta. Solute Redistribution Limit in Coarsening Dendrite Arms during Binary Alloy Solidification. Int. J. Heat Mass Transfer. 1997. 40 (16). pp3875-3882
    [213] Y.H. Shin, M.S. Kim, K.S. Oh, E.P. Yoon, C.P. Hong. An Analytical Model of Microsegregation in Alloy Solidification. ISIJ International. 2001. 41 (2). pp158-163
    [214] V.R. Voller. A Model of Microsegregation during Binary Alloy Solidification. International Journal of Heat and Mass Transfer. 2000. 43. pp2047-2052
    [215] Yoshiyuki Ueshima, Shozo Mizoguchi, Tooru Matsumiya, Hiroyuki Kajioka. Analysis of Solute Distribution in Dendrites of Carbon Steel with δ/γ Tansformation during Solidification. Metallurgical Transactions B. 1986. 17B (12). pp845-859
    [216] Tuyosi Nakagawa, Takatera Umeda, Jun Murata, Yasumasa Kamimura, Naotake Niwa. Deformation Behavior during Solidification of Steels. ISIJ International. 1995. 35 (6). pp723-729
    [217] Kyung-hyun Kim, Tae-jung Yeo, Kyu Hwan Oh, Dong Nyung Lee. Effect of Carbon and Sulfur in Continuously Cast Strand on Longitudinal Surface Cracks. ISIJ International. 1996. 36 (3). Pp284-289
    [218] J.G. Henzel, J. Keverian. The Theory and Application of a Digital Computer in Predicting Solidification Patterns. J. Met.. 1965. 5. pp83
    [219] D.C. Weckman, P. Niessen. A Numerical Simulation of the D.C Continuous Casting Process
    
    
    Including Nucleate Boiling Heat Transfer. Metal. Trans. A. 1982. 13A. pp593
    [220] S. Louhenkilpi, E. Laitinen, R. Ninemine. Real-time Simulation of Heat Transfer in Continuous Casting. Metall. Trans. B. 1993. 24B. pp685
    [221] Zhiming Chen, Ricardo H. Nochetto, Alfred Schmidt. A Characteristic Galerkin Method with Adaptive Error Control for the Continuous Casting Problem. Comput. Methods Appl. Mech. Engrg.. 2000. 189. pp249-276
    [222] Zdravko Virag, Marija Zivic, Ivan Budic. A Numerical Method for Simulation of Continuous Csting Solidification Process. Numerical Methods in Continuum Mechanics 2000, Liptovsky Ján, Slovak Republic. 2000
    [223] V.R. Voller, C. Prakash. A Fixed Numerical Modeling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems. Int. J. Heat Mass Transfer. 1987. 30 . pp1709-1719
    [224] 徐达鸣, 李庆春, 安阁英. 铸件/铸锭凝固传输现象及宏观偏析计算机模拟研究的进展. 铸造. 1997. 4. pp44-49
    [225] J. Szekely, A.S. Jassal. An Experimental and Analytical Study of the Solidification of Binary Dendritic System. Metallurgical Transactions B. 1978. 9B. pp389-398
    [226] S.D Ridder, S. Kou, R. Meharabian. Effect of Fluid Flow on Macrosegregation in Axi-symmetric Ingots. Metallurgical Transactions B. 1981. 12B. pp435-447
    [227] W.D. Bennon, F.P. Incropera. A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change System – I. Model Formulation. Int. J. Heat Mass Transfer. 1987. 30. pp2161-2170
    [228] W.D. Bennon, F.P. Incropera. A Continuum Model for Momentum, Heat and Species Transport in Binary Solid-Liquid Phase Change System – II. Application to Solidification in a Rectangular Cavity. Int. J. Heat Mass Transfer. 1987. 30. pp2171-2187
    [229] M.C. Flemings, R. Meharabian, G.E. Nereo. Macrosegregation: Part II. Trans. Metall. Soc. –AIME. 1968. 242. pp41-49
    [230] Merton C. Flemings. Our Understanding of Macrosegregation: Past and Present. ISIJ International. 2000. 40 (9). pp833-841
    [231] C. Beckermann. Macrosegregation. Encyclopedia of Materials: Science and Technology, Elsevier Science Ltd., ISBN=008-0431526, 2001. pp4733-4739
    [232] C. Beckermann. Modeling of Macrosegregation: Past, Present and Future. In the Flemings Symposium Boston, MA. June 2000
    [233] Kyung Shik Oh, Young Won Chang. Macrosegregation Behavior in Continuous cast High Carbon Steel Blooms and Billets at the Final Stage of Solidification in Combination Stirring. ISIJ International. 1995. 35 (7). pp866-875
    
    [234] M.C. Flemings, G.E. Nereo. Macrosegregation: Part III. Trans. Metall. Soc. –AIME. 1968. 242. pp50-55
    [235] C. Beckermann, R. Viskanta. Double-Diffusive Convection during Dendritic Solidification of a Binary Mixture. PhysicoChemical Hydrodynamics. 1988. 10. pp195-213
    [236] C.Y. Wang, C. Beckermann. A Multiphase Solute Diffusion Model for Dendritic Alloy Solidification. Metallurgical Transactions A. 1993. 24A. pp2787-2802
    [237] C.Y. Wang, C. Beckermann. Multi-Scale / -Phase Modeling of Dendritic Alloy Solidification. In Sym. On Transport Phenomena in Solidification, ASME Winter Annual Meeting. Chicago, USA. November, 1994
    [238] Robert D. Pehlke. Computer Simulation of Solidification Process — the Evolution of a Technology. Metallurgical and Materials Transactions A. 2002. 33A (8). pp2251-2273
    [239] B. Lally, L. Biegler, H. Henein. Finite Difference Heat-Transfer Modeling for Continuous Casting. Metallurgical Transaction B. 1990. 21B (4). pp761-770
    [240] Dipak Mazumdar. A Consideration about the Concept of Effective Thermal Conductivity in Continuous Casting. ISIJ International. 1989. 29 (6). pp524-528
    [241] Dmitry Sediako, Olga Sediako, Kuan Ju Lin. Some Aspects of Thermal Analysis and Technology Upgrading in Steel Continuous Casting. Canadian Metallurgical Quaterly. 1999. 38 (5). pp377-385
    [242] F. Kavicka, J. Stetina, B. Sekanina, P. Ramik. An Original Numerical Model of Heat and Mass Transfer in a Concasting Machine. Proceedings of the 3rd International Conference on Advance in Fluid Mechanics AFM 2000, Montreal, Canada. May 2000. pp705-714
    [243] F. Kavi?ka, K. Stránsky, J. ?tětina, P. Ramík, J. Dobrovská. An Original Cooperation of Two Numerical Models of Concasting Technology and a Preparation of Its Use. Proceedings of the Conference In?enyrskù Mechanika 99, Svratka, Czech Republic. May 1999. 3. pp687-692
    [244] F. Kavi?ka, J. ?tětina. An Original Numerical Model of the Temperature Field of a Concast Steel Slab. Proceedings of the General Workshop “COST P3 — Simulation of Physical Phenomena in Technological Application”, Helsinky, Finland. September 1999. pp1-7
    [245] F. Kavi?ka, K. Stránsky, J. ?tětina, V. Dobrovská, J. Dobrovská, Z. Ko?u?ník, B. Veli?ka. Two Numerical Models of Concasting Technology and Its Use. Proceedings of the 8th International Symposium METAL 99, Ostrava, Czech Republic. May 1999. pp95-102
    [246] F. Kavi?ka, K. Stránsky, J. ?tětina, P. Ramík, B. Sekanina, V. Dobrovská, J. Dobrovská. Contribution to Optimization of Continuous Casting of Steel Semiproducts. Proceedings of the Workshop on “Phase Change with Convection Modelling and Validation”, Warsaw. June 1999. pp93-96
    
    [247] F. Kavi?ka, J. ?tětina, B. Sekanina, B. Veli?ka, J. ?míd, V. Gontarev, B. Kosec. Optimization of Cooling of the 200×200mm Steel Billet in Secondary Zone of a Concasting Machine (CCM). Proceedings of the 3rd International Metallurgical Conference Continuous Casting of Billets, T?inec, Czech Republic. October 1999. pp203-215
    [248] F. Kavi?ka, K. Stránsky, J. ?tětina, Jay M. Khodadadi, V. Dobrovská, J. Dobrovská. Industrial Applications of Two Numerical Models in Concasting Technology. Proceedings of the 2nd International Symposium “Computational Technologies for Fluid/Thermal/Chemical Systems with Industrial Applications”, Boston, Massachusetts, USA. August 1999. 397-2. pp27-38
    [249] J. Dobrovská, V. Dobrovská, F. Kavi?ka, J. ?tětina, K. Stránsky. The Models of Temperature Field and Chemical Heterogeneity of CC-Steel Slab. Proceedings of the 5th International Conference Metallurgical, Refractories and Environment, Stara Lesna, High Tatras, Slovakia. May 2002. pp31-36
    [250] C.R. Swaminathan, V.R. Voller. A General Enthalpy Method for Modeling Solidification Process. Meatllurgical and Materials Transactions B. 1992. 23B (5). pp651-664
    [251] X. Huang, B.G. Thomas, F.M. Najjar. Modeling Superheat Removal during Continuous Csting of Steel Slabs. Metallurgical Transactions B. 1992. 23B (3). pp339-356
    [252] J.S. Ha, J.R. Cho, B.Y. Lee, M.Y. Ha. Numerical Analysis of Secondary Cooling and Bulging in the Continuous Casting of Slabs. Journal of Materials Processing Technology. 2001. 113. pp257-261
    [253] M. El-Bealy. Monotonic and Fluctuated Cooling Approaches in Secondary Cooling Zones during Continuous Casting. Canadian Metallurgical Quarterly. 1997. 36 (1). pp49-56
    [254] A.K. Tieu, I.S. Kim. Simulation of the Continuous Casting Process by a Mathematical Model. Int. J. Mech. Sci.. 1997. 39 (2). pp185-192
    [255] Richard A. Hardin, Kai Liu, Christoph Beckermann. Development of a Model for Transient Simulation and Control of a Continuous Steel Slab Caster. Materials Processing in the Computer Age Ⅲ, V.R. Voller, H. Henein, ed., TMS Warrendale, PA. 2000. pp61-74
    [256] S.K. Choudhary, D. Mazumdar. Mathematical Modelling of Transport Phenomena in Continuous Casting of Steel. ISIJ International. 1994. 34 (7). pp584-592
    [257] 刘和平, 仇圣桃, 干勇. 连铸过程中湍流传输和两相区凝固的数值模拟. 钢铁研究学报. 2003. 15 (2). pp68-73
    [258] Jung-Eui Lee, Heung Nam Han, Kyu Hwan Oh, Jong-Kyu Yoon. A Fully Coupled Analysis of Fluid Flow, Heat Transfer and Stress in Continuous Round Billet Casting. ISIJ International. 1999. 39 (5). pp435-444
    [259] Y.H. Wu, B. Wiwatanapataphee, R. Collinson, G Zhang. An Exponentially Fitted Enthalpy
    
    
    Control Volume Algorithm for Coupled Fluid Flow and Heat Transfer. ANZIAM J.. 2000. 42 (E). pp1580-1598
    [260] S.H. Seyedein, M. Hasan. A 3-D Numerical Prediction of Turbulent Flow, Heat Transfer and Solidification in a Continuous Slab Caster for Steel. Canadian Metallurgical Quarterly. 1998. 37 (3-4). pp213-228
    [261] M.E. Aboutalebi, M. Hasan, R.I.L. Guthrie. Coupled Turbulent Flow, Heat, and Solute Transport in Continuous Casting Processing. Metall. Trans. B. 1995. 26B. pp731-744
    [262] Deok-Soo Kim, Woo-Seung Kim, Kee-Hyeon Cho. Numerical Simulation of the Coupled Turbulent Flow and Macroscopic Solidification in Continuous Casting with Electromagnetic Brake. ISIJ International. 2000. 40 (7). pp670-676
    [263] M.Y. Ha, H.G. Lee, S.H. Seong. Numerical Simulation of Three-Dimensional Flow, Heat Transfer, and Solidification of Steel in Continuous Casting Mold with Electromagnetic Brake. Journal of Materials Processing Technology. 2003. 133 (3). pp322-339
    [264] Hongliang Yang, Liangang Zhao, Xingzhong Zhang, Kaiwen Deng, Wencai Li, Yong Gan. Mathematical Simulation on Coupled Flow, Heat, and Solute Transport in Slab Continuous Casting Process. Metallurgical and Materials Transactions B. 1998. 29B (12). pp1345-1356
    [265] B.E. Launder, D.B. Spalding. Mathematical Models of Turbulence. Londin. Acedemic Press. 1972
    [266] 陈家祥. 炼钢常用图表数据手册. 北京. 冶金工业出版社. 1984
    [267] S. Neves, W. Sch?fer, P.N. Hansen. The Sensibility of Thermophysical Property Data for Simulating Casting Process. International Journal of Thermophysics. 2002. 23 (5). pp1391-1399
    [268] G. Milano, F. Scarpa, F. Righini, G.C. Bussolino. Ten Years of Parameter Estimation Applied to Dynamic Thermophysical Property Measurements. The Fourteen Symposium on Thermophysical Properties, Boulder, Colorado, USA. June 25-30, 2000
    [269] Franti?ek Kavi?ka, Bohumil Sekanina, Josef ?tětina, Pavel Ramik. Calculation Analysis of Influence of Thermodynamical Properties on Calculation Accuracy of Thermokinetics of Solidification. Proceedings of The 15th European Conference on Thermophysical Properties, Wurzburg, Germany. September, 1999
    [270] F. Kavi?ka, J. ?tětina, B. Sekanina, P. Ramik, V. Gontarev. Numerical Analysis of The Influence of Thermophysical Parameters and Boundary Conditions on a Model of Solidification Process. The Conference “Moving Boundaries 99”, Ljubljana. July, 1999
    [271] V. Vretenár, L. Kubi?á, V. Bohá?. Analysis of Thermophysical Parameters Measurements of Stainless Steel by Step-wise Technique. Proceedings of the Thermophysics 2002, Ko?ovce.
    
    
    October 24-25, 2002. pp81-86
    [272] Jyrki Miettinen. Calculation of Solidification-Related Thermophysical Properties for Steels. Metall. Mater. Trans. B. 1997. 28B. pp281-296
    [273] M.G. Worster. Solidification of an Alloy from a Cooled Boundary. J. Fluid Mech.. 1986. 167. pp481-501
    [274] S.L. Braga, R. Viskanta. Solidification of a Binary Alloy Solution on a Cold Isothermal Surface. Int. J. Heat Mass Transfer. 1990. 33. pp745-754
    [275] Jae Dong Chung, Joon Sik Lee, Mansoo Choi, Hoseon Yoo. A Refined Similarity Solution for the Multicomponent Alloy Solidification. Int. J. Heat Mass Transfer. 2001. 44. pp2483-2492
    [276] Jyrki Miettinen, Seppo Louhenkilpi, Lauri Holappa. Coupled Simulation of Heat Transfer and Phase Transformation in Continuous Casting of Steel. ISIJ International. 1996. 36 (Supplement). ppS183-S186
    [277] Hideo Mizukami, Yoshihisa Shirai, Akihiro Yamanaka, Tadao Watanabe. Prediction of Density of Stainless Steel. ISIJ International. 2000. 40 (10). pp987-994
    [278] Hideo Mizukami, Akihiro Yamanaka, Tadao Watanabe. Prediction of Density of Carbon Steels. ISIJ International. 2002. 42 (4). pp375-384
    [279] K. Ravindran, S.G.R. Brown, J.A. Spittle. Prediction of the Effective Thermal Conductivity of Three-Dimensional Dendritic Regions by the Finite Element Method. Materials Science and Engineering A. 1999. 269. pp90-97
    [280] Paul M.N. Ocansey, D.R. Pourier. Equilibrium Partition Ratios of C, Mn, and Si in a High Carbon Steel. Materials Science and Engineering A. 1996. 211. pp10-14
    [281] Thomas P. Battle, Robert D. Pehlke. Equilibrium Partition Coefficients in Iron-Based Alloys. Metall. Trans. B. 1989. 20B. pp149-160
    [282] 周尧和, 胡壮麒, 介万奇. 凝固技术. 第一版. 北京. 机械工业出版社. 1998
    [283] M. Czapelski. Variable Equilibrium Partition Coefficient. Journal of Crystal Growth. 1998. 187. pp138-139
    [284] 冯科, 徐楚韶, 陈登福, 孙海峰. 连铸坯微观及宏观偏析数学模型的研究进展. 特殊钢. 2002. 23 (4). pp8-12
    [285] 大野笃美. 重庆大学冶金系炼钢教研室译. 金属凝固学. 重庆. 重庆大学出版社. 1980
    [286] D.R. Pourier. Densities of Pb-Sn Alloys during Solidification. Metall. Trans. A. 1988. 19A. pp2349-2354
    [287] T.Z. Kattamis, M.C. Flemings. Dendrite Morphology, Microsegregation, and Homogenization of Low Alloy Steel. TMS. of AIME. 1965. 233. pp992-999
    [288] J.A. Burton, R.C. Prim, W.G. Slichter. The Distribution of Solute in Crystal Grow from the
    
    
    Melt. J. of Chem. Phys.. 1953. 21. pp1987-1996
    [289] 朱立光, 宋实, 刘新生, 王书恒. 连铸板坯宏观偏析的研究. 河北理工学院学报. 1997. 19 (1). pp23-29
    [290] 李立康, 於崇华, 朱政华. 微分方程数值解法. 第一版. 上海. 复旦大学出版社. 1999
    [291] 徐自新. 微分方程近似解. 第一版. 上海. 华东化工学院出版社. 1990
    [292] V.R. Voller. Modeling Micro Scale Phenomena for Application in Solidification Process Simulations. Processing Materials for Properties, San Francisco. November 5-8, 2000
    [293] J.A. Sarreal, G.J. Abbaschian. The Effect of Solidification Rate on Microsegregation. Metallurgical Transactions A. 1985. 17A. pp2063-2073
    [294] 杨大地, 涂光裕. 数值分析. 第一版. 重庆. 重庆大学出版社. 1998
    [295] V.R. Voller. Numerical and Approximate Models of Microsegregation in Ternary Alloys. Macwasp, Aachan. August 24, 2000
    [296] S. Kobayashi. Solute Redistribution during Solidification with Diffusion in the Solid Phase: a Theoretical Analysis. Journal of Crystal Growth. 1988. 88. pp87-96
    [297] 韩志强, 蔡开科. 连铸坯中微观偏析的模型研究. 金属学报. 2000. 36 (8). pp869-873
    [298] 陈登福, 孙海峰, 冯科, 徐楚韶, 王思中, 吴文东, 余兴元, 黄顺中, 黄仲清, 何运顺. 威钢ROKOP小方坯连铸机的二冷制度分析和优化. 特殊钢. 2002. 23 (2). pp8-10
    [299] 冯科, 徐楚韶, 陈登福, 温良英, 董凌燕. 方坯连铸凝固传热的复合数值模拟. 特殊钢. 2003. 24 (6). pp5-8
    [300] 冯科, 廖建云, 陈登福, 魏庆成. 方坯高效连铸二冷传热数学模型的研究. 中国稀土学报. 2000. 18 (冶金过程物理化学专辑). pp247-250
    [301] 徐士良. FORTRAN常用算法程序集. 第二版. 北京. 清华大学出版社. 1995
    [302] 李宝宽, 赫冀成. 炼钢中的计算流体力学. 第一版. 北京. 冶金工业出版社. 1998
    [303] 查金荣, 陈家镛. 传递过程原理及应用. 第一版. 北京. 冶金工业出版社. 1997
    [304] C.R. Swaminathan, V.R. Voller. Towards a General Numerical Scheme for Solidification Systems. Int. J. Heat Mass Transfer. 1997. 40 (12). pp2859-2868
    [305] S.V. 帕坦卡. 传热与流体流动的数值计算. 第一版. 北京. 科学出版社. 1984
    [306] B.P. Leonard. Stable and Accurate Convective Modeling Procedure Based on Quadratic Up-stream Interpolation, Comput. Methods Appl. Mech. Eng.. 1979. 19. pp59
    [307] K.Y.M. Lai, M. Salcudean, S. Tanaka. Mathematical Modeling of Flows in Large Tundish Systems in Steelmaking. Metallurgical Transactions B. 1986. 17B (9). pp449-459
    [308] 张红伟, 赫冀成, 王恩刚. 连铸坯截面尺寸对流动、凝固及溶质分布的影响. 东北大学学报. 2002. 23 (3). pp236-239
    [309] 陈登福, 曾丁丁, 孙跃, 苏玉刚, 冯科, 董凌燕, 梁新亮, 罗敏, 刘远岩, 谢集祥, 温德智,
    
    
    文正秋. 方坯连铸高效化二冷技术的研究. 特殊钢(已录取)
    [310] 徐荣军. 连铸二冷热传输及人工智能优化模型与控制. [博士论文]. 中国科学院上海冶金研究所. 1996
    [311] 郭鸿志, 张欣欣, 刘向军, 李杰. 传输过程数值模拟. 第一版. 北京. 冶金工业出版社. 1998
    [312] 王思中. 威钢一号连铸机二冷制度的研究及高效化改造实践. [工程硕士论文]. 重庆大学材料科学与工程学院. 重庆大学. 2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700