HDAC6在APPswe/PS1ΔE9阿尔茨海默病转基因模型小鼠发病机制中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景阿尔茨海默病(Alzheimer's disease, AD)是一种以认知功能进行性减退为主要临床表现的神经退行性病变。其确切的病因尚不清楚,近年来有研究显示组蛋白去乙酰化酶6(histone deacetylase6, HDAC6)在AD病人的海马和皮层中表达增加,但其过表达的作用尚存在争议。
     方法应用免疫组化的方法检测HDAC6在成年C57BL/6J野生小鼠全脑组织内的表达分布情况;应用免疫荧光双标技术检测HDAC6在各类脑细胞中的表达;应用免疫组织化学和免疫印迹检测HDAC6和其底物乙酰化α-微管蛋白(ace-α-tubulin,K40)在1、3、6、9月龄野生型C57BL/6J小鼠和APPswe/PS1ΔE9(PAP)阿尔茨海默症模型小鼠脑组织中表达的变化。
     将PAP模型小鼠的Hdac6敲除后获得PAP×Hdac6KO小鼠。PCR鉴定其基因型,免疫印迹和组织化学方法检测HDAC6和ace-α-tubulin在6月龄WT、PAP、Hdac6KO和PAP×Hdac6KO小鼠脑组织的表达情况;应用开放旷场实验检测小鼠的自主活动和焦虑情绪,新物体识别实验和Morris水迷宫实验检测小鼠学习记忆能力的改变;硫磺素-S荧光染色观察老年斑的改变;ELISA检测小鼠脑内可溶性和不可溶性Aβ40/42的含量;免疫印迹检测小鼠脑内过度磷酸化tau蛋白(P-tau)和GSK3β磷酸化的水平;透射电镜分析微管超微结构的改变。
     另外,本实验选取了两种具有临床应用前景的HDAC6特异性抑制剂tubastatinA和ACY-1215,观察它们对6月龄PAP小鼠认知功能的影响并进行初步的机制研究。将6月龄PAP小鼠随机分为模型组、溶剂对照组(vehicle, DMSO/生理盐水=1:10)、阳性对照组(SAHA,50mg/kg)、tubastatin A组(25mg/kg)和ACY-1215组(25mg/kg)。并以同窝阴性的C57BL/6J小鼠作为正常对照组(WT),每组16只,雌雄各半,腹腔注射连续给药20天。每4天称一次小鼠体重。注射结束后进行旷场实验、新物体识别实验和Morris水迷宫实验来观察tubastatin A和ACY-1215对AD模型小鼠自主活动和认知功能的影响;检测脑重和肝肾功能各项指标;应用开放旷场实验检测小鼠的自主活动和焦虑情绪,新物体识别实验和Morris水迷宫实验检测小鼠学习记忆能力的改变;检测脑重和肝肾功能各项指标;免疫印迹和免疫组织化学检测小鼠皮层和海马内HDAC6;和α-tubulin的乙酰化水平;6E10免疫染色和硫磺素-S染色检测脑内老年斑沉积;ELISA检测小鼠脑内可溶性和非可溶性Aβ40和Aβ42含量;免疫印迹检测脑内APP降解相关酶和产物,自噬相关蛋白的表达,P-tau的水平,脑信号转导通路分子P-GSK3β、P-Akt及P-mTOR的变化;透射电镜检测脑组织超微结构的变化。
     结果HDAC6在成年C57BL/6J小鼠脑组织内分布较为广泛,但具有相对区域特异性:在海马、皮层和杏仁核等与认知相关脑区的表达最为丰富;有细胞特异性:主要分布在各类神经元的细胞浆中,而在胶质细胞中无表达。HDAC6在WT和PAP小鼠海马和皮层的表达随年龄增加而明显增多。与同龄WT小鼠相比,AD小鼠脑中HDAC6的表达从3月龄开始明显增多,且随年龄增加HDAC6过表达的趋势更明显,ace-a-tubulin相应减少。
     与PAP小鼠相比,Hdac6敲除后并不影响小鼠的自主活动和焦虑情绪,但能明显改善其认知功能,PAP×Hdac6KO小鼠脑内老年斑沉积未有明显变化,但ELISA检测结果显示其脑内可溶性Aβ42的含量明显减少,tau蛋白的磷酸化水平显著降低,P-GSK3p的表达明显上调,Hdac6敲除可明显改善PAP小鼠脑中微管的超微结构。
     Tubastatin A和ACY-1215能明显抑制HDAC6勺活性,改善PAP小鼠的认知功能,减少老年斑的沉积和可溶性Aβ40/42的含量,抑制APP的β/γ-切割和GSK3(3的活性,降低tau蛋白的磷酸化水平,促进自噬清除过程,并改善微管的超微结构,而对小鼠的自主活动和焦虑水平及体重、脑重和肝肾功能无明显影响。
     结论HDAC6的正常表达可能对维持认知相关脑区神经元的正常功能具有重要作用。HDAC6过表达在AD中很可能通过影响Ap/P-tau的生成和自噬清除发挥了神经损伤作用。HDAC6是很可能是AD的治疗靶点,HDAC6特异性抑制剂tubastatinA和ACY-1215或许是治疗AD的潜在药物。
Background Alzheimer's disease (AD), as the most common form of dementia among older individuals, is clinically characterized by progressive loss of cognitive function. Despite much progress, the pathogenesis of AD remains to be elucidated. Histone deacetylase6(HDAC6) was reported to increase in hippocampus and cortex in both patients and animal models of AD. However, whether HDAC6overexpression is an underlying cause of AD or a condition resulting from AD is controversial.
     Methods The regional distribution of HDAC6in the adult C57BL/6J mouse brain was analyzed by immunochemical staining. Double immunofluorescent staining was used to detect the co-location of HDAC6with markers of multiple brain cell types. The temporal expression patterns and expression changes of HDAC6and acetylation of a-tubulin (ace-a-tubulin) in the brain of wild type (WT) and APPswe/PS1ΔAE9(PAP) mice were analyzed by immunohistochemistry and western blotting.
     Next, we detected the effects of Hdac6knockout on the cognitive deficits of PAP mice. The genotype of mice was detected by PCR. The expression of HDAC6and ace-a-tubulin were analyzed by immunohistochemistry and western blotting. The locomotor activity was examined by open field test and cognitive abilities were detected using novel object recognition test and Morris water maze. Senile plaques were observed by Thioflavin-S staining. The levels of Aβ40/42were quantified by ELISA. The expression of hyperphosphorylated tau protein (P-tau) and P-GSK3β were examined by western blotting. The microtubule ultrastructures were observed by transmission electronic microscopy.
     Then we examined the effects of two selective HDAC6inhibitors-tubastatin A and ACY-1215on the cognition of PAP mice. PAP mice were randomly divided into model group, vehicle (DMSO/saline=1:10), SAHA (50mg/kg), tubastatin A (25mg/kg) and ACY-1215(25mg/kg) groups. The wild-type littermates were chosen as normal control group (WT). The mice (n=16/group, male/female=1:1) were treated for20consecutive days by daily intraperitoneal injection. After administration, a battery of behavioral tests including open field, novel object recognition and Morris water maze were performed. All animals were sacrificed and the brain weight and brain coefficient were tested. Amyloid depositions were quantified using immunohistochemistry and thioflavine-S staining. The soluble and insoluble Aβ40/42peptides were determined by ELISA. Western blotting and immunohistochemistry staining were used to detect levels of HDAC6and acetylated a-tubulin. The expression of proteins and intermediate products involved in processing of APP, autophagy-associated proteins, P-tau, P-GSK3(3, P-Akt and P-mTOR were detected by western blotting. The ultrastructures of brain tissues were observed by transmission electronic microscopy.
     Results Our data showed that HDAC6, primarily located in cytoplasm of various kinds of neurons, is ubiquitously expressed throughout the mouse brain. Interestingly, the highest HDAC6signals were observed in regions relevant to cognition, such as cortex, hippocampus and amygdala. The HDAC6expression level was significantly increased in the brain of PAP transgenic mice compared with WT mice. It was increased with age in both WTand PAP transgenic mice accompanied by the decrease of ace-a-tubulin.
     Hdac6knockout improved learning and memory abilities of PAP transgenic mice without obvious effect on the anxiety level of mice. Compared with PAP transgenic mice, the soluble Aβ42peptide of PAP×Hdac6KO mice was significantly decreased, though the deposition of senile plaques was not altered. The deletion of Hdac6in PAP mice down-regulated the hyperphosphorylation of tau protein and inhibited the activity of GSK3β In addition, ultrastructural analysis showed obviously microtubule morphological abnormality of PAP mice was rescued by loss of Hdac6.
     Both tubastatin A and ACY-1215alleviated the cognitive decline without obvious effect on the locomotor activity of PAP mice through inhibiting the activity of HDAC6rather than its expression level. They reduced soluble and insoluble Aβ levels and the deposition of plaques, and decreased the levels of BACE1, PS1, sAPPβ and β-CTF. They also upregulated the expression of autophagy-associated proteins and reduced the expression of P-tau, P-GSK3β and P-mTOR. Moreover, they decreased the accumulation of autophagy vesicles and rescued the damaged microtubule in PAP mice. In addition, there were no significant adverse effects of tubastatin A and ACY-1215on brain weight, brain coefficient, liver and kidney function of mice.
     Conclusion The normal expression of HDAC6may play an important role in the function of neurons in cognition-related regions. HDAC6overexpression is probably associated with AD etiopathogenesis and plays a potential detrimental role in AD. And HDAC6is likely to be a therapeutic target for AD. Our preclinical results offer prospective approaches for using tubastatin A/ACY-1215as potential therapeutic strategy for AD.
引文
[1]D'Mello SR. Histone deacetylases as targets for the treatment of human neurodegenerative diseases[J]. Drug News Perspect,2009,22 (9):513-524.
    [2]Li G, Jiang H, Chang M, et al. HDAC6 a-tubulin deacetylase:A potential therapeutic target in neurodegenerative diseases[J]. J Neuro Sci,2011,304 (1-2):1-8.
    [3]Yang XJ, Gregoire S. Class Ⅱ histone deacetylases:from sequence to function, regulation, and clinical implication[J]. Mol Cell Biol,2005,25 (8):2873-2884.
    [4]Valenzuela-Fernandez A, Cabrero JR., Serrador JM, Sanchez-Madrid F. HDAC6:a key regulator of cytoskeleton, cell migration and cell-cell interactions[J]. Trends Cell Biol,2008,18 (6):291-297.
    [5]Boyault C, Zhang Y, Fritah S, et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates[J]. Genes Dev,2007,21 (17):2172-2181.
    [6]Kawaguchi Y, Kovacs JJ, McLaurin A, et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress[J]. Cell, 2003,115 (6):727-738.
    [7]Lee JY, Koga H, Kawaguchi Y, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy[J]. EMBO J,2010,29 (5): 969-980.
    [8]Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase[J]. Nature,2002,417 (6887):455-458.
    [9]Kovacs JJ, Murphy PJ, Gaillard S, et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor[J]. Mol Cell,2005,18 (5): 601-607.
    [10]Zhang X, Yuan Z, Zhang Y, et al. HDAC6 modulates cell motility by altering the acetylation level of cortactin[J]. Mol Cell,2007,27 (2):197-213.
    [11]Parmigiani RB, Xu WS, Venta-Perez G, et al. HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation[J], Proc Natl Acad U S A,2008,105 (28):9633-9638.
    [12]Subramanian C, Jarzembowski JA, Opipari AW Jr, et al. HDAC6 deacetylates Ku70 and regulates Ku70-Bax binding in neuroblastoma[J]. Neoplasia,2011,13 (8):726-734.
    [13]Janke C, Bulinski CJ. Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions[J]. Nat Rev Mol Cell Biol,2011,12 (12):773-786.
    [14]Matsuyama A, Shimazu T, Sumida Y, et al. In vivo destabilization of dynamic microtubules by HDAC6-mediated deacetylation[J]. EMBO J,2002,21 (24):6820-6831.
    [15]Zhang Y, Li N, Caron C, et al. HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo[J]. EMBO J,2003,22 (5):1168-1179.
    [16]Bulinski JC. Microtubule modification:acetylation speeds anterograde traffic flow[J]. Curr Biol,2007,17(1):R18-20.
    [17]Reed NA, Cai D, Blasius TL, et al. Microtubule acetylation promotes kinesin-1 binding and transport[J]. Curr Biol,2006,16 (21):2166-2172.
    [18]Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation[J]. J Neuro sci,2007,27 (13):3571-3583.
    [19]Destaing O, Saltel F, Gilquin B, et al. A novel Rho-mDia2-HDAC6 pathway controls podosome patterning through microtubule acetylation in osteoclasts[J]. J Cell Sci,2005,118 (Pt 13):2901-2911.
    [20]Pandey UB, Batlevi Y, Baehrecke EH, Taylor JP. HDAC6 at the intersection of autophagy, the ubiquitin-proteasome system and neurodegeneration[J]. Autophagy,2007, 3 (6):643-645.
    [21]Sawada M, Sun W, Hayes P, et al. Ku70 suppresses the apoptotic translocation of Bax to mitochondria[J]. Nat Cell Biol,2003,5 (4):320-329.
    [22]Pandey UB, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS[J]. Nature,2007,447 (7146):859-863.
    [23]Boyault C, Gilquin B, Zhang Y, et al. HDAC6-p97/VCP controlled polyubiquitin chain turnover[J]. EMBO J,2006,25 (14):3357-3366.
    [24]Kopito RR. Aggresomes, inclusion bodies and protein aggregation [J]. Trends Cell Biol,2000,10 (12):524-530.
    [25]Boyault C, Sadoul K, Pabion M, Khochbin S. HDAC6, at the crossroads between cytoskeleton and cell signaling by acetylation and ubiquitination[J]. Oncogene,2007,26 (37):5468-5476.
    [26]Vij N. AAA ATPase p97/VCP:cellular functions, disease and therapeutic potential[J]. J Cell Mol Med,2008,12 (6A):2511-2518.
    [27]Brush MH, Guardiola A, Connor JH, et al. Deactylase inhibitors disrupt cellular complexes containing protein phosphatases and deacetylases[J]. J Biol Chem,2004,279 (9):7685-7691.
    [28]Chen CS, Weng SC, Tseng PH, et al. Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes[J]. J Biol Chem,2005,280 (46):38879-38887.
    [29]Kwon S, Zhang Y, Matthias P. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response[J]. Genes Dev,2007,21 (24):3381-3394.
    [30]Matthias P, Yoshida M, Khochbin S. HDAC6 a new cellular stress surveillance factor[J]. Cell Cycle,2008,7 (1):7-10.
    [31]Paxinos G, Franklin KBJ. The mouse brain in stereotaxic coordinates[M]. Compact 2nd ed. Amsterdam; Boston:Elsevier Academic Press; 2004.
    [32]Yao ZG, Zhang L, Huang L, et al. Regional and cell-type specific distribution of HDAC2 in the adult mouse brain[J]. Brain Struct Funct,2013,218 (2):563-573.
    [33]Zhang L, Sheng S, Qin C. The role of HDAC6 in Alzheimer's disease[J]. J Alzheimers Dis,2013,33 (2):283-295.
    [34]Govindarajan N, Rao P, Burkhardt S, et al. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease[J]. EMBO Mol Med,2013,5 (1): 52-63.
    [35]Kilgore M. Miller CA, Fass DM, et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease[J]. Neuropsychopharmacology,2010,35 (4):870-880.
    [36]Kim SH, Shanware NP, Bowler MJ, Tibbetts RS. Amyotrophic lateral sclerosis-associated proteins TDP-43 and FUS/TLS function in a common biochemical complex to co-regulate HDAC6 mRNA[J]. J Biol Chem,2010,285 (44):34097-34105.
    [37]Taes I, Timmers M, Hersmus N, et al. Hdac6 deletion delays disease progression in the SOD1G93A mouse model of ALS[J]. Hum Mol Genet,2013,22 (9):1783-1790.
    [38]Gal J, Chen J, Barnett KR, et al. HDAC6 regulates mutant SOD1 aggregation through two SMIR motifs and tubulin acetylation[J]. J Biol Chem,2013,288 (21): 15035-15045.
    [39]Du G, Liu X, Chen X, et al. Drosophila histone deacetylase 6 protects dopaminergic neurons against{alpha}-synuclein toxicity by promoting inclusion formation[J]. Mol Biol Cell,2010,21 (13):2128-2137.
    [40]Ejlerskov P, Rasmussen I, Nielsen TT, et al. Tubulin polymerization-promoting protein (TPPP/p25a) promotes unconventional secretion of a-synuclein through exophagy by impairing autophagosome-lysosome fusion[J]. J Biol Chem,2013,288 (24): 17313-17335.
    [41]Lee JY, Nagano Y, Taylor JP, et al. Disease-causing mutations in parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy[J]. J Cell Biol,2010,189 (4):671-679.
    [42]Bonnet C, Gregoire MJ, Brochet K, et al. Pure de-novo 5 Mb duplication at Xp11.22-p11.23 in a male:phenotypic and molecular characterization[J]. J Hum Genet, 2006,51 (9):815-821.
    [43]Tsai PT, Hull C, Chu Y, et al. Autistic-like behaviour and cerebellar dysfunction in Purkinje cell Tscl mutant mice[J]. Nature,2012,488 (7413):647-651.
    [44]Fukada M, Hanai A, Nakayama A, et al. Loss of deacetylation activity of Hdac6 affects emotional behavior in mice[J].2012,7 (2):e30924.
    [45]Kelly JP, Wrynn AS, Leonard BE. The olfactory bulbectomized rat as a model of depression:an update[J]. Pharmacol Ther,1997,74 (3):299-316.
    [1]Thies W, Bleiler L; Alzheimer's Association.2013 Alzheimer's facts and figures. Alzheimers Dement[J],2013,9 (2):208-245.
    [2]Sawa GM, Wharton SB, Ince PG, et al. Age, neuropathology, and dementia[J]. N Engl J Med,2009,360 (22):2302-2309.
    [3]Goedert M, Spillantini MG. A century of Alzheimer's disease[J]. Science,2006,314 (5800):777-781.
    [4]Hardy J, Selkoe DJ. The amyloid hypothesis of Alzheimer's disease:progress and problems on the road to therapeutics[J]. Science,2002,297 (5580):353-356.
    [5]Mondrag6n-Rodriguez S, Perry G, Zhu X, et al. Phosphorylation of tau protein as the link between oxidative stress, mitochondrial dysfunction, and connectivity failure: implications for Alzheimer's disease[J]. Oxid Med Cell Longev,2013,2013: 940603.
    [6]Rubinsztein DC, Marino G, Kroemer G. Autophagy and aging[J]. Cell,2011,146 (5): 682-695.
    [7]Overk CR, Masliah E. Pathogenesis of synaptic degeneration in Alzheimer's disease and Lewy body disease[J]. Biochem Pharmacol,2014,88 (4):508-516.
    [8]Nunnari J, Suomalainen A. Mitochondria:in sickness and in health[J]. Cell,148 (6): 1145-1159.
    [9]Schwartz MW1, Seeley RJ, Tschop MH, et al. Cooperation between brain and islet in glucose homeostasis and diabetes[J]. Nature,2013,503 (7474):59-66.
    [10]Naert G, Rivest S. The role of microglial cell subsets in Alzheimer's disease[J]. Curr Alzheimer Res,2011,8 (2):151-155.
    [11]Jucker M, Walker LC. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases[J]. Nature,2013,501 (7465):45-51.
    [12]Gilbert BJ. The role of amyloid β in the pathogenesis of Alzheimer's disease[J]. J Clin Pathol,2013,66 (5):362-366.
    [13]Mc Donald JM, Savva GM, Brayne C, et al. The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia[J]. Brain 2010,133 (Pt5):1328-1341.
    [14]Langer F, Eisele YS, Fritschi SK, et al. Soluble Abeta seeds are potent inducers of cerebral beta-amyloid deposition[J]. J Neurosci,2011,31 (41):14488-14495.
    [15]Zhang W, Hao J, Liu R, et al. Soluble Abeta levels correlate with cognitive deficits in the 12-month-old APPswe/PS1dE9 mouse model of Alzheimer's disease[J]. Behav Brain Res,2011,222 (2):342-350.
    [16]Iijima K, Liu HP, Chiang AS, et al. Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila:a potential model for Alzheimer's disease[J]. Proc Natl Acad Sci USA,2004,101 (17):6623-6628.
    [17]Ahmed M, Davis J, Aucoin D, et al. Structural conversion of neurotoxic amyloid-beta(1-42) oligomers to fibrils[J]. Nat Struct Mol Biol,2010,17 (5): 561-567.
    [18]McGeer PL, McGeer EG. The amyloid cascade-inflammatory hypothesis of Alzheimer disease:implications for therapy[J]. Acta Neuropathol,2013,126 (4): 479-497.
    [19]O'Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer's disease[J]. Annu Rev Neurosci,2011,34:185-204.
    [20]Nathalie P, Jean-Noel O. Processing of amyloid precursor protein and amyloid peptide neurotoxicity[J]. Curr Alzheimer Res,2008,5 (2):92-99.
    [21]Chow VW, Mattson MP, Wong PC, Gleichmann M. An overview of APP processing enzymes and products[J]. Neuromolecular Med,2010,12(1):1-12.
    [22]Weingarten MD, Lockwood AH, Hwo SY, Kirschner MW. A protein factor essential for microtubule assembly[J]. Proc Natl Acad Sci U S A,1975,72 (5): 1858-1862.
    [23]Howard J, Hyman AA. Dynamics and mechanics of the microtubule plus end[J]. Nature,2003,422 (6933):753-758.
    [24]Conde C, Caceres A. Microtubule assembly, organization and dynamics in axons and dendrites[J]. Nat Rev Neurosci,2009,10 (5):319-332.
    [25]Baas PW, Qiang L. Neuronal microtubules:when the MAP is the roadblock[J]. Trends Cell Biol,2005,15 (4):183-187.
    [26]Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K. Abnormal hyperphosphorylation of tau:sites, regulation, and molecular mechanism of neurofibrillary degeneration[J]. J Alzheimers Dis,2013,33 Suppl 1:S123-139.
    [27]Ferrer I, Gomez-lsla T, Puig B, et al. Current advances on different kinases involved in tau phosphorylation, and implications in Alzheimer's disease and tauopathies[J]. Curr Alzheimer Res,2005,2 (1):3-18.
    [28]Jayapalan S, Natarajan J. The role of CDK5 and GSK3B kinases in hyperphosphorylation of microtubule associated protein tau (MAPT) in Alzheimer's disease[J]. Bioinformation,2013,9 (20):1023-1030.
    [29]Schaffer BA, Bertram L, Miller BL, et al. Association of GSK3B with Alzheimer disease and frontotemporal dementia. Arch Neurol[J].2008,65 (10):1368-1374.
    [30]Alonso A, Zaidi T, Novak M, et al. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments[J]. Proc Natl Acad Sci USA,2001,98 (12):6923-6928.
    [31]Cristian A, Lasagna-Reeves, Diana L, et al. Preparation and Characterization of Neurotoxic Tau Oligomers[J]. Biochemistry,2010,49 (47):10039-10041.
    [32]Park MH, Lee JK, Choi S, et al. Recombinant soluble neprilysin reduces amyloid-beta accumulation and improves memory impairment in Alzheimer's disease mice[J]. Brain Res,2013,1529:113-124.
    [33]Grimm MO, Mett J, Stahlmann CP, et al. Neprilysin and Aβ Clearance:Impact of the APP Intracellular Domain in NEP Regulation and Implications in Alzheimer's Disease[J]. Front Aging Neurosci,2013,5:98.
    [34]Miners JS, Barua N, Kehoe PG, et al. Aβ-degrading enzymes:potential for treatment of Alzheimer disease[J]. J Neuropathol Exp Neurol,2011,70 (11): 944-959.
    [35]Miners JS, van Helmond Z, Kehoe PG, Love S. Changes with age in the activities of beta-secretase and the Abeta-degrading enzymes neprilysin, insulin-degrading enzyme and angiotensin-converting enzyme[J]. Brain Pathol,2010,20 (4):794-802.
    [36]Tsuda M, Kobayashi T, Matsuo T, Aigaki T. Insulin-degrading enzyme antagonizes insulin-dependent tissue growth and Abeta-induced neurotoxicity in Drosophila[J]. FEBS Lett,2010,584 (13):2916-2920.
    [37]Jacobsen JS, Comery TA, Martone RL, et al. Enhanced clearance of Abeta in brain by sustaining the plasmin proteolysis cascade[J]. Proc Natl Acad Sci U S A,2008, 105 (25):8754-8759.
    [38]Mroczko B, Groblewska M, Barcikowska M. The role of matrix metalloproteinases and tissue inhibitors of metalloproteinases in the pathophysiology of neurodegeneration:a literature study[J]. J Alzheimers Dis,2013,37 (2):273-283.
    [39]Qian W, Shi J, Yin X, et al. PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3beta[J]. Alzheimers Dis,2010,19 (4):1221-1229.
    [40]Zhou XW, Gustafsson JA, Tanila H, et al. Tau hyperphosphorylation correlates with reduced methylation of protein phosphatase 2A[J]. Neurobiol Dis,2008,31 (3): 386-394.
    [41]Zhang L, Sheng S, Qin C. The role of HDAC6 in Alzheimer's disease[J]. J Alzheimers Dis,2013,33 (2):283-295.
    [42]Arawaka S, Machiya Y, Kato T. Heat shock proteins as suppressors of accumulation of toxic prefibrillar intermediates and misfolded proteins in neurodegenerative diseases[J]. Curr Pharm Biotechnol,2010,11 (2):158-166.
    [43]Boyault C, Gilquin B, Zhang Y, et al. HDAC6-p97/VCP controlled polyubiquitin chain turnover[J]. EMBO J,2006,25 (14):3357-3366.
    [44]Boyault C, Zhang Y, Fritah S, et al. HDAC6 controls major cell response pathways to cytotoxic accumulation of protein aggregates[J]. Genes Dev,2007,21 (17): 2172-2181.
    [45]Pandey UB, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS[J]. Nature,2007,447 (7146):859-863.
    [46]Lee JY, Koga H, Kawaguchi Y, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy[J]. EMBO J,2010,29 (5): 969-980.
    [47]Nixon RA, Yang DS. Autophagy failure in Alzheimer's disease-locating the primary defect[J]. Neurobiol Dis,2011,43(1):38-45.
    [48]Tohgi H, Utsugisawa K, Nagane Y. Reduction with age in methylcytosine in the promoter region-224 approximately-101 of the amyloid precursor protein gene in autopsy human cortex[J]. Brain Res Mol Brain Res,1999,70 (2):288-292.
    [49]Mastroeni D, Grover A, Delvaux E, et al. Epigenetic changes in Alzheimer's disease: decrements in DNA methylation[J]. Neurobiol Aging,2010,31 (12):2025-2037.
    [50]Chen KL, Wang SS, Yang YY, et al. The epigenetic effects of amyloid-beta(1-40) on global DNA and neprilysin genes in murine cerebral endothelial cells[J]. Biochem Biophys Res Commun,2009,378 (1):57-61.
    [51]Wang SC, Oelze B, Schumacher A. Age-specific epigenetic drift in late-onset Alzheimer's disease[J]. PLoS One,2008,3 (7):e2698.
    [52]Delay C, Mandemakers W, Hebert SS. MicroRNAs in Alzheimer's disease[J]. Neurobiol Dis,2012,46 (2):285-290.
    [53]Wang WX, Rajeev BW, Stromberg AJ, et al. The expression of microRNA miR-107 decreases early in Alzheimer's disease and may accelerate disease progression through regulation of beta-site amyloid precursor protein-cleaving enzyme 1[J]. J Neurosci,2008,28 (5):1213-1223.
    [54]Taft RJ, Simons C, Nahkuri S, et al. Nuclear-localized tiny RNAs are associated with transcription initiation and splice sites in metazoans[J]. Nat Struct Mol Biol, 2010,17(8):1030-1034.
    [55]Hebert SS, Papadopoulou AS, Smith P, et al. Genetic ablation of Dicer in adult forebrain neurons results in abnormal tau hyperphosphorylation and neurodegeneration[J]. Hum Mol Genet,2010,19 (20):3959-3969.
    [56]Smith PY, Delay C, Girard J, et al. MicroRNA-132 loss is associated with tau exon 10 inclusion in progressive supranuclear palsy[J]. Hum Mol Genet,2011,20 (20): 4016-4024.
    [57]Stilling RM, Fischer A. The role of histone acetylation in age-associated memory impairment and Alzheimer's disease[J]. Neurobiol Learn Mem,2011,96 (1):19-26.
    [58]Yao ZG, Zhang L, Huang L, et al. Regional and cell-type specific distribution of HDAC2 in the adult mouse brain[J]. Brain Struct Funct,2013,218 (2):563-573.
    [59]Graff J, Rei D, Guan J S, et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain[J]. Nature,2012,483 (7388):222-226.
    [60]Kilgore M. Miller CA, Fass DM, et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease[J]. Neuropsychopharmacology,2010,35 (4):870-880.
    [61]Ding H, Dolan PJ, Johnson GV. Histone deacetylase 6 interacts with the microtubule-associated protein tau[J]. J Neurochem,2008,106 (5):2119-2130.
    [62]Hempen B, Brion JP. Reduction of acetylated a-tubulin immunoreactivity in neurofibrillary tangle-bearing neurons in Alzheimer's disease[J]. J Neuropathol Exp Neurol,1996,55 (9):964-972.
    [63]Perez M, Santa-Maria I, Gomez de Barreda E, et al. Tau-an inhibitor of deacetylase HDAC6 function[J]. J Neurochem,2009,109 (6):1756-1766.
    [64]Zhang Y, Kwon S, Yamaguchi T, et al. Mice lacking histone deacetylase 6 have hyperacetylated tubulin but are viable and develop normally[J]. Mol Cell Biol,2008, 28 (5):1688-1701.
    [65]Rivieccio MA, Brochier C, Willis DE. et al. HDAC6 is a target for protection and regeneration following injury in the nervous system[J]. Proc Natl Acad Sci U S A, 2009,106(46):19599-19604.
    [66]Asthana J, Kapoor S, Mohan R, Panda D. Inhibition of HDAC6 deacetylase activity increases its binding with microtubules and suppresses microtubule dynamic instability in MCF-7 cells[J]. J Biol Chem,2013,288 (31):22516-22526.
    [67]Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation[J]. J Neurosci,2007,27 (13):3571-3583.
    [68]Chen S, Owens GC, Makarenkova H, Edelman DB. HDAC6 regulates mitochondrial transport in hippocampal neurons[J]. PLoS One,2010,5 (5):el0848.
    [69]d'Ydewalle C, Krishnan J, Chiheb DM, et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease[J]. Nat Med,2011,17 (8):968-975.
    [70]Lee JB, Wei J, Liu W, et al. Histone Deacetylase 6 Gates the Synaptic Action of Acute Stress in Prefrontal Cortex[J]. J Physiol,2012,590 (Pt7):1535-1546.
    [71]Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders[J]. Science,1993,262 (5134):689-695.
    [72]Nguyen D, Alavi MV, Kim KY, et al. A new vicious cycle involving glutamate excitotoxicity, oxidative stress and mitochondrial dynamics[J]. Cell Death Dis,2011, 2:e240.
    [73]De Felice FG, Velasco PT, Lambert MP, et al. Abeta oligomers induce neuronal oxidative stress through an N-methyl-D-aspartate receptor-dependent mechanism that is blocked by the Alzheimer drug memantine[J]. J Biol Chem,2007,282 (15): 11590-11601.
    [74]Beier UH, Akimova T, Liu Y, et al. Hi stone/protein deacetylases control Foxp3 expression and the heat shock response of T-regulatory cells[J]. Curr Opin Immunol, 23 (5):670-678.
    [75]Akimova T, Ge G, Golovina T, et al. Histone/protein deacetylase inhibitors increase suppressive functions of human FOXP3+Tregs[J]. Clin Immunol,2010,136 (3): 348-363.
    [76]Nam HJ, Kang JK, Kim SK, et al. Clostridium difficile toxin A decreases acetylation of tubulin, leading to microtubule depolymerization through activation of histone deacetylase 6, and this mediates acute inflammation[J]. J Biol Chem,2010, 285 (43):32888-32896.
    [77]Kim HJ, Rowe M, Ren M, et al. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke:multiple mechanisms of action[J]. J Pharmacol Exp Ther,2007,321 (3): 892-901.
    [78]Zhang B, West EJ, Van KC, et al. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats[J]. Brain Res,2008,1226:181-191.
    [79]Singh J, Khan M, Singh I. HDAC inhibitor SAHA normalizes the levels of VLCFAs in human skin fibroblasts from X-ALD patients and downregulates the expression of proinflammatory cytokines in Abcd1/2-silenced mouse astrocytes[J]. J Lipid Res,2011,52 (11):2056-2069.
    [80]Halili MA, Andrews MR, Labzin LI, et al. Differential effects of selective HDAC inhibitors on macrophage inflammatory responses to the Toll-like receptor 4 agonist LPS[J]. J Leukoc Biol,2010,87 (6):1103-1114.
    [81]Beurel E. HDAC6 regulates LPS-tolerance in astrocytes[J]. PLoS One,2011,6 (10): e25804.
    [82]Vishwakarma S, Iyer LR, Muley M, et al. Tubastatin, a selective histone deacetylase 6 inhibitor shows anti-inflammatory and anti-rheumatic effects[J]. Int Immunopharmacol,2013,16 (1):72-78.
    [83]Parmigiani RB, Xu WS, Venta-Perez G. HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation[J], Proc Natl Acad Sci U S A, 2008,105 (28):9633-9638.
    [84]Tapia M, Wandosell F, Garrido JJ. Impaired function of HDAC6 slows down axonal growth and interferes with axon initial segment development J]. PLoS One, 2010,5(9):e12908.
    [85]Guthrie CR, Kraemer BC. Proteasome inhibition drives HDAC6-dependent recruitment of tau to aggresomes[J]. J Mol Neurosci,2011,45 (1):32-41.
    [86]Kawaguchi Y, Kovacs JJ, McLaurin A, et al. The deacetylase HDAC6 regulates aggresome formation and cell viability in response to misfolded protein stress[J]. Cell,2003,115 (6):727-738.
    [87]Kwon S, Zhang Y, Matthias P. The deacetylase HDAC6 is a novel critical component of stress granules involved in the stress response[J]. Genes Dev,2007,21 (24):3381-3394.
    [88]Matthias P, Yoshida M, Khochbin S. HDAC6 a new cellular stress surveillance factor[J]. Cell Cycle,2008,7 (1):7-10.
    [89]Pandey UB, Batlevi Y, Baehrecke EH, Taylor JP. HDAC6 at the intersection of autophagy, the ubiquitin-proteasome system and neurodegeneration[J]. Autophagy. 2007,3 (6):643-645.
    [90]Cardoso SM, Pereira CF, Moreira PI, et al. Mitochondrial control of autophagic lysosomal pathway in Alzheimer's disease[J]. Exp Neurol,2010,223 (2):294-298.
    [91]Lee JY, Nagano Y, Taylor JP, et al. Disease-causing mutations in Parkin impair mitochondrial ubiquitination, aggregation, and HDAC6-dependent mitophagy[J]. J Cell Biol,2010,189 (4):671-679.
    [92]Silva DF, Esteves AR, Oliveira CR, Cardoso SM. Mitochondria:the common upstream driver of amyloid-β and tau pathology in Alzheimer's disease[J]. Curr Alzheimer Res,2011,8 (5):563-572.
    [93]Xie R, Nguyen S, McKeehan WL, Liu L. Acetylated microtubules are required for fusion of autophagosomes with lysosomes[J]. BMC Cell Biol,2010,11:89.
    [94]Sawada M, Sun W, Hayes P, et al. Ku70 suppresses the apoptotic translocation of Bax to mitochondria[J]. Nat Cell Biol,2003,5 (4):320-329.
    [95]Silva DF, Esteves AR, Arduino DM, et al. Amyloid-β-induced mitochondrial dysfunction impairs the autophagic lysosomal pathway in a tubulin dependent pathway[J]. J Alzheimers Dis,2011,26 (3):565-581.
    [96]Boland B, Kumar A, Lee S, et al. Autophagy Induction and Autophagosome Clearance in Neurons:Relationship to Autophagic Pathology in Alzheimer's Disease[J]. J Neurosci,2008,28 (27):6926-6937.
    [97]True O, Matthias P. Interplay between histone deacetylases and autophagy-from cancer therapy to neurodegeneration[J]. Immunol Cell Biol,2012,90 (1):78-84.
    [98]Mizushima N. Aβ generation in autophagic vacuoles[J]. J Cell Biol,2005,171 (1): 15-17.
    [99]Gao YS, Hubbert CC, Lu J, et al. Histone deacetylase 6 regulates growth factor-induced actin remodeling and endocytosis[J]. Mol Cell Biol,2007,27 (24): 8637-8647.
    [100]Xu X, Kozikowski AP, Pozzo-Miller L. A selective histone deacetylase-6 inhibitor improves BDNF trafficking in hippocampal neurons from Mecp2 knockout mice: implications for Rett syndrome[J]. Front Cell Neurosci,2014,8:68.
    [101]Govindarajan N, Rao P, Burkhardt S, et al. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease[J]. EMBO Mol Med, 2013,5(1):52-63.
    [102]Wide JK, Hanratty K, Ting J, Galea LA. High level estradiol impairs and low level estradiol facilitates non-spatial working memory[J]. Behav Brain Res,2004,155 (1): 45-53.
    [103]Arque G, Fotaki V, Fernandez D, et al. Impaired spatial learning strategies and novel object recognition in mice haploinsufficient for the dual specificity tyrosine-regulated kinase-1 A (DyrklA)[J]. PLoS One,2008,3 (7):e2575.
    [104]Izquierdo I, Bevilaqua LR, Rossato JI, et al. The connection between the hippocampal and the striatal memory systems of the brain:a review of recent findings[J].Neurotox Res,2006,10(2):113-121.
    [105]Yao ZG, Zhang L, Liang L, et al. The effect of PN-1, a Traditional Chinese Prescription, on the Learning and Memory in a Transgenic Mouse Model of Alzheimer's Disease[J]. Evid Based Complement Alternat Med,2013,2013:518421.
    [106]Ballard CG, Gauthier S, Cummings JL, et al. Management of agitation and aggression associated with Alzheimer disease[J]. Nat Rev Neurol,2009,5 (5): 245-255.
    [107]Fukada M, Hanai A, Nakayama A, et al. Loss of deacetylation activity of Hdac6 affects emotional behavior in mice[J]. PLoS One,2012,7 (2):e30924.
    [108]Xiong Y, Zhao K, Wu J, et al. HDAC6 mutations rescue human tau-induced microtubule defects in Drosophila[J]. Proc Natl Acad Sci U S A,2013,110 (12): 4604-4609.
    [109]Selenica ML, Benner L, Housley SB, et al. Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition[J]. Alzheimers Res Ther,2014,6 (I):12.
    [110]Noack M, Leyk J, Richter-Landsberg C. HDAC6 inhibition results in tau acetylation and modulates tau phosphorylation and degradation in oligodendrocytes[J]. Glia,2014,62 (4):535-547.
    [111]Hernandez F, Lucas JJ, Avila J. GSK3 and tau:two convergence points in Alzheimer's disease[J]. J Alzheimers Dis,2013,33 Suppl 1:S141-144.
    [112]陆剑平,朱元贵,陈晓春.组蛋白去乙酰化酶6在阿尔茨海默病中的作用[J].国际神经病学神经外科学杂志,2011,38(4):348-352.
    [113]郑青春,廖晓梅.糖原合成酶激酶3在阿尔茨海默病中的作用[J].国际病理科学与临床杂志,2010,3(30):226-229.
    [I]Reiman EM. Alzheimer's disease and other dementias:advances in 2013[J]. Lancet Neurol,2014,13(1):3-5.
    [2]Graff J, Rei D, Guan JS, et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain[J]. Nature,2012,483 (7388):222-226.
    [3]Zhang L, Sheng S, Qin C. The role of HDAC6 in Alzheimer's disease[J]. J Alzheimers Dis,33 (2):283-295.
    [4]Bird A. Perceptions of epigenetics[J]. Nature,2007,447 (7143):396-398.
    [5]Arrowsmith CH, Bountra C, Fish PV, et al. Epigenetic protein families:a new frontier for drug discovery[J]. Nat Rev Drug Discov,2012,11 (5):384-400.
    [6]Bradner JE, West N, Grachan ML, et al. Chemical phylogenetics of histone deacetylases[J]. Nature Chem Biol,2010,6 (3):238-243.
    [7]Milne JC, Lambert PD, Schenk S, et al. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes[J]. Nature,2007,450 (7170): 712-716.
    [8]Stunkel W, Campbell RM. Sirtuin 1 (SIRT1):the misunderstood HDAC[J]. J Biomol Screen,2011,16 (10):1153-1169.
    [9]Pacholec M, Bleasdale JE, Chrunyk B, et al. SRT1720, SRT2183, SRT1460, and resveratrol are not direct activators of SIRT1[J]. J Biol Chem,2010,285 (11): 8340-8351.
    [10]Solomon JM, Pasupuleti R, Xu L, et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage[J]. Mol Cell Biol,2006,26 (1):28-38.
    [11]Coronel J, Cetina L, Pacheco I, et al. A double-blind, placebo-controlled, randomized phase III trial of chemotherapy plus epigenetic therapy with hydralazine valproate for advanced cervical cancer. Preliminary results [J]. Med Oncol,2011,28 Suppl 1:S540-546.
    [12]Peedicayil J. Epigenetic therapy-a new development in pharmacology [J]. India J Med Res,2006,123 (1):17-24.
    [13]Huang J, Plass C, Gerhauser C. Cancer chemoprevention by targeting the epigenome[J]. Curr Drug Targets,2011,12 (13):1925-1956.
    [14]Aldana-Masangkay GI, Rodriguez-Gonzalez A, Lin T, et al. Tubacin suppresses proliferation and induces apoptosis of acute lymphoblastic leukemia cells[J]. Leuk Lymphoma,2011,52 (8):1544-1555.
    [15]Santo L, Hideshima T, Kung AL, et al. Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma[J]. Blood,2012,119 (11): 2579-2589.
    [16]Vishwakarma S, Iyer LR, Muley M, et al. Tubastatin, a selective histone deacetylase 6 inhibitor shows anti-inflammatory and anti-rheumatic effects[J]. Int Immunopharmacol,2013,16(1):72-78.
    [17]Selenica ML, Benner L, Housley SB, et al. Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition[J]. Alzheimers Res Ther,2014,6 (1):12.
    [18]Gradilone SA, Radtke BN, Bogert PS, et al. HDAC6 inhibition restores ciliary expression and decreases tumor growth[J]. Cancer Res,2013,73 (7):2259-2270.
    [19]Younes A, Oki Y, Bociek R G, et al. Mocetinostat for relapsed classical Hodgkin's lymphoma:an open-label, single-arm, Phase 2 trial[J]. Lancet Oncol,2011,12 (13): 1222-1228.
    [20]Huang J, Plass C, Gerhauser C. Cancer chemoprevention by targeting the epigenome[J]. Curr Drug Targets,2011,12 (13):1925-1956.
    [21]Ribrag V, Caballero D, Ferme C, et al. Multicenter phase Ⅱ study of plitidepsin in patients with relapsed/refractory non-Hodgkin's lymphoma[J]. Haematologica,2013, 98 (3):357-363.
    [22]Onishchenko N, Karpova N, Sabri F, et al. Long-lasting depression-like behavior and epigenetic changes of BDNF gene expression induced by perinatal exposure to methylmercury[J]. J Neurochem,2008,106 (3):1378-1387.
    [23]Schemies J, Sippl W, Jung M. Histone deacetylase inhibitors that target tubulin[J]. Cancer Lett,2009,280 (2):222-232.
    [24]Haggarty SJ, Koeller KM, Wong JC, et al. Domain-selective small-molecule inhibitor of histone deacetvlase 6 (HDAC6)-mediated tubulin deacetvlation[J]. Proc Natl Acad Sci USA,2003,100 (8):4389-4394.
    [25]Haggarty SJ, Koeller KM, Wong JC, et al. Multidimensional chemical genetic analysis of diversity-oriented synthesis-derived deacetylase inhibitors using cell-based assays[J]. Chem Biol,2003,10 (5):383-396.
    [26]Bali P, Pranpat M, Bradner J, et al. Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90:a novel basis for antileukemia activity of histone deacetylase inhibitors[J]. J Biol Chem,2005,280 (29):26729-26734.
    [27]Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation[J]. J Neurosci,2007,27 (13):3571-3583.
    [28]Saji S, Kawakami M, Hayashi S, et al. Significance of HDAC6 regulation via estrogen signaling for cell motility and prognosis in estrogen receptor-positive breast cancer[J]. Oncogene,2005,24 (28):4531-4539.
    [29]Hideshima T, Bradner JE, Wong J, et al. Small-molecule inhibition of proteasome and aggresome function induces synergistic antitumor activity in multiple myeloma[J]. Proc Natl Acad Sci USA,2005,102 (24):8567-8572.
    [30]Dallavalle S, Pisano C, Zunino F. Development and therapeutic impact of HDAC6-selective inhibitors [J]. Biochem Pharmacol,2012,84 (6):756-765.
    [31]Kozikowski AP, Chen Y, Gaysin A, et al. Functional differences in epigenetic modulators-superiority of mercaptoacetamide-based histone deacetylase inhibitors relative to hydroxamates in cortical neuron neuroprotection studies[J]. J Med Chem, 2007,50 (13):3054-3061.
    [32]Kalin JH, Zhang H, Gaudrel-Grosay S, et al. Chiral mercaptoactamides display enantioselective inhibition of histone deacetylase 6 and exhibit neuroprotection in cortical neuron models of oxidative stress[J]. ChemMedChem,2012,7 (3):425-439.
    [33]Itoh Y, Suzuki T, Miyata N. Isoform-selective histone deacetylase inhibitors[J]. Curr Pharm Des,2008,14 (6):529-544.
    [34]Suzuki T. Explorative study on isoform-selective histone deacetylase inhibitors[J]. Chem Pharm Bull (Tokyo),2009,57 (9):897-906.
    [35]Itoh Y, Suzuki T, Kouketsu A, et al. Design, synthesis, structure-selectivity relationship, and effect on human cancer cells of a novel series of histone deacetylase 6-selective inhibitors[J]. J Med Chem,2007,50 (22):5425-5438.
    [36]Suzuki T, Matsuura A, Kouketsu A, et al. Identification of a potent non-hydroxamate histone deacetylase inhibitor by mechanism-based drug design[J]. Bioorg Med Chem Lett,2005,15 (2):331-335.
    [37]Butler KV, Kalin J, Brochier C, et al. Rational design and simple chemistry yield a superior, neuroprotective HDAC6 inhibitor, tubastatin A[J]. J Am Chem Soc,2010, 132(31):10842-10846.
    [38]Kalin JH, Butler KV, Akimova T, et al. Second-generation histone deacetylase 6 inhibitors enhance the immunosuppressive effects of Foxp3+T-regulatory cells[J]. J Med Chem,2012,55 (2):639-651.
    [39]De Vreese R, Verhaeghe T, Desmet T, D'hooghe M. Potent and selective HDAC6 inhibitory activity of N-(4-hydroxycarbamoylbenzyl)-l,2,4,9-tetrahydro-3-thia-9-azafluorenes as novel sulfur analogues of Tubastatin A[J]. Chem Commun (Camb),2013.49 (36):3775-3777.
    [40]Xu X, Kozikowski AP, Pozzo-Miller L. A selective histone deacetylase-6 inhibitor improves BDNF trafficking in hippocampal neurons from Mecp2 knockout mice: implications for Rett syndrome[J]. Front Cell "Neurosci,2014,8:68.
    [41]Lee JH, Mahendran A, Yao Y, et al. Development of a histone deacetylase 6 inhibitor and its biological effects[J]. Proc Natl Acad Sci U S A,2013,110 (39): 15704-15709.
    [42]D'Mello SR. Histone deacetylases as targets for the treatment of human neurodegenerative diseases[J]. Drug News Perspect,2009,22 (9):513-524.
    [43]Kazantsev AG, Thompson LM. Therapeutic application of histone deacetylase inhibitors for central nervous system disorders[J]. Nat Rev Drug Discov,2008,7 (10):854-868.
    [44]Govindarajan N, Rao P, Burkhardt S, et al. Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease[J]. EMBO Mol Med,2013,5 (1): 52-63.
    [45]Ricobaraza A, Cuadrado-Tejedor M, Marco S, et al. Phenylbutyrate rescues dendritic spine loss associated with memory deficits in a mouse model of Alzheimer disease[J]. Hippocampus,2012,22 (5):1040-1050.
    [46]Zhang ZY, Schluesener HJ. Oral administration of histone deacetylase inhibitor MS-275 ameliorates neuroinflammation and cerebral amyloidosis and improves behavior in a mouse model[J]. J Neuropathol Exp Neurol,2013,72 (3):178-185.
    [47]Green KN, Steffan JS, Martinez-Coria H, et al. Nicotinamide restores cognition in Alzheimer's disease transgenic mice via a mechanism involving sirtuin inhibition and selective reduction of Thr231-phosphotau[J]. J Neurosci,2008,28 (45): 11500-11510.
    [48]Kilgore M, Miller CA, Fass DM, et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer's disease [J]. Neuropsychopharmacology,2010,35 (4):870-880.
    [49]Sung YM, Lee T, Yoon H, et al. Mercaptoacetamide-based class II HDAC inhibitor lowers Aβ levels and improves learning and memory in a mouse model of Alzheimer's disease[J]. Exp Neurol,2013,239:192-201.
    [50]Rane P, Shields J, Heffernan M, et al. The histone deacetylase inhibitor, sodium butyrate, alleviates cognitive deficits in pre-motor stage PD[J]. Neuropharmacology, 2012,62 (7):2409-2412.
    [51]Piepers S, Veldink JH, de Jong SW, et al. Randomized sequential trial of valproic acid in amyotrophic lateral sclerosis[J]. Ann Neurol,2009,66 (2):227-234.
    [52]Cudkowicz ME, Andres PL, Macdonald SA, et al. Phase 2 study of sodium phenylbutyrate in ALS. Amyotroph Lateral Scler.2009,10 (2):99-106.
    [53]d'Ydewalle C, Krishnan J, Chiheb DM, et al. HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease[J]. Nat Med,2011,17 (8):968-975.
    [54]Reed NA, Cai D, Blasius TL, et al. Microtubule acetylation promotes kinesin-1 binding and transport[J]. Curr Biol,2006,16 (12):2166-2172.
    [55]Bulinski JC. Microtubule modification:acetylation speeds anterograde traffic flow[J]. Curr Biol,2007,17 (1):R18-20.
    [56]Chen S, Owens GC, Makarenkova H, Edelman DB. HDAC6 regulates mitochondrial transport in hippocampal neurons[J]. PLoS One,2010,5 (5):el0848.
    [57]Asthana J, Kapoor S, Mohan R, Panda D. Inhibition of HDAC6 Deacetylase Activity Increases Its Binding with Microtubules and Suppresses Microtubule Dynamic Instability in MCF-7 Cells[J]. J Biol Chem,2013,288 (31):22516-22526.
    [58]Xie R, Nguyen S, McKeehan WL, Liu L. Acetylated microtubules are required for fusion of autophagosomes with lysosomes[J]. BMC Cell Biol,2010,11:89.
    [59]Lee JY, Koga H, Kawaguchi Y, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy[J]. EMBO J,2010,29 (5): 969-980.
    [60]Naert G, Rivest S. The role of microglial cell subsets in Alzheimer's disease[J]. Curr Alzheimer Res,2011,8 (2):151-155.
    [61]Zhang B, West EJ, Van KC, et al. HDAC inhibitor increases histone H3 acetylation and reduces microglia inflammatory response following traumatic brain injury in rats[J]. Brain Res,2008,1226:181-191.
    [62]Kim HJ, Rowe M, Ren M, et al. Histone deacetylase inhibitors exhibit anti-inflammatory and neuroprotective effects in a rat permanent ischemic model of stroke:multiple mechanisms of action[J]. J Pharmacol Exp Ther,2007,321 (3): 892-901.
    [63]Singh J, Khan M, Singh I. HDAC inhibitor SAHA normalizes the levels of VLCFAs in human skin fibroblasts from X-ALD patients and downregulates the expression of proinflammatory cytokines in Abcdl/2-silenced mouse astrocytes[J]. J Lipid Res,2011,52 (11):2056-2069.
    [64]Halili MA, Andrews MR, Labzin L1, et al. Differential effects of selective HDAC inhibitors on macrophage inflammatory responses to the Toll-like receptor 4 agonist LPS[J]. J LeukocBiol,2010,87 (6):1103-1114.
    [65]Mc Donald JM, Savva GM, Brayne C, et al. The presence of sodium dodecyl sulphate-stable Abeta dimers is strongly associated with Alzheimer-type dementia[J]. Brain,2010,133 (Pt5):1328-1341.
    [66]Langer F, Eisele YS, Fritschi SK, et al. Soluble Abeta seeds are potent inducers of cerebral beta-amyloid deposition[J], J Neurosci,2011,31 (41):14488-14495.
    [67]lijima K, Liu HP, Chiang AS, et al. Dissecting the pathological effects of human Abeta40 and Abeta42 in Drosophila:a potential model for Alzheimer's disease[J]. Proc Natl Acad Sci USA,2004,101 (17):6623-6628.
    [68]O'Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer's disease[J]. Annu Rev Neurosci,2011,34:185-204.
    [69]Nathalie P, Jean-Noel O. Processing of amyloid precursor protein and amyloid peptide neurotoxicity[J]. Curr Alzheimer Res,2008,5 (2):92-99.
    [70]Qing H, He G, Ly PT, et al. Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer's disease mouse models[J]. J Exp Med,2008,205 (12):2781-2789.
    [71]Ly PT, Wu Y, Zou H, et al. Inhibition of GSK3beta-mediated BACE1 expression reduces Alzheimer-associated phenotypes[J]. J Clin Invest,2013,123 (1):224-235.
    [72]Alonso A, Zaidi T, Novak M, et al. Hyperphosphorylation induces self-assembly of tau into tangles of paired helical filaments/straight filaments[J]. Proc Natl Acad Sci U SA,2001,98 (12):6923-6928.
    [73]Ding H, Dolan PJ, Johnson GV. Histone deacetylase 6 interacts with the microtubule-associated protein tau[J]. J Neurochem,2008,106 (5):2119-2130.
    [74]Xiong Y, Zhao K, Wu J, et al. HDAC6 mutations rescue human tau-induced microtubule defects in Drosophila[J]. Proc Natl Acad Sci U S A,2013,110 (12): 4604-4609.
    [75]Jayapalan S, Natarajan J. The role of CDK5 and GSK3B kinases in hyperphosphorylation of microtubule associated protein tau (MAPT) in Alzheimer's disease[J]. Bioinformation,2013,9 (20):1023-1030.
    [76]Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K. Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration[J]. J Alzheimers Dis,2013,33 Suppl 1:S123-139.
    [77]Hernandez F, Lucas JJ, Avila J. GSK3 and tau:two convergence points in Alzheimer's disease[J]. J Alzheimers Dis,2013,33 Suppl 1:S141-144.
    [78]Gavilan E, Sanchez-Aguayo I, Daza P, Ruano D. GSK-3beta signaling determines autophagy activation in the breast tumor cell line MCF7 and inclusion formation in the non-tumor cell line MCF10A in response to proteasome inhibition[J]. Cell Death Dis,2013,4:e572.
    [79]Qi ZF, Luo YM, Liu XR, et al. AKT/GSK3beta-Dependent Autophagy Contributes to the Neuroprotection of Limb Remote Ischemic Postconditioning in the Transient Cerebral Ischemic Rat Model[J]. CNS Neurosci Ther,2012,28:965-973.
    [80]Yang Y, Wang H, Wang S, et al. GSK3beta signaling is involved in ultraviolet B-induced activation of autophagy in epidermal cells[J]. Int J Oncol,2012,41 (5): 1782-1788.
    [81]Parr C, Carzaniga R, Gentleman SM, et al. Glycogen synthase kinase 3 inhibition promotes lysosomal biogenesis and autophagic degradation of the amyloid-beta precursor protein[J]. Mol Cell Biol,2012,32 (21):4410-4418.
    [82]Cai Z, Yan LJ. Rapamycin, Autophagy, and Alzheimer's Disease[J]. J Biochem Pharmacol Res,2013,1 (2):84-90.
    [83]Caccamo A, Magri A, Medina DX, et al. mTOR regulates tau phosphorylation and degradation:implications for Alzheimer's disease and other tauopathies. Aging Cell, 2013,12 (3):370-380.
    [84]Johnson SC, Rabinovitch PS, Kaeberlein M. mTOR is a key modulator of ageing and age-related disease [J]. Nature,2013,493 (7432):338-345.
    [85]Nixon RA, Yang DS. Autophagy failure in Alzheimer's disease-locating the primary defect[J]. Neurobiol Dis,2011,43 (1):38-45.
    [86]Wolfe DM, Lee JH, Kumar A, et al. Autophagy failure in Alzheimer's disease and the role of defective lysosomal acidification[J]. Eur J Neurosci,2013,37 (12): 1949-1961.
    [87]Lee JY, Koga H, Kawaguchi Y, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy[J]. EMBO J,2010,29 (5): 969-980.
    [88]张玥,苏明波,周宇波.组蛋白去乙酰化酶6(HDAC6)抑制剂分子水平高通量筛选模型的建立[J].生物技术通报,2012,1(8):181-188.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700