LDPC码在衰落信道中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LDPC(低密度校验)码是一种接近Shannon容量限的信道编码,基于图模型的迭代译码具有线性的复杂度,是当今编码领域最受瞩目的研究热点之一。LDPC码如何和通信系统中的其他技术如数据同步和信道均衡等有效结合,实现无同步码或导频传输下的可靠译码,对于提高系统的频谱效率和信道容量有着重要的意义。本文在总结和借鉴前人研究成果基础上,重点探讨了LDPC码在帧同步和SC-FDE系统中的应用,在以下几个方面进行了深入研究:
     首先对基于硬判决校验约束的LDPC码盲帧同步方案的性能进行了详细分析,已有的研究对FSER(帧同步错误率)的估计依赖于数值仿真或采用粗糙的离散概率密度近似计算,在码字的列重较大时FSER理论值和实际仿真结果有较大偏差,文中提出利用连续概率密度的高斯近似思想,从理论上推导出了FSER的计算公式,其仅依赖于码校验矩阵的行重和列重分布,仿真结果和理论值几乎完全重合。从理论上第一次证明了:在码率、码长和校验矩阵的行重相同时,列重不等的不规则LDPC码帧同步性能优于规则LDPC码;在总长度相等的情形下,多帧短码的帧同步性能要优于单帧长码;盲帧同步的错误平层仅依赖于码的校验矩阵的维数(行数和列数),随着码长增加而几乎不存在错误平层。现有的帧同步算法没有充分利用QC-LDPC码的准循环特点,文中提出一种利用码结构的快速算法,显著降低运算的复杂度,可同时适用于基于硬判决和软判决校验约束的帧同步。
     其次研究了基于软判决校验约束的LDPC码帧同步方案,利用联合概率密度函数最大化改进了Sun算法,并指出其等价于Imad提出的简化MAP(最大后验概率)算法,针对Imad简化算法,提出了利用加权校正在几乎不增加复杂度的情形下,可以在高SNR时改善帧同步效果。Imad给出的同步性能估计依赖于数值仿真和校验子近似独立的假设,且在码字的列重较大时估计值和实际仿真结果有较大偏差,文中提出利用高斯近似思想,从理论上推导出了最小和译码时基于校验约束的FSER计算公式,理论值和仿真值在低SNR下十分接近,而在高SNR下理论值成为一个较紧的仿真值的估计上界,并把估计推广到一般的卷积码和任意衰落信道。利用FSER估计的理论值,推导出了基于门限的帧同步算法的合适门限值和混合帧同步算法的性能估计,可以进一步降低帧同步算法在实用中的复杂度。针对基于译码的帧同步算法,提出把译码和互相关运算结合,在一次迭代时可以显著改善帧同步性能。针对相位偏转下的帧同步,提出了一种基于距离平方和最小的相位检测方案,并可以和基于二阶统计信息的相位检测器结合排除不正确的相位模糊度,指出利用编码帧同步方案可以同时消除BPSK传输中存在的π相位模糊和实现盲帧同步。
     最后研究了LDPC码在SC-FDE系统中的应用,指出在传统的解决方案中采用丢弃CP(循环前缀)的频域处理没有充分利用CP在时域上的重复特点,针对无ISI(码间干扰)传输的系统,提出利用CP实现部分信号分集接收,既可以增加系统容量,又可以降低误码率,并且补偿了由于插入CP引起的SNR损失,仿真表明在衰落信道下分集接收的译码获得的增益比AWGN信道更为显著。针对ISI传输的系统,提出把CP作为扩展的校验矩阵的一部分参与译码,经过适当变换的扩展校验矩阵可以优化变量节点的度分布和改善Tanner图上短圈的分布以利于译码,仿真表明在频率选择性信道下采用BCJR的TDE迭代均衡比线性FDE均衡的性能要好,插入CP引起的SNR损失也得到补偿。针对脉冲噪声下的编码SC-FDE系统,给出了采用EGC(等增益合并)的分集接收和LLR(对数似然比)直接相加的接收方案,仿真表明前者无法改善脉冲噪声引起的性能恶化,而后者可以取得和无CP系统一样的性能。
Low density parity check code (LDPC) is a kind of capacity approaching codes.It has linear complexity of iterative decoding based on graph models and arouses muchinterest in the coding community. Study on combining LDPC codes with other tech-nologies such as synchronization and equalization is important for raising spectrumefficiency and channel capacity of the system. Based on the previous related researchachievements, the dissertation will focus on application of LDPC codes in frame syn-chronization and SC-FDE system.
     First, we present detailed analysis of blind synchronization performance of LD-PC coded system based on hard constraints. Previous estimation relied on numericalsimulation and used coarse model based on discrete pdf computation. It is far awayfrom the simulation results for codes having large column weight. We deduce the the-oretical value of FSER by using gaussian approximation of continuous pdf. We showthat FSER only depends on the row and column weight distribution of the code. Simu-lation results verify the good prediction of the theoretical estimation. We proved that:irregular LDPC codes have better synchronization performance than regular codeswith the same rate, length and row weight; synchronization based on multiple shortframes is better than that based on one long frame;the error floor only depends on thedimensions of the parity check matrix and almost disappears with longer code. Pre-vious frame synchronization methods did not utilize the inner structure of QC-LDPCcodes, while we propose a fast algorithm which is efficient in reducing computationalcomplexity and it is suitable for both hard and soft synchronizers.
     Second, we present detailed analysis of blind synchronization performance ofLDPC coded system based on soft constraints. We prove that the improved Sun algo-rithm is equal to the simplified MAP algorithm proposed by Imad. We use the weight method to improve the Imad simplified algorithm at high SNR region without increas-ing any complexity. The estimation of FSER proposed by Imad is based on numericalsimulation and independence of the syndromes. It is far away from the simulation re-sults for codes having large column weight. We deduce the theoretical value of FSERby using gaussian approximation of continuous pdf for minimum decoding. It is closeto the simulation results at low SNR region and becomes a tight upper bound at highSNR region. It can be easily applied to the case of convolutional codes and fadingchannels. We use the theoretical FSER to compute the suitable thresold for thresholdbased synchronizer and estimate the FSER of hybrid synchronizer. Both of the twomethods can decrease the complexity of synchronization. We combine decoding withcorrelation to improve the synchronizer based on decoding. It shows much better per-formance for one iterative decoding. We propose a phase estimator based on minimumsquare distance which can be combined with the phase estimator based on high orderstatics. The method can eliminate uncorrect phase ambiguity. The π phased ambiguitycan be eliminated together with blind frame synchronization for some codes.
     Last, we applied LPDC codes in SC-FDE system. In contrast to the tractional re-moval of CP (Cyclic prefix) in frequency domain processing, we show that CP can becombined in non ISI (Inter symbol interference) channel to achieve more capacity andlower error rate and the SNR loss can also be compensated. Simulation results showthat more coding gain is achieved over fading channel than AWGN channel. For ISIchannels, we treat CP as part of the expanded parity check matrix which is transformedto improve the degree distribution of variable nodes and the cycle distribution of theTanner graph. Simulation result shows that TDE (Time domain equalizer) based onBCJR algorithm has better performance than linear FDE (Frequency domain equal-izer) over frequency selective channels. We propose two methods combining CP overimpulsive channels. One method uses EGC (Equal gain combining) and the otheruses LLR (Log likelihood addition). Simulations shows that the former method cannot improve the degrading by impulsive noise, while the latter one can achieve theperformance as well as the system with no CP.
引文
[1] SHANNON C. A mathematical theory of communications, I and II[J]. Bell Syst. Tech. J,1948,27:379–423.
    [2] LIN S, COSTELLO D. Error control coding: fundamentals and applications[M].[S.l.]:Pearson Education India,2004.
    [3] BERROU C, GLAVIEUX A, THITIMAJSHIMA P. Near Shannon limit error-correcting cod-ing and decoding: Turbo-codes.1[C]//Communications,1993. ICC93. Geneva. TechnicalProgram, Conference Record, IEEE International Conference on. Geneva, Switzerland:IEEE,1993,2:1064–1070.
    [4] GALLAGER R. Low-density parity-check codes[J]. Information Theory, IRE Transactionson,1962,8(1):21–28.
    [5] MACKAY D, NEAL R. Near Shannon limit performance of low density parity checkcodes[J]. Electronics letters,1996,32(18):1645.
    [6] MACKAY D. Good error-correcting codes based on very sparse matrices[J]. InformationTheory, IEEE Transactions on,1999,45(2):399–431.
    [7] DAVEY M D, M.C. Low-density parity check codes over GF(q)[J]. IEEE CommunicationsLetters,1998,2(6):165–167.
    [8] KSCHISCHANG F, FREY B, LOELIGER H. Factor graphs and the sum-product algorithm[J].Information Theory, IEEE Transactions on,2001,47(2):498–519.
    [9] LOELIGER H. An introduction to factor graphs[J]. Signal Processing Magazine, IEEE,2004,21(1):28–41.
    [10] MORELLO A, MIGNONE V. DVB-S2: The second generation standard for satellite broad-band services[J]. Proceedings of the IEEE,2006,94(1):210–227.
    [11] ZHANG W, GUAN Y, LIANG W, et al. An introduction of the Chinese DTTB standardand analysis of the PN595working modes[J]. Broadcasting, IEEE Transactions on,2007,53(1):8–13.
    [12]戚戚晨皓,陈亮,吴乐南.数字移动多媒体广播新进展及关键技术[J].电视技术,2007,31(6):30–33.
    [13] XIAO Y. IEEE802.11n: enhancements for higher throughput in wireless LANs[J]. Wire-less Communications, IEEE,2005,12(6):82–91.
    [14] BATES S, CHEN Z, DONG X. Low-density parity-check convolutional codes for Ethernetnetworks[C]//Communications, Computers and signal Processing,2005. PACRIM.2005IEEE Pacific Rim Conference on. Victoria BC, Canada: IEEE,2005:85–88.
    [15] VASIC B, DJORDJEVIC I. Low-density parity check codes for long-haul optical communi-cation systems[J]. Photonics Technology Letters, IEEE,2002,14(8):1208–1210.
    [16] MATSUMOTO W, IMAI H. Blind synchronization with enhanced sum-product algorithm forlow-density parity-check codes[C]//Wireless Personal Multimedia Communications,2002.The5th International Symposium on. Honolulu, Hawaii USA: IEEE,2002,3:966–970.
    [17]杨学兵,马林华,李森.一种低密度奇偶校验码帧自同步方法[J].电光与控制,2009,16(006):81–85.
    [18] HAMKINS J. Frame synchronization without attached sync markers[C]//Aerospace Con-ference,2011IEEE. Big Sky, Montana USA: IEEE,2011:1–7.
    [19] SUN J, VALENTI M. Optimum frame synchronization for preamble-less packet transmis-sion of turbo codes[C]//Signals, Systems and Computers,2004. Conference Record of theThirty-Eighth Asilomar Conference on. California, USA: IEEE,2004,1:1126–1130.
    [20] HOUCKE S, SICOT G. Blind frame synchronization for block code[C]//Proc. EUSIPCO,European Sig. Proc. Florence, Italy: EURASIP,2006:1–4.
    [21] LEE D, KIM H, JONES C, et al. Pilotless frame synchronization via LDPC code constraintfeedback[J]. Communications Letters, IEEE,2007,11(8):683–685.
    [22] LEE D, KIM H, JONES C, et al. Pilotless frame synchronization for LDPC-coded transmis-sion systems[J]. Signal Processing, IEEE Transactions on,2008,56(7):2865–2874.
    [23] STEFANOVI C′Cˇ, VUKOBRATOVI C′D, BAJI C′D. Low-complexity list-based frame syn-chronization for LDPC coded transmission[C]//Communications,2009. ICC’09. IEEE In-ternational Conference on. Dresden, Germany: IEEE,2009:1–5.
    [24] IMAD R, HOUCKE S, DOUILLARD C. Blind frame synchronization on gaussian chan-nel[C]//Proc. EUSIPCO, European Sig. Proc. Poznan′, Poland: EURASIP,2007:1–5.
    [25] IMAD R, SICOT G, HOUCKE S. Blind frame synchronization for error correcting codeshaving a sparse parity check matrix[J]. Communications, IEEE Transactions on,2009,57(6):1574–1577.
    [26] CHEN Z, YUAN J. A code-aided soft frame synchronization algorithm for quasi-cyclicLDPC coded system[C]//Wireless Communications, Networking and Mobile Computing,2009. WiCom’09.5th International Conference on. Beijing, China: IEEE,2009:1–4.
    [27]陈智雄,苑津莎.基于准循环LDPC码译码软信息的码辅助帧同步算法[J].系统仿真学报,2011,23(9):1956–1960.
    [28]牛飞鹏.码率兼容QC-LDPC码帧同步器设计与FPGA实现[D].西安:西安电子科技大学,2011.
    [29] ZHANG W. Comments on Maximum diversity in single-carrier frequency-domain Equal-ization[J]. Information Theory, IEEE Transactions on,2006,52(3):1275–1277.
    [30]张磊,蒋伟,项海格.一种单载波频域均衡输出符号的软信息计算方法[J].电子与信息学报,2008,30(8):1806–1809.
    [31] LEI M, ZHANG S, CHEN K, et al. Virtual channel based LLR calculation for LDPC cod-ed SC-FDE system in60-GHz WPAN[C]//Global Telecommunications Conference,2008.IEEE GLOBECOM2008. IEEE. New Orleans, USA: IEEE,2008:1–4.
    [32] KONG L, XIAO Y, LEI M, et al. LLR calculation for LDPC coded SCBT in60GHzWPAN[J]. Systems Engineering and Electronics, Journal of,2010,21(5):734–739.
    [33]敬龙江,刘光辉,林竞力, et al.基于LDPC码的单载波频域均衡系统[J].电子与信息学报,2008,30(4):817–821.
    [34] ZHANG J, YAN H, BAO J. Design of RC-LDPC codes and its application in codes SC-FDEsystems[C]//Mobile Congress (GMC),2011Global. Shanghai, China: IEEE,2011:1–6.
    [35] TUCHLER M, HAGENAUER J. Linear time and frequency domain turbo equaliza-tion[C]//Vehicular Technology Conference,2001. VTC2001Spring. IEEE VTS53rd.Rhodes, Greece: IEEE,2001,2:1449–1453.
    [36] SABBAGHIAN M, FALCONER D, SAEEDI H. BER transfer chart analysis of turbo fre-quency domain equalization[C]//Vehicular Technology Conference (VTC)2006Fall, IEEE64th. Que′bec, Canada: IEEE,2006:1–5.
    [37] SABBAGHIAN M, FALCONER D. Comparison between convolutional and LDPC code-based turbo frequency domain equalization[C]//Communications,2006. ICC’06. IEEE In-ternational Conference on..[S.l.]:[s.n.],2006,12:5432–5437.
    [38] NG B, LAM C, FALCONER D. Turbo frequency domain equalization for single-carrierbroadband wireless systems[J]. Wireless Communications, IEEE Transactions on,2007,6(2):759–767.
    [39] LI B, RUAN Z, CHANG Y, et al. Efficient turbo frequency domain equalization based onsymbol-wise detection[C]//Communications,2008. ICC’08. IEEE International Conferenceon. Beijing, China: IEEE,2008:543–547.
    [40] ZYABLOV V, PINSKER M. Estimation of the error-correction complexity for Gallager low-density codes[J]. Problemy Peredachi Informatsii,1975,11(1):23–36.
    [41] TANNER R. A recursive approach to low complexity codes[J]. Information Theory, IEEETransactions on,1981,27(5):533–547.
    [42] MARGULIS G. Explicit constructions of graphs without short cycles and low densitycodes[J]. Combinatorica,1982,2(1):71–78.
    [43] SIPSER M, SPIELMAN D. Expander codes[J]. Information Theory, IEEE Transactions on,1996,42(6):1710–1722.
    [44] WIBERG N, LOELIGER H, KOTTER R. Codes and iterative decoding on general graphs[J].European Transactions on telecommunications,1995,6(5):513–525.
    [45] VAN LINT J H, WILSON R M.组合数学教程(第2版)[M].北京:机械工业出版社,2007.
    [46] LUBY M, MITZENMACHER M, SHOKROLLAHI M, et al. Improved low-density parity-check codes using irregular graphs[J]. Information Theory, IEEE Transactions on,2001,47(2):585–598.
    [47] RICHARDSON T, SHOKROLLAHI M, URBANKE R. Design of capacity-approaching irreg-ular low-density parity-check codes[J]. Information Theory, IEEE Transactions on,2001,47(2):619–637.
    [48] RICHARDSON T, URBANKE R. Modern coding theory[M].[S.l.]: Cambridge UniversityPress,2008.
    [49] MCGOWAN J, WILLIAMSON R. Loop removal from LDPC codes[C]//Information TheoryWorkshop,2003. Proceedings.2003IEEE..[S.l.]:[s.n.],2003:230–233.
    [50] ETZION T, TRACHTENBERG A, VARDY A. Which codes have cycle-free Tanner graph-s?[J]. Information Theory, IEEE Transactions on,1999,45(6):2173–2181.
    [51] HALFORD T, CHUGG K. An algorithm for counting short cycles in bipartite graphs[J].Information Theory, IEEE Transactions on,2006,52(1):287–292.
    [52] RICHARDSON T. Error floors of LDPC codes[C]//PROCEEDINGS OF THE ANNUALALLERTON CONFERENCE ON COMMUNICATION CONTROL AND COMPUTING..[S.l.]:[s.n.],2003,41:1426–1435.
    [53] ROSNES E, YTREHUSA. An efficient algorithm to find all small-size stopping sets oflow-density parity-check matrices[J]. Information Theory, IEEE Transactions on,2009,55(9):4167–4178.
    [54] KARIMI M, BANIHASHEMI A. An efficient algorithm for finding dominant trapping setsof LDPC codes[J]. Arxiv preprint arXiv:1108.4478,2011.
    [55] DECLERCQ D, FOSSORIER M. Decoding Algorithms for Nonbinary LDPC Codes OverGF (q)[J]. Communications, IEEE Transactions on,2007,55(4):633–643.
    [56] HU X, ELEFTHERIOU E, ARNOLD D. Regular and irregular progressive edge-growth Tan-ner graphs[J]. Information Theory, IEEE Transactions on,2005,51(1):386–398.
    [57] KOU Y, LIN S, FOSSORIER M. Low-density parity-check codes based on finite geome-tries: a rediscovery and new results[J]. Information Theory, IEEE Transactions on,2001,47(7):2711–2736.
    [58] AMMAR B, HONARY B, KOU Y, et al. Construction of low-density parity-check codesbased on balanced incomplete block designs[J]. Information Theory, IEEE Transactionson,2004,50(6):1257–1269.
    [59] FOSSORIER M. Quasicyclic low-density parity-check codes from circulant permutationmatrices[J]. Information Theory, IEEE Transactions on,2004,50(8):1788–1793.
    [60] TANNER R, SRIDHARA D, SRIDHARAN A, et al. LDPC block and convolutionalcodes based on circulant matrices[J]. Information Theory, IEEE Transactions on,2004,50(12):2966–2984.
    [61] LI Z, CHEN L, ZENG L, et al. Efficient encoding of quasi-cyclic low-density parity-checkcodes[J]. Communications, IEEE Transactions on,2006,54(1):71–81.
    [62] LU J, MOURA J, ZHANG H. Efficient encoding of cycle codes: A graphical ap-proach[C]//Signals, Systems and Computers,2003. Conference Record of the Thirty-Seventh Asilomar Conference on..[S.l.]:[s.n.],2003,1:69–73.
    [63] RICHARDSON T, URBANKE R. Efficient encoding of low-density parity-check codes[J].Information Theory, IEEE Transactions on,2001,47(2):638–656.
    [64] FOSSORIER M, MIHALJEVIC M, IMAI H. Reduced complexity iterative decoding of low-density parity check codes based on belief propagation[J]. Communications, IEEE Trans-actions on,1999,47(5):673–680.
    [65] CHEN J, DHOLAKIA A, ELEFTHERIOU E, et al. Reduced-complexity decoding of LDPCcodes[J]. Communications, IEEE Transactions on,2005,53(8):1288–1299.
    [66]顾尚杰,薛质.计算机通信网基础[M].北京:电子工业出版社,2000.
    [67]曹志刚,钱亚生.现代通信原理[M].北京:清华大学出版社,1992.
    [68] KOPANSKY A, BYSTROM M. Detection of aperiodically embedded synchronization pat-terns[J]. Wireless Communications, IEEE Transactions on,2004,3(5):1386–1392.
    [69] BARKER R H. Group synchronizing of binary digital systems[J]. Communication theory,1953:273–287.
    [70] NEUMAN F, HOFMAN L. New pulse sequences with desirable correlation proper-ties[C]//Proceedings of National Conference on Telemetry. Washington, D.C.:[s.n.],1971:277–282.
    [71] SURENDRAN K, et al. Design of Short Synchronization Codes for Use in Future GNSSSystem[J]. International Journal of Navigation and Observation,2008.
    [72]白彧,杨晓静,张玉.基于高阶统计处理技术的m-序列帧同步码识别[J].电子与信息学报,2012,34:33–37.
    [73] CHIANI M, GIORGETTI A, PAOLINI E. Optimum synchronization of ternary preamblesequences in Gaussian noise[C]//Wireless Pervasive Computing (ISWPC),20105th IEEEInternational Symposium on. Modena, Italy: IEEE,2010:146–150.
    [74] SCHOLTZ R. Frame synchronization techniques[J]. Communications, IEEE Transactionson,1980,28(8):1204–1213.
    [75] NIELSEN P. A note on bifix-free sequences (Corresp.)[J]. Information Theory, IEEE Trans-actions on,1973,19(5):704–706.
    [76] NIELSEN P. On the expected duration of a search for a fixed pattern in random data (Cor-resp.)[J]. Information Theory, IEEE Transactions on,1973,19(5):702–704.
    [77] TURYN R, STORER J. On binary sequences[J]. Proc. Amer. Math. Soc.,1961,12(3):394–399.
    [78] LEUNG K, SCHMIDT B. The field descent method[J]. Designs, Codes and Cryptography,2005,36(2):171–188.
    [79] HORN R A, JOHNSON C R. Topics in Matrix Analysis[M]. Cambridge: Cambridge Uni-versity Press,1994.
    [80] MASSEY J. Optimum frame synchronization[J]. Communications, IEEE Transactions on,1972,20(2):115–119.
    [81] NIELSEN P. Some optimum and suboptimum frame synchronizers for binary data in Gaus-sian noise[J]. Communications, IEEE Transactions on,1973,21(6):770–772.
    [82] CHIANI M, MARTINI M. A lower bound for optimum frame synchronization on AWGNchannels[C]//Vehicular Technology Conference (VTC)2005Spring. IEEE61st. Stockholm,Sweden: IEEE,2005,2:1283–1287.
    [83] CHIANI M, MARTINI M. Analysis of optimum frame synchronization based on periodicallyembedded sync words[J]. Communications, IEEE Transactions on,2007,55(11):2056–2060.
    [84] PROAKIS J G, SALEHI M.数字通信(第5版)[M].北京:电子工业出版社,2011.
    [85] ROBERTSON P. Optimal Frame Synchronization for Continuous and Packet Data Trans-mission[D]. Munich, Germany: University of the Federal Armed Forces,1995.
    [86]刘东华. Turbo码原理与应用技术[M].北京:电子工业出版社,2004.
    [87] CHUNG S, FORNEY JR G, RICHARDSON T, et al. On the design of low-density parity-check codes within0.0045dB of the Shannon limit[J]. Communications Letters, IEEE,2001,5(2):58–60.
    [88] TONG S, ZHENG H, BAI B. Precoded turbo code within0.1dB of Shannon limit[J].Electronics Letters,2011,47(8):521–522.
    [89] SHANNON C. Probability of error for optimal codes in a Gaussian channel[J]. Bell SystTech J,1959,38(3):611–656.
    [90] SASON I, SHAMAI S. Performance analysis of linear codes under maximum-likelihood de-coding: a tutorial[J]. Foundations and Trends in Communications and Information Theory,2006,3(1–2):1–222.
    [91] HERZET C, NOELS N, LOTTICI V, et al. Code-aided turbo synchronization[J]. Proceedingsof the IEEE,2007,95(6):1255–1271.
    [92] LORDEN G, MCELIECE R, SWANSON L. Node synchronization for the Viterbi decoder[J].Communications, IEEE Transactions on,1984,32(5):524–531.
    [93] SODHA J, TAIT D. Soft-decision syndrome based node synchronisation[J]. ElectronicsLetters,1990,26(15):1108–1109.
    [94] KORALEK R, METZLER M. Viterbi decoder synchronization and BER measurementusing metric values[C]//The16th Annual Allerton Conference on Communication, Controland Computing. Monticello Illinois: ACCC,1978:354–363.
    [95] MENGALI U, PELLIZZONI R, SPALVIERI A. Soft-decision-based node synchronization forViterbi decoders[J]. Communications, IEEE Transactions on,1995,43(9):2532–2539.
    [96] CASSARO T, GEORGHIADES C. Frame synchronization for coded systems over AWGNchannels[J]. Communications, IEEE Transactions on,2004,52(3):484–489.
    [97] ROBERTSON P. Improving frame synchronization when using convolutionalcodes[C]//Global Telecommunications Conference (Globecom)1993. Houston, USA:IEEE,1993:1606–1611.
    [98] HOWLADER M, WOERNER B. Frame synchronization of convolutionally coded systemsfor packet transmission[J]. Communications Letters, IEEE,2001,5(7):307–309.
    [99] HOWLADER M, WOERNER B. Decoder-assisted frame synchronization for packet trans-mission[J]. Selected Areas in Communications, IEEE Journal on,2001,19(12):2331–2345.
    [100] SODHA J. Turbo code frame synchronization[J]. Signal processing,2002,82(5):803–809.
    [101] MIELCZAREK B, SVENSSON A. Timing error recovery in turbo-coded systems on AWGNchannels[J]. Communications, IEEE Transactions on,2002,50(10):1584–1592.
    [102] WYMEERSCH H, MOENECLAEY M. ML frame synchronization for turbo and LDPCcodes[C]//The7th Int. Symp. DSP and Communications Systems (DSPCS’03). Australia:IEEE,2003:1–6.
    [103] WYMEERSCH H, STEENDAM H, BRUNEEL H, et al. Code-aided frame synchroniza-tion and phase ambiguity resolution[J]. Signal Processing, IEEE Transactions on,2006,54(7):2747–2757.
    [104] MOON T, GUNTHER J. Probability of even parity of soft bits[J]. Signal Processing, IET,2011,5(6):603–611.
    [105] BASTAKI E, TAN H, SHI Y, et al. Frame synchronization based on multiple frame obser-vations[J]. Wireless Communications, IEEE Transactions on,2010,9(3):1097–1107.
    [106] FERNANDEZ M, WILLIAMS S. Closed-form expression for the Poisson-binomial proba-bility density function[J]. Aerospace and Electronic Systems, IEEE Transactions on,2010,46(2):803–817.
    [107] SUN J. Synchronization for capacity-approaching coded communication systems[D]. USA:West Virginia University,2004.
    [108] IMAD R, HOUCKE S. Theoretical analysis of a MAP based blind frame synchronizer[J].Wireless Communications, IEEE Transactions on,2009,8(11):5472–5476.
    [109] TANG H. Some physical layer issues of wide-band cognitive radio systems[C]//New Fron-tiers in Dynamic Spectrum Access Networks,2005. DySPAN2005.2005First IEEE Inter-national Symposium on. Baltimore, Maryland USA: IEEE,2005:151–159.
    [110] WEY C, SHIEH M, LIN S. Algorithms of finding the first two minimum values and theirhardware implementation[J]. Circuits and Systems I: Regular Papers, IEEE Transactionson,2008,55(11):3430–3437.
    [111] JULY、编程艺术室.程序员编程艺术第一~二十七章集锦与总结[R]. CSDN:结构之法算法之道blog,2012. http://blog.csdn.net/v_july_v/article/details/7506231.
    [112] STEFANOVI C′Cˇ, VUKOBRATOVI C′D, BAJI C′D, et al. Blind time-period synchronizationfor lDPC convolutionally coded transmission[C]//17th European Signal Processing Confer-ence,2009. EUSIPCO2009. Glasgow, Scotland: EURASIP,2009:373–377.
    [113] JOHANNESSON R, ZIGANGIROV K. Fundamentals of convolutional coding[M]. New Jer-sey: Wiley-IEEE press,1999.
    [114] ZHOU H, GOERTZ N. Unavoidable Cycles in Polynomial Based Time Invariant LDPC Con-volutional Codes[C]//Wireless Conference2011-Sustainable Wireless Technologies (Euro-pean Wireless),11th European. Vienna, Austria: IEEE,2011:1–6.
    [115] CUI Y, PENG X, GOTO S. Design of turbo codes without4-cycles in Tanner graph repre-sentation for message passing algorithm[C]//Signal Processing and its Applications (CSPA),2011IEEE7th International Colloquium on. Malaysia: IEEE,2011:108–111.
    [116] MACKAY D. Information theory, inference, and learning algorithms[M].[S.l.]: CambridgeUniversity Press,2003.
    [117] CHUNG S, RICHARDSON T, URBANKE R. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation[J]. Information Theory, IEEETransactions on,2001,47(2):657–670.
    [118] XIE Q, CHEN Z, PENG X, et al. A sorting-based architecture of finding the first twominimum values for LDPC decoding[C]//Signal Processing and its Applications (CSPA),2011IEEE7th International Colloquium on. Malaysia: IEEE,2011:95–98.
    [119] SAYED A. Fundamentals of adaptive filtering[M]. New Jersey: Wiley-IEEE Press,2003.
    [120] ROBERTSON P. Maximum likelihood frame synchronization for flat fading channel-s[C]//Communications,1992. ICC’92. IEEE International Conference on. Chicago: IEEE,1992:1426–1430.
    [121] SIMON M, ALOUINI M. Digital communication over fading channels[M]. second edition.New Jersey: Wiley-IEEE Press,2005.
    [122] HOU J, SIEGEL P, MILSTEIN L. Performance analysis and code optimization of low densityparity-check codes on Rayleigh fading channels[J]. Selected Areas in Communications,IEEE Journal on,2001,19(5):924–934.
    [123] FOSCHINI G, GANS M. On limits of wireless communications in a fading environmentwhen using multiple antennas[J]. Wireless personal communications,1998,6(3):311–335.
    [124] TELATAR E. Capacity of Multi-antenna Gaussian Channels[J]. European transactions ontelecommunications,1999,10(6):585–595.
    [125] ALAMOUTI S. A simple transmit diversity technique for wireless communications[J]. Se-lected Areas in Communications, IEEE Journal on,1998,16(8):1451–1458.
    [126] TAROKH V, JAFARKHANI H, CALDERBANK A. Space-time block codes from orthogonaldesigns[J]. Information Theory, IEEE Transactions on,1999,45(5):1456–1467.
    [127] DUMAN T, GHRAYEB A. Coding for MIMO Communication Systems[M].[S.l.]: Wiley,2007.
    [128] VUCETIC B, YUAN J. Space-time coding[M].[S.l.]: Wiley,2003.
    [129] BARBAROSSA S. Multiantenna wireless communications systems[M].[S.l.]: Artech House,2005.
    [130] DAUWELS J, LOELIGER H. Joint decoding and phase estimation: an exercise in fac-tor graphs[C]//Information Theory,2003. Proceedings. IEEE International Symposium on.Yokohama, Japan: IEEE,2003:231–231.
    [131] NOELS N, STEENDAM H, MOENECLAEY M. Performance analysis of ML-based feedbackcarrier phase synchronizers for coded signals[J]. Signal Processing, IEEE Transactions on,2007,55(3):1129–1136.
    [132]李茂沛,周廷显.改进科斯塔斯环的LDPC码相位同步算法[J].哈尔滨工业大学学报,2008,39(11):1764–1766.
    [133] IMAD R, HOUCKE S. Blind frame synchronization and phase offset estimation for cod-ed systems[C]//Signal Processing Advances in Wireless Communications (SPAWC)2008.IEEE9th Workshop on. Recife, Brazil: IEEE,2008:11–15.
    [134] CHEN L, KUSAKA H, KOMINAMI M. Blind phase recovery in QAM communication sys-tems using higher order statistics[J]. Signal Processing Letters, IEEE,1996,3(5):147–149.
    [135] CHANG R. Synthesis of band-limited orthogonal signals for multichannel data transmis-sion[J]. Bell Sys. Tech. J.,1966,45:1775–1796.
    [136] WEINSTEIN S. The history of orthogonal frequency-division multiplexing [History of Com-munications][J]. Communications Magazine, IEEE,2009,47(11):26–35.
    [137] WEINSTEIN S, EBERT P. Data transmission by frequency-division multiplexing using thediscrete Fourier transform[J]. Communication Technology, IEEE Transactions on,1971,19(5):628–634.
    [138] PELED A, RUIZ A. Frequency domain data transmission using reduced computationalcomplexity algorithms[C]//Acoustics, Speech, and Signal Processing, IEEE InternationalConference on ICASSP’80. Denver, Colorado, USA: IEEE,1980,5:964–967.
    [139] DAHLMAN E.3G evolution: HSPA and LTE for mobile broadband[M].[S.l.]: AcademicPress,2008.
    [140] HEISKALA J, TERRY J. OFDM无线局域网[M].北京:电子工业出版社,2003.
    [141]佟学俭,罗涛. OFDM移动通信技术原理与应用[M].北京:人民邮电出版社,2003.
    [142] HAN S, LEE J. An overview of peak-to-average power ratio reduction techniques for mul-ticarrier transmission[J]. Wireless Communications, IEEE,2005,12(2):56–65.
    [143] JIANG T, WU Y. An overview: Peak-to-average power ratio reduction techniques for OFD-M signals[J]. Broadcasting, IEEE Transactions on,2008,54(2):257–268.
    [144] FALCONER D, ARIYAVISITAKUL S, BENYAMIN-SEEYAR A, et al. Frequency domainequalization for single-carrier broadband wireless systems[J]. Communications Magazine,IEEE,2002,40(4):58–66.
    [145] PANCALDI F, VITETTA G, KALBASI R, et al. Single-carrier frequency domain equaliza-tion[J]. Signal Processing Magazine, IEEE,2008,25(5):37–56.
    [146] WALZMAN T, SCHWARTZ M. Automatic equalization using the discrete frequency do-main[J]. Information Theory, IEEE Transactions on,1973,19(1):59–68.
    [147] SARI H, KARAM G, JEANCLAUD I. Frequency-domain equalization of mobile radio andterrestrial broadcast channels[C]//Global Telecommunications Conference,1994. GLOBE-COM’94. Communications: The Global Bridge., IEEE. San Francisco, America: IEEE,1994:1–5.
    [148] SARI H, KARAM G, JEANCLAUDE I. Transmission techniques for digital terrestrial TVbroadcasting[J]. Communications Magazine, IEEE,1995,33(2):100–109.
    [149] WANG N, BLOSTEIN S. Comparison of CP-based single carrier and OFDM with powerallocation[J]. Communications, IEEE Transactions on,2005,53(3):391–394.
    [150] LOUVEAUX J, VANDENDORPE L, SARTENAER T. Cyclic prefixed single carrier andmulticarrier transmission: bit rate comparison[J]. Communications Letters, IEEE,2003,7(4):180–182.
    [151] ZANATTA FILHO D, F E′TY L, TERR E′M. Water-filling for cyclic-prefixed single-carriertransmission and MMSE receiver[C]//Proceedings of the13th European Wireless Confer-ence (EW’07). Paris, France: ENSTA,2007.
    [152] MYUNG H, LIM J, GOODMAN D. Single carrier FDMA for uplink wireless transmis-sion[J]. Vehicular Technology Magazine, IEEE,2006,1(3):30–38.
    [153] HUANG J, HE C, HANG Q, et al. Cyclic prefixed single carrier transmission for underwateracoustic communication[C]//TENCON2007-2007IEEE Region10Conference. Taipei,Taiwan: IEEE,2007:1–4.
    [154] REINHARDT S, BUZID T, HUEMER M. MIMO extensions for SC/FDE systems[C]//The8th European Conference on Wireless Technology (ECWT2005). London: The EuropeanMicrowave Association,2005:109–112.
    [155] WANG Y, DONG X, WITTKE P, et al. Cyclic prefixed single carrier transmission in ultra-wideband communications[J]. Wireless Communications, IEEE Transactions on,2006,5(8):2017–2021.
    [156] CAO Y, GU J, QI L, et al. Degree distribution based HARQ for irregular LDPC[J]. Elec-tronics Letters,2006,42(6):363–364.
    [157] LI Y, HO C, WU Y, et al. Bit-to-symbol mapping in LDPC coded modulation[C]//VehicularTechnology Conference (VTC)2005Spring. IEEE61st. Stockholm, Sweden: IEEE,2005,1:683–686.
    [158] SANAEI A, ARDAKANI M. LDPC code design considerations for non-uniform channels[J].Communications, IEEE Transactions on,2010,58(1):101–109.
    [159] PISHRO-NIK H, RAHNAVARD N, FEKRI F. Nonuniform error correction using low-densityparity-check codes[J]. Information Theory, IEEE Transactions on,2005,51(7):2702–2714.
    [160] DE BAYNAST A, SABHARWAL A, AAZHANG B. LDPC code design for OFDM chan-nel: graph connectivity and information bits positioning[C]//Signals, Circuits and Systems,2005. ISSCS2005. International Symposium on. Iasi, Romania: IEEE,2005,2:649–652.
    [161] BOUTROS J, GUILL E′N I F A`BREGAS A, BIGLIERI E, et al. Design and analysis of low-density parity-check codes for block-fading channels[C]//Information Theory and Applica-tions Workshop,2007. San Diego, CA USA: IEEE,2007:54–62.
    [162] BOUTROS J, GUILL E′N I F A`BREGAS A, BIGLIERI E, et al. Low-density parity-check codesfor nonergodic block-fading channels[J]. Information Theory, IEEE Transactions on,2010,56(9):4286–4300.
    [163] YUEQIAN L, SALEHI M. Quasi-Cyclic LDPC Code Design for Block-Fading Channel-s[C]//44th IEEE Annual Conference on Information Sciences and Systems. Princeton, USA:IEEE,2010.
    [164] HIRT W, MASSEY J. Capacity of the discrete-time Gaussian channel with intersymbolinterference[J]. Information Theory, IEEE Transactions on,1988,34(3):380–388.
    [165] GUSMAO A, DINIS R, ESTEVES N. On frequency-domain equalization and diversity com-bining for broadband wireless communications[J]. Communications, IEEE Transactions on,2003,51(7):1029–1033.
    [166] SHI T, ZHOU S, YAO Y. Capacity of single carrier systems with frequency-domain e-qualization[C]//Emerging Technologies: Frontiers of Mobile and Wireless Communication,2004. Proceedings of the IEEE6th Circuits and Systems Symposium on. Shanghai, China:IEEE,2004,2:429–432.
    [167] QU X, DONG M, WANG W, et al. Bit Error Rate Performance Bounds of SC-FDE underArbitrary Multipath Mobile[J]. International Journal of Computational Intelligence System-s,2011,4(6):1246–1253.
    [168] FORNEY JR G. Maximum-likelihood sequence estimation of digital sequences in the p-resence of intersymbol interference[J]. Information Theory, IEEE Transactions on,1972,18(3):363–378.
    [169] BAHL L, COCKE J, JELINEK F, et al. Optimal decoding of linear codes for minimiz-ing symbol error rate (Corresp.)[J]. Information Theory, IEEE Transactions on,1974,20(2):284–287.
    [170] KOETTER R, SINGER A, TUCHLER M. Turbo equalization[J]. Signal Processing Maga-zine, IEEE,2004,21(1):67–80.
    [171] YANG M, RYAN W, LI Y. Design of efficiently encodable moderate-length high-rate irreg-ular LDPC codes[J]. Communications, IEEE Transactions on,2004,52(4):564–571.
    [172] TILLICH J, Z E′MOR G. On the minimum distance of structured LDPC codes with twovariable nodes of degree2per parity-check equation[C]//Information Theory,2006IEEEInternational Symposium on. Seattle, Washington USA: IEEE,2006:1549–1553.
    [173] ABU-SURRA S, DIVSALAR D, RYAN W. On the existence of typical minimum distance forprotograph-based LDPC Codes[C]//Information Theory and Applications Workshop (ITA),2010. San Diego, CA USA: IEEE,2010:1–7.
    [174] KAVCIC A, MA X, MITZENMACHER M. Binary intersymbol interference channels: Gal-lager codes, density evolution, and code performance bounds[J]. Information Theory, IEEETransactions on,2003,49(7):1636–1652.
    [175] DEGARDIN V, LIENARD M, ZEDDAM A, et al. Classification and characterization of im-pulsive noise on indoor powerline used for data communications[J]. Consumer Electronics,IEEE Transactions on,2002,48(4):913–918.
    [176] ZIMMERMANN M, DOSTERT K. Analysis and modeling of impulsive noise in broad-bandpowerline communications[J]. Electromagnetic Compatibility, IEEE Transactions on,2002,44(1):249–258.
    [177] MIDDLETON D. Statistical-physical models of electromagnetic interference[J]. Electro-magnetic Compatibility, IEEE Transactions on,1977(3):106–127.
    [178] UMEHARA D, YAMAGUCHI H, MORIHIRO Y. Turbo decoding in impulsive noise environ-ment[C]//Global Telecommunications Conference,2004. GLOBECOM’04. IEEE. Dallas,Texas USA: IEEE,2004,1:194–198.
    [179] NAKAGAWA H, UMEHARA D, DENNO S, et al. A decoding for low density parity checkcodes over impulsive noise channels[C]//Power Line Communications and Its Applications,2005International Symposium on. Vancouver, Canada: IEEE,2005:85–89.
    [180] ANDREADOU N, PAVLIDOU F. Mitigation of Impulsive Noise Effect on the PLC ChannelWith QC–LDPC Codes as the Outer Coding Scheme[J]. Power Delivery, IEEE Transactionson,2010,25(3):1440–1449.
    [181] MA Y, SO P, GUNAWAN E. Performance analysis of OFDM systems for broadband powerline communications under impulsive noise and multipath effects[J]. Power Delivery, IEEETransactions on,2005,20(2):674–682.
    [182] FERTONANI D, COLAVOLPE G. A simplified metric for soft-output detection in the p-resence of impulse noise[C]//Power Line Communications and Its Applications,2007. IS-PLC’07. IEEE International Symposium on. Pisa, Italy: IEEE,2007:121–126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700