亲水性分子印迹聚合物的制备及其在喹乙醇检测中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喹乙醇(2-[N-(2-羟基-乙基)-氨基甲酰]-3-甲基-喹喔啉-1,4-二氧化物),属喹喔啉类抑菌促生长剂。喹乙醇作为一种抗菌促生长剂被广泛应用于畜禽及水产品的养殖中以提高饲料利用率。然而,由于不合理使用,出现残留问题。对此世界各国针对喹乙醇会对动物产生致癌、致突变和光敏反应,从1998年开始禁止将喹乙醇作为饲料添加剂使用。基于以上原因,找到一种准确可靠检测动物饲料中残留喹乙醇技术对于消费者健康来说至关重要。本论文主要研究用水相分子印迹技术对喹乙醇进行富集检测。分子印迹技术是一种发展较快的分析检测技术,主要利用“钥匙-锁”的原理,以喹乙醇为模板,采用不同的功能单体和交联剂,制备有较高识别喹乙醇的聚合物,与高效液相技术或酶联免疫技术联用后能高效检测饲料中痕量喹乙醇含量。
     1.喹乙醇分子印迹聚合物的制备及其与固相萃取-高效液相色谱联用检测技术
     以喹乙醇作为模板分子,甲基丙烯酸为功能单体,乙二醇二甲基丙烯酸酯为交联剂,水/乙腈(4:6,v/v)为溶剂,偶氮二异丁腈为引发剂,采用本体聚合法制备分子印迹聚合物。通过红外光谱、扫描电镜、吸附动力学实验、吸附平衡实验、选择性实验对制备的聚合物进行表征,实验结果表明此聚合物具有较高识别选择能力,对喹乙醇具有快速吸附效果。将聚合物作为固相萃取材料与高效液相色谱联用进行离线富集检测饲料中喹乙醇,在上样流速为1.6mL min~(-1),预富集63min条件下,富集倍数为80,最低检测限(S/N=3)为38.0ng L~(-1),连续在线富集5次的精密度(相对标准偏差,RSD)为4.9%。对添加有喹乙醇浓度为1.0μg g~(-1)和5.0μg g~(-1)的饲料进行检测,其回收率分别为89.8%~97.4%。
     2.以壳聚糖为载体制备水相识别分子印迹聚合物及其表征
     以离子交联法制备壳聚糖微球,以乙酸乙酯为致孔剂,环氧氯丙烷为交联剂,通过交联法制备出交联化壳聚糖微球。以交联化壳聚糖微球为表面载体,以水和乙腈为混合溶剂,将模板分子(喹乙醇),功能单体(AA)及交联剂(MBA)采用表面分子印迹与溶胶-凝胶法合成喹乙醇分子印迹聚合物。并对新型水相分子印迹聚合进行红外光谱、扫描电镜、吸附动力学实验、吸附平衡实验、选择性实验的表征。实验结果表明以壳聚糖为载体的分子印迹聚合物对喹乙醇的吸附容量为10.14mg g~(-1),对喹烯酮的分离因子为2.29,乙酰甲喹的分离因子为2.22。以壳聚糖为载体的分子印迹聚合物具有较高识别选择能力,对喹乙醇具有快速吸附效果。
     3.亲水性磁性分子印迹聚合物的制备及与固相萃取-高效液相色谱联用检测技术
     采用溶胶一凝胶法制备二氧化硅包覆壳的磁性四氧化三铁纳米粒子,以喹乙醇为模板,以水和乙腈为反应溶剂,硅烷化Fe_3O_4为载体,将模板分子(喹乙醇),功能单体(AA)及交联剂(EGDMA)按1:2:4比例采用表面分子印迹技术制得分子印迹聚合物。通过对磁性纳米粒子和分子印迹聚合物进行红外光谱、热重分析、扫描电镜、聚合物吸附动力学实验、吸附平衡实验、选择性实验表征,实验结果表明此聚合物具有较高识别选择能力,对喹乙醇具有快速吸附效果。将聚合物作为固相萃取材料与高效液相色谱联用进行离线富集检测饲料中喹乙醇,在上样流速为2.0mL min~(-1),预富集50min条件下,富集倍数为95,最低检测限(S/N=3)为32.0ng L~(-1),连续在线富集5次的精密度(相对标准偏差,RSD)为4.7%。对添加有喹乙醇浓度为1.0μg g~(-1)和5.0μg g~(-1)的饲料进行检测,其回收率分别为90.2%~98.2%。
     4.新型可控水相分子印迹膜的制备及在仿生酶联免疫检测中应用
     该方法通过本体聚合法直接在96孔酶标板孔穴表面上合成了喹乙醇水相分子印迹膜,该聚合物膜对喹乙醇具有很好的结合能力和特异性识别能力。以制备的印迹膜作为仿生抗体,建立了仿生酶联免疫分析(BELISA)方法。在最佳的条件下,该BELISA方法的灵敏度(IC_(50))和最低检测限(IC_(15))分别为700±60μg L~(-1)和17±1.6μg L~(-1)。对结构类似物的交叉反应率为12%和6.2%;该方法的添加回收率在89%~96%范围内。
Olaquindox as an antimicrobial growth accelerant, is usually added into chick feed tocontrol chick dysentery and bacterial enteritis in young chick. However, due to the possiblecarcinogenic, mutagenic, and photoallergenic effects, its use as an additive in animalfeedstuffs have been prohibited in the European Union and many other countries. In order toprotect human health, an accurate and reliable analytical method for the determination ofolaquindox in the feed samples is required. The aim of this paper is to study the determinationof preconcentration of olaquindox using molecular imprinting technology in aqueous phase.MIT is one of the most promising approaches whose principle came from “Key-Lock”. In thepresent work, we prepared four new hydrophilic functionalized materials in aqueous solutionby a series of molecular imprinting techniques in combination with high pressure liquidchromatography or enzyme-linked immunospot assay.
     (1) Separation and determination of olaquindox using molecularly imprinted solid-phase extraction coupled with high-performance liquid chromatography
     A new and hydrophilic molecularly imprinted polymer (MIP), selective for olaquindox,was prepared by bulk polymerization technique using olaquindox as the template, methacrylicacid as the functional monomer, and ethylene glycoldimethacrylate as the cross-linker. Thesynthesized polymer was characterized by Fourier transform infrared and static adsorptionexperiments, and the results showed that the MIP had good recognition and selective abilityfor olaquindox. A novel method of molecularly imprinted solid-phase extraction coupled withhigh-performance liquid chromatography (HPLC) was developed for separation anddetermination of trace olaquindox in feed samples. Under the selected experimental condition,the detection limit (S/N=3) was38.0ng L~(-1), and the RSD for five replicate extractions of50μg L~(-1)olaquindox was4.9%. This method was employed for quantitative determination ofolaquindox in fish feed with recoveries ranging from89.8~97.4%.
     (2) Chitosan beads as molecularly imprinted polymer matrix for selectiveseparation of olaquindox in aqueous phase
     A simple molecularly imprinted polymer (MIP) was prepared using olaquindox as theimprinted molecule and acrylamide as the functional monomer. The MIP was achieved bygrafting of the selective soft polyacrylamide gel to the chitosan beads by letting the monomers and the template molecule diffuse into the pores of the chitosan matrix before starting thepolymerization. This prepared material was evaluated by FT-IR spectra, SEM images, andstatic adsorption experiments. The adsorption test indicated that the imprinted polymerexhibited higher selectivity and adsorption capacity toward olaquindox than that ofstructurally related compounds. The adsorption capacity of the imprinted polymer were10.14mg g~(-1). The MIP has much higher adsorption capacity for OLA than the non-imprintedpolymer with the same chemical composition, and also has a higher selectivity for theimprinted molecule.
     (3) Core-shell magnetic molecularly imprinted solid phase extraction coupled withhigh-performance liquid chromatography for recognition of olaquindox.
     The magnetic nanoparticles were synthesized by the chemical coprecippitation of Fe2+and Fe3+in an ammonia solution. Subsequently, silica was coated on the Fe_3O_4nanoparticlesusing a sol-gel method to obtain silica shell magnetic nanoparticles. Subsequently,acrylamide(AA) as the functional monomer, and ethylene glycoldimethacrylate(EGDMA) asthe cross-linker. The synthesized polymer was coated onto the silica-modified Fe_3O_4surfacethrough oxidation with AIBN in an aqueous solution. The polymer was characterized byFourier transform infrared spectra, static adsorption experiments and thermogtavimetricanalysis. The results showed that the MIP had good recognition and selective ability forolaquindox. A novel method of molecularly imprinted solid-phase extraction coupled withhigh-performance liquid chromatography (HPLC) was developed for separation anddetermination of trace olaquindox in feed samples. Under the selected experimental condition,the detection limit (S/N=3) was32.0ng L~(-1), and the RSD for five replicate extractions of50μg L~(-1)olaquindox was4.7%. This method was employed for quantitative determination ofolaquindox in fish feed with recoveries ranging from90.2%~98.2%.
     (4) Development of a biomimetic Enzyme-Linked Immunosorbent Assay Methodbased on a hydrophilic molecularly imprinted polymer film for determination ofolaquindox
     We developed a fast and new competitive biomimetic enzyme-linked immunosorbentassay (BELISA) method for the determination of olaquindox in chick feed based on a novelmolecularly imprinted film as an artificial antibody. The imprinted film was directlysynthesized on the well surface of Maxisorp polystyrene96-well plate by bulk polymerizationwith molecular imprinting technique. Then the experimental conditions which areconcentration of enzyme conjugate, diluent choice and pH values were optimized through theexperiments followed by the establishment of the standard curve. Using it as the recognition element, a fast and new direct competitive biomimetic enzyme-linked immunosorbent assay(BELISA) method for the determination of olaquindox in feed was developed. This BELISAmethod had low cross-reactivities of6.2%and12%for two analogues. Under the optimalconditions, the sensitivity (IC_(50)) and the limit of detection (IC_(15)) were700±60μgL~(-1)and17±1.6μg L~(-1), respectively. The blank chick feed samples spiked with olaquindox at threelevels were determined by this developed method with recoveries ranging from89.0%~96.0%
引文
艾晓辉,刘长征,文华.鱼组织中喹乙醇残留量高效液相色谱检测方法研究[J].湖北农学院学报,2003,23(4):266~270
    曹健,张可达.“活性”/可控自由基聚合新进展[J].化学研究与应用,2005,17(1):19~26
    曾静,朱宽正.高效液相色谱-串联质谱法检测水产品中的喹乙醇[J].中国食品卫生杂志,2006,18(5):423~425
    常勇慧.壳聚糖分子印迹槲皮素识别材料的制备[J].江西化工,2011,2:98~101
    陈玲,郜洪文等编.现代环境分析技术[M].北京:科学出版社,2008
    陈长宝,周杰,吴春辉.分子印迹技术研究进展[J].化学研究与应用,2006,18(8):896~899
    成国祥,张立永,付聪.种子溶胀悬浮聚合法制备分子印迹聚合物微球的研究[J].色谱,2002,20(2):102~107
    丁利斌,王艺峰.壳聚糖金属离子配合物蛋白质印迹聚合物的制备与表征[J].高分子材料科学与工程,2010,26(2):125~127
    杜斌,取鹏武主编.实用现代色谱技术[M].郑州:郑州大学出版社,2009
    杜自卫.分子印迹聚合物的制备与识别性能研究[D].四川:中国工程物理研究院,2009
    付志高,苏海佳,谭天伟.菌丝体表面分子印迹壳聚糖树脂的制备及其吸附性能[J].化工学报,2004,55(6):958~962
    高吉刚,周杰,曲祥金.植物激素吲哚乙酸分子模板聚合物的分子识别特性[J].分析化学,2003,31(10):1173~1177
    高婷,郭敏杰,樊志,郭艳玲.牛血清白蛋白分子印迹壳聚糖树脂的制备[J].天津科技大学学报,2010,25(1):20~23
    龚春锁,揣成智.无机微粒表面接枝聚合改性进展[J].塑料制造,2007(8):111~115
    关怀民,童跃进.壳聚糖乙烯基衍生物的合成及其对鸟嘌呤的印迹识别[J].科学技术与工程,2009,9(8):2038~2041
    韩晓斌,黄丽,回峥.微波水解法制备针形α-Fe2O3纳米粒子[J].无机材料学报,1999,14(4):659~673
    郝凌云,张宏.磁性纳米粒子的合成及应用研究进展[J].金陵科技学院学报,2011,27(2):11~22
    何天白,胡汉杰.海外高分子科学的新进展[M].北京:化学工业出版社,1997
    何锡文.分子印迹聚合物在色谱分离和固相萃取药物中的应用研究[D].天津:南开大学,2002
    洪英,钟泽辉,郭宾.壳聚糖印迹聚合物对Zn2+的吸附动力学[J].化工进展,2011,30(6):1296~1301
    黄丽梅,马秀玲.分子印迹壳聚糖膜和柚皮苷模板分子间相互作用的研究[J].广州化学,2009,34(1):27~31
    黄韦.在线富集液相色谱检测水中痕量雌激素的研究[D].天津:天津科技大学,2007
    冀宝庆.喹乙醇及其代谢残留免疫检测技术研究[D].江苏:江南大学,2008
    贾涛.用PEP净化小柱检测饲料中喹乙醇的方法研究[J].饲料检测,2011,11:44~51
    姜忠义.分子印迹聚合物的设计与制备[J].高分子材料科学与工程,2004,20(3):25~28
    蒋挺大.壳聚糖[M].北京:化学工业出版社,2007
    金晓峰.高效液相色谱法测定饲料中喹乙醇的含量[J].饲料工业,2009,23(30):41~42
    柯仁怀,关怀民,林妹,童跃进.离子印迹交联壳聚糖的制备及其对Zn2+的吸附作用[J].福建医科大学学报,2007,41(5):440~443
    乐琳.壳聚糖纳米粒子的制备[J].光谱实验室,2010,27(5):2086~2088
    雷建都,谭天伟.壳聚糖血红蛋白分子印迹介质的制备及优化[J].化学通报,2002,4:265~269
    李和平,罗小锋,肖子丹.壳聚糖微球的制备及其对甲基橙的吸附研究[J].印染,2006,15:1~6
    李红,王炜军,徐凤彩.壳聚糖微球的制备及其固定化木瓜蛋白酶的研究[J].华南农业大学学报,2000,21(2):49~53
    李俊锁,钱传范.农药残留的免疫分析及其进展[J].农药科学与管理,1999增刊:37~46
    李琳.新型磁性分子印迹纳米复合体系用于生物大分子识别的研究[D].天津:南开大学,2009
    李志洲,刘军强,刘军海.多孔壳聚糖微球的制备及其在污水处理中的应用[J].化工科技,2008,16(1):27~31
    刘安南.薄层色谱法鉴别中西复方制剂中喹乙醇成分[J].江西饲料,2001,1:23~25
    刘秋叶,李文友,何锡文,陈朗星,张玉奎.壳聚糖包裹硅胶载体印迹牛血红蛋白的研究[J].高等学校化学学报,2009,30(4):691~696
    刘晓茂,高俊刚.壳聚糖微球的制备及对有机染料的吸附性能[J].河北大学学报,2005,25(1):59~63
    刘亚风,刘朝晖,杨冀州.固相萃取-液相色谱法检测肉制品中纳他霉素残留量[J].检验检疫,2002,21:181~183
    刘长武,翟广书,买光熙,刘潇威,陈勇.固相萃取技术的原理及进展[J].农业环境与发展,2003,1(3):42~44
    罗杨,张剑勇.高效液相色谱法测定饲料中喹乙醇含量[J].中国饲料,2006,(12):35~38
    罗勇,刘岚,李丽虹,邓芹英.硅胶表面茶碱分子印迹聚合物的制备和性能研究[J].中山大学学报(自然科学版),2005,44(6):49~52
    马豫峰,蔡继业.壳聚糖与牛血清白蛋白分子印迹聚合物的制备与表征[J].高分子材料科学与工程,2007,23(2):235~237
    农兰平,黄敏,庄玉萍.L-色氨酸分子印迹壳聚糖膜的制备及透过选择性[J].化学研究,2009,20(3):15~18
    欧阳华学,雷华越,汪开毓.测定饲料中喹乙醇含量反相液相色谱法[J].分析测试学报,2002,21(3):73~74
    彭少伟,蔡鹰,林宏图,李思东.微波辐射对球型Co2+印迹壳聚糖树脂吸附特性的影响及动力学研究[J].化工技术与开发,2007,36(4):4~7
    彭少伟,林宏图,李思东,章超桦.球型Co2+印迹壳聚糖树脂的吸附特性及动力学研究[J].广州化工,2006,34(6):1~3
    邱礼平主编.食品安全概论[M].北京:化学工业出版社,2008
    施利毅等编.纳米材料[M].上海:华东理工大学出版社,2007
    石光,胡小艳,郑建泓,孙丰强.Cu(Ⅱ)印迹壳聚糖交联多孔微球去除水溶液中金属离子[J].离子交换与吸附,2010,26(2):103~110
    宋春美,侯玉泽,刘宣兵,李彬彬,屈艳南.喹乙醇的危害及检测方法研究进展[J].河南农业科学,2009,(12):13~17
    宋佳明.基于分子识别饲料中喹乙醇新型检测方法研究[D].山东:青岛农业大学,2011
    苏继新,聂玉伦,王仲鹏,牟真,张玉蕙.固相萃取技术及其在环境上的应用[J].山东化工,2005,34(1):13~20
    苏苗,王丽丽,林强.壳聚糖/环糊精在生物医学材料方面的研究进展[J].化学世界,2011,1:53~56
    童跃进,关怀民.壳聚糖基蛋白质分子印迹聚合物的制备及识别性能研究[J].福建师范大学学报(自然科学版),2010,26(1):73~76
    涂瑞丽,李雁,李璐,解新安.种子溶胀悬浮聚合法制备分子印迹聚合物微球的研究进展[J].化工进展,2009,28(6):978~981
    王春,杨连生,扶雄.水溶性壳聚糖纳米粒子的制备及其BSA载药性能[J].化工进展,2006,25(12):1431~1435
    王凤平,薛行华,付云芝,符新.磁性纳米粒子的研究进展[J].纳米科技,2010,7(2):76~80
    王刚垛.TCDD免疫毒性研究进展I, II:TCDD对免疫功能的影响/TCDD免疫毒性机制[J].国外医学卫生学分册,2000,27(2):73~82
    王虹,黄亮,孙彦.分子印迹聚合物材料的制备及其应用[J].化学工业与工程,2005,22(5):367~370
    王华芳,何运华,何锡文,李文友,陈朗星,张玉奎.3-氨基苯硼酸为功能单体在壳聚糖上印迹牛血清白蛋白的研究[J].高等学校化学学报,2008,29:726~730
    王劲松,陈思光,徐华,杨金辉,熊正为,彭瑞婷.印迹与交联壳聚糖吸附水中微量Cr(Ⅵ)的对比试验研究[J].南华大学学报(自然科学版),2010,24(1):74~77
    王晶,王林,黄晓荣.食品安全快速检测技术[M].北京:化学工业出版社,2002
    王艺峰,王立莹,刘洲,曾珊珊,徐敏.壳聚糖与羧甲基壳聚糖蛋白质印迹聚合物的制备及吸附性能[J].高分子材料科学与工程,2011,27(9):126~129
    王永健,孙彦.适于蛋白质吸附的交联壳聚糖树脂的制备[J].天津大学学报,2011,34(6):179~183
    魏玉伟.基于分子印迹的喹乙醇痕量残留的提取及检测方法研究[D].山东:山东师范大学,2011
    温玉清,刘峥.印迹交联壳聚糖树脂对尿素的吸附行为研究[J].塑料工业,2006,34:240~242
    吴洪,赵艳艳,喻应霞,姜忠义.分子印迹壳聚糖膜分离手性苯丙氨[J].功能高分子学报,2007,19(20):262~266
    肖玲,陈乐英.表面印迹纳米磁性壳聚糖的制备及对Cu(Ⅱ)的吸附研究[J].离子交换与吸附,2008,24(3):193~199
    小宫山真等著,吴世康,汪鹏飞译.分子印迹学-从基础到应用[M].北京:科学出版社,2006
    谢小华,周德山,宋向明,李强.高效液相色谱法测定水产品中喹乙醇残留量[J].理化检验-化学分册,2011,479(1):102~103
    徐文峰.分子印迹技术改性壳聚糖吸附废水中钴(Ⅱ)[J].理化检验(化学分册),2010,46(7):829~831
    阳奇,邓新华,郑娜,苏海佳,谭天伟.菌丝体表面分子印迹壳聚糖吸附剂对Cr3+的吸附性能研究[J].环境污染与防治,2006,28(1):14~17
    杨文军,张丽英.高效液相色谱质谱联用法测定饲料中喹乙醇[J].中国饲料,2006,20:33~36.
    杨潇,张朝晖,张华斌,张明磊,胡宇芳,罗丽娟,聂丽华.基于壳聚糖修饰碳纳米管表面铅离子印迹材料的制备及其性能研究[J].分析化学,2011,39(1):34~38
    余东升,姜通武,张玉清.纳米二氧化硅表面接枝聚合改性研究进展[J].涂料工业,2010,40(7):62~66
    袁彦超,陈炳稔,王瑞香.甲醛、环氧氯丙烷交联壳聚糖树脂的制备及性能[J].高分子材料科学与工程,2004,20(1):53~57
    张海琪,何中央,徐晓林.液相色谱-串联质谱法测定水产饲料中喹乙醇残留量[J].水生态学杂志,2009,1(2):131~134
    张慧,何华,李洁,李卉,姚誉阳.分子印迹水相分离技术及其在分析化学中的应用[J].化学进展,2011,23(10):2140~2150
    张嘉慧,贺利发,黄显会,曾振灵.高效液相色谱法测定猪肌肉中乙酰甲喹的残留量[J].华南农业大学学报,2008,29(4):122~124
    张俊山,陈晓青,蒋新宇等.药物研究进展[J].中国现代医学杂志,2002,12(14):39~40
    张立永,曾令刚,裴广玲.分子印迹聚合物微球制备研究进展[J].材料导报,2001,15(1):60~61
    张立永.水性体系中分子印迹聚合物微球的制备及其特性[D].天津:南开大学,2003
    张丽芬.分子印迹技术及其在痕量分析的应用[J].河北北方学院学报,2005,21(3):13~17
    张名楠,杨超月,徐金瑞,刘斌.Pb2+模板交联巯基壳聚糖分子印迹聚合物的合成及性能研究[J].海南师范学院学报,2006,19(3):251~255
    张素青,李连庆,李春青,曹建友.浅谈饲料中喹乙醇检测技术[J].现代渔业信息,2005,20(9):28~29
    张兴松,李明春,辛梅华,谢英,苏丽正.羧化改性壳聚糖微球的制备及吸附硝基酚的性能[J].化工进展,2007,26(11):1654~1658
    张莹,苏立强.壳聚糖表面胰蛋白酶分子印迹聚合物的制备及性能的研究[J].化工时刊,2010,24(8):9~11
    赵建路,魏雨,姜玉敏.Fe(OH)3凝胶两步法水热制备均分散针形铁红胶粒[J].无机材料学报,1998,13(6):813~817
    郑细鸣,涂伟萍.槲皮素分子印迹聚合物硅球的制备[J].材料导报,2006,20(9):131~134
    周新民,陈连颐,王捍东,王宗元.SMD残留检测的ELISA方法的建立和初步应用[J].畜牧与兽医,2003,35(10):8~11
    Allender C J, Heard C M, Brain K R. Mobile Phase Effects on Enantiomer Resolution UsingMolecularly Imprinted Polymers. Chirality,1997,9:238~242
    Andersson L. I., Abel-Rehim M., Nicklasson L., Schweitz L., Nilsson S.. Towards molecular-imprint based SPE of local anaesthetics. Chromatographia,2002,(55): s65~s69
    Andersson L. I., Paprica A., Avirdsson T.. A highly selective solid-phase extraction sorbent forpre-concentration of sameridine made by molecular imprinting. Chromatographia,1997,(46):(1997)57~62
    Andersson L. I.. Molecular imprinting for drug bioanalysis: A review on the application ofimprinted polymers to solid-phase extraction and binding assay. J. Chromatogr. B,2000,(739):163~173
    Andersson L. I.. Molecular imprinting: developments and applications in the analyticalchemistry field. J. Chromatogr. B,2000,(745):3~13
    Anne-Claire M., Zeggane S.. HPLC determination of sulphathiazole in French honeys. J. Liq.Chromatogr. Related Technol.,2003,(26):953~961
    Ansell R. J., Mosbach K.. Magnetic molecularly imprinted polymer beads or drug radioligandbinding assay. Analyst,1998,(123):1611~1616
    Arshady R., Mosbach K.. Synthesis of substrate-selective polymers by host-guestpolymerization. Die. Makromolekulare Chemie.,1981,(182):687~692
    Asanuma H., Akiyama T., Kajiya K., Hishiya T., Komiyama M.. Molecular imprinting ofcyclodextrin in water for the recognition of nanometer-scaled guests. Anal. Chim. Acta.,2001,(435):25~33
    Baggiani C., Giovannoli C., Anfossi L., Tozzi C.. Molecularly imprinted solid-phaseextraction sorbent for the clean-up of chlorinated phenoxyacids from aqueous samples. J.Chromatogr. A,2001,(938):35~44.
    Bereli N., Andac M., Baydemir G., Say R., Galaev L. Y., Denizli A.. Protein recognition viaion-coordinated molecularly imprinted supermacroporous cryogels. J. Chromatogr. A,2008,(1190):18~26
    Birlik E., Ers z A., Denizli A., Say R.. Preconcentration of copper using double-imprintedpolymer via solid phase extraction. Anal. Chim. Acta.,2006,(565):145~151
    Bossi A., Piletsky S. A., Piletska E. V., Righetti P. G., Turner A. P. F.. Surface-graftedmolecularly imprinted polymers for protein recognition. Anal. Chem.,2001,(73):5281~5286
    Caro E., Marcé R. M., Cormack P. A. G., Sherrington D. C., Borrull F.. Molecularly imprintedsolid-phase extraction of naphthalene sulfonates from water. J. Chromatogr. A,2004,(1047):175~180
    Caro E., Marcé R. M., Cormack P.A.G., Sherrington D. C., Borrull F.. On-line solid-phaseextraction with molecularly imprinted polymers to selectively extract substituted4-chlorophenols and4-nitrophenol from water. J. Chromatogr. A,2003,(995):233~238
    Carpenter E. E.. Iron nanoparticles as potential magnetic carriers. J. Wagn. Wagn. Mate.r,2001,225(1):17~20
    Carter S. R., Rimmer S.. Molecular Recognition of Caffeine by Shell Molecular ImprintedCore–Shell Polymer Particles in Aqueous Media. Adv. Mater.,2002,14(9):667~670
    Chapius F., Pichon V., Lanza F., Sellergren S., Hennion M.C.. Optimization of the class-selective extraction of triazines from aqueous samples using a molecularly imprintedpolymer by a comprehensive approach of the retention mechanism. J. Chromatogr. A,2003,(999):23~33
    Chen L. G., L iu J., Zeng Q. L.. Preparation of magnetic molecularly imprinted polymer forthe separation of tetracycline antibiotics from egg and tissue samples. J. Chromatogr. A,2009,(1216):3710~3719
    Cheng Z. Y., Zhang L. W., Li Y. Z.. Synthesis of an Enzyme-like Imprinted Polymer with theSubstrate as the Template, and Its Catalytic Properties under Aqueous Conditions. Chem.Eur. J.,2004,(10):3555~3561
    Chiou M. S., Li H. Y.. Adsorption behavior of reactive dye in aqueous solution on chemicalcross-linked chitosan beads. Chemosphere.,2003,(50):1095~1105
    Chou P. C., Rick J., Chou T C. C-reactive protein thin-film molecularly imprinted polymersformed using a micro-contact approach. Anal. Chim. Acta.,2005,(542):20~25
    Cormack P, Mosbach K. Molecular imprinting: recent developments and the road ahead.React. Funct. Polym.,1999,41(1-3):115~124
    Dambies L., Vincent T., Domard A., Guibal E.. Preparation of chitosan gel beads byionotropic molybdate gelation. Biomacromolecules.,2001,2(4):1198~1205
    Dauwe C., Sellergren B.. Influence of template basicity and hydrophobicity on the molecularrecognition properties of molecularly imprinted polymers. J. Chromatogr. A1996,753(2):191~200
    De campos A. M., Sánchez A., Alonso M. J.. Chitosan nanoparticles: a new vehicle for theimprovement of the delivery of drugs to the ocular surface. Application to cyclosporin A.Int. J.Pharm.,2001,224(1):159~168
    Dickert F. L., Besenb ck H., Tortschanoff M.. Molecular imprinting through van der waalsinteractions: fluorescence detection of PAHs in water. Adv. Mater,1998,(10):149~151
    Dickey F H.. The preparation of specific adsorbents. Proc. Natl. Acad. Sci. USA,1949,(35):227~229
    Dow ding P. J., Vincent B.. Suspension polymerisation to form polymer beads. Colloids. Surf.A,2000,(161):259~269
    Ers z A., Denizli A., Sener I., Atilir A., Diltemiz S., Say R.. Removal of phenolic compoundswith nitrophenol-imprinted polymer based on π–π and hydrogen-bonding interactions. Sep.Purif. Technol.,2004,(38):173~179
    Feltin N., Pileni M. P.. New Technique for Synthesizing Iron Ferrite Magnetic NanosizedParticles. Langmuir,1997,(13):3927~3933
    Fritz J S, Dumont P J, Schmidt L W. Methods and materials for solid-phase extraction. J.Chromatogr. A,1995,691:133~140
    Fuh M.S., Chan S., Wang H.L. Lin C.Y.. Determination of antibacterial reagents by liquidchromatography-electrospray-mass spectrometry. Talanta.2000,52(1):141~151
    Gizzi G., Vincent U., Holst C.V., Jong J.D., Genouel C.. Validation of an analytical method forthe determination of carbadox and olaquindox in feedstuff by liquid chromatographycoupled to UV and/or diode array detection. Food Addit. Contam.2007,24:1226~1235.
    Glad M., reiiholdsson J., Mosbach K.. Molecularly imprinted composite polymers based ontrimethylolpropane trimethacrylate (TRIM) particles for efficient enantiomeric separations.React. Funct. Polym.,1995,25(1):47~54
    Gong S L, Yu Z J, Meng L Z, Hu L, He Y. B.. Dye-molecular-imprinted polysiloxanes. II.Preparation, characterization, and recognition behavior. J. Appl. Polym. Sci.,2004,93:637~643
    Guo T. Y., Xia Y. Q., Hao G. J., Zhang B.H.. Chemically Modified Chitosan Beads asMolecularly Imprinted Polymer Matrix for Adsorptive Separation of Proteins. Chin. Chem.Lett.,2004,15(11):1339~1341
    Guo T. Y., Xia Y. Q., Wang J. Song M. D., Zhang B. H.. Chitosan beads as molecularlyimprinted polymer matrix for selective separation of proteins. Biomaterials.2005,(26):5737~5745
    Haginaka J., Takehira H., Hosoya K., Tanaka N.. Molecularly imprinted uniform-sizedpolymer-based stationary phase for naproxen comparison of molecular recognition abilityof the molecularly imprinted polymers prepared by thermal and redox polymerizationtechniques. J.Chromatogr. A,1998,(816):113~121
    Haginaka J., Takehira H., Hosoya K., Tanaka N.. Uniform-sized molecularly imprintedpolymer for (S)-naproxen selectively modified with hydrophilic external layer.J.Chromatogr. A,1999,(849):331~339
    Hari P.R., Chandy T., Sharma C. P.. Chitosan/calcium alginate microcapsules for intestinaldelivery of nitrofurantoin. J.microencapsulation.,1996,13(3):319~329
    Haupt K.. Molecularly imprinted polymers in analytical chemistry. Analyst,2001,(126):747~756
    Hu S.G., Wang S.W., He X. W.. An amobarbital molecularly imprinted microsphere forselective solid-phase extraction of phenobarbital from human urine and medicines andtheir determination by high-performance liquid chromatography. Analyst,2003,(128):1485~1489
    Hunnius M., Rufinska A., Maier W. F.. Selective surface adsorption versus imprinting inamorphous microporous silicas. Microporous Mesoporous Mater.,1999,29(3):389~403
    Janes K.A., Fresneau M. P., Marazuela A, Fabra A., Alonso M. J.. Chitosan nanoparticles asdelivery systems for doxorubicin. J. Control. Release.,2001,3(3):255~267
    Jiang Z. Y., Yu Y. X., Wu H.. Preparation of CS/GPTMS hybrid molecularly imprintedmembrane for efficient chiral resolution of phenylalanine isomers. J. Membr. Sci.2006,(280):876~882
    Jordan A., Scholz R., Maier-Hauff K., Johannsen M., Wust P., Nadobny J., Schirra H, SchmidtH., Deger S., Loening S., Lanksch W., Felix R.. Presentation of a new magnetic fieldtherapy system for the treatment of human solid tumors with magnetic fluid hyperthermia.J. Magn. Magn. Mater.,2001,(225):118~126
    Jordan A., Scholz R., Wust P., Schirra H., Schiestel T., Schmidt H., Felix R.. Endocytosis ofdextran and silan-coated magnetite nanoparticles and the effect of intracellularhyperthermia on human mammary carcinoma cells in vitro. J. Magn. Magn. Mater.,1999,(194):185~196
    Kamphues J.. Antibiotic growth promoters for the view of animal nutrition. Ber. Munch. Tier.Arztl. Wo. Chenschr.,1999,112(10-11):370~379
    Karin T., Brtny A.. The determination of olaquindox in pig feeds by high-peformance liquidchromatography. J. Sci. Food Agric.1982,33(10):945~948
    Karlsson J. G., Andersson L. I., Nicholls I. A.. Probing the molecular basis for ligand-selectiverecognition in molecularly imprinted polymers selective for the local anaestheticbupivacaine. Anal. Chim. Acta.2001,435(1):57~64
    Kochkodan V., Weigel W., Ulbricht M.. Molecularly imprinted composite membranes forselective binding of desmetryn from aqueous solutions. Desalination.,2002,(149):323~328
    Kubo T., Tanaka N., Hosoya K.. Target-selective ion-exchange media for highly hydrophiliccompounds: a possible solution by use of the “interval immobilization technique”. Anal.Bioanal. Chem.,2004,378(1):84~88
    Kugimiya A., Matsui J., Takeuchi T.. Sialic acid-imprinted polymers using noncovalentinteractions. Mater. Sci. Eng. C,1997,(4):263~266
    Lai J. P., Cao X. F., Wang X. L., He X. W.. Chromatographic characterization of molecularlyimprinted microspheres for the separation and determination of trimethoprim in aqueousbuffers. Ana. Bioanal. Chem.,2002,(372):391~396
    Lanza F., Sellergren B.. The application of molecular imprinting technology to solid phaseextraction. Chromatographia,2001,(53):599~611
    Li Y., Li X., Li Y. Q., Qi J. Y., Bian J., Yuan Y. X..Selective removal of2,4-dichlorophenolfrom contaminated water using non-covalent imprinted microspheres.Environ.Pollut.,2009,(157):1879~1885
    Li Y., Yin X. F., Chen F. R., Yang H. H, Zhuang Z. X.. Synthesis of magnetic molecularlyimprinted polymer nanowires using a nanoporous alumina template. Macromolecules,2006,(39):4497~4499
    Lileev A. S., Parilov A. A., Reissner M., Steiner W.. Influence of the spin reorientationtransition on the hysteresis characteristics of Nd-Fe-B film and bulk magnets. J. Magn.Magn. Mater.,2004,(270):152~156
    Lin S.Y., Jeng S.L.. High-performance liquid chromatographic determination of carbadox,olaquindox, furazolidone, nitrofurazone, and nitrovin in feed. J. Food. Prot.2001,64:1231~1234.
    Liu X Q, Ma Z Y, Xing J M, et al. Preparation and characterization of amino-silane modifiedsuperparamagnetic silica nanosheres. J. Magn. Magn. Mater.,2004,270:1~6
    Lotierzo M., Henry O. Y. F., Piletsky S., Tothill I., Cullen D., Kania M., Hock B., Turner A. P.F.. Surface plasmon resonance sensor for domoic acid based on grafted imprinted polymer.Biosens. Bioelectron.,2004,(20):145~152
    Lu S. L., Cheng G. X., Pang X. S.. Preparation of molecularly imprinted Fe3O4/P (St-DVB)composite beads with magnetic susceptibility and their characteristics of molecularrecognit ion for amino acid. J. Appl. Poly. Sci.,2003,(89):3790~3796
    Markowitz M. A., Kust P. R., Deng G.. Catalytic silica particles via template-directedmolecular imprinting. Langmuir,2000,16(4):1759~1765
    Martín-Esteban A. Molecularly imprinted polymers: new molecular recognition materials forselective solid-phase extraction of organic compounds. Fresenius J. Anal. Chem.,2001,(370):795~802
    Masqué N., Marcé R. M., Borrull F., Cormack P.A.G., Sherrington D. C.. Synthesis andevaluation of a molecularly imprinted polymer for selective on-line solid-phase extractionof4-nitrophenol from environmental water. Anal. chem.,2000,72(17):4122~4126
    Maudens K. E., Zhang G. F., Lambert W. E.. Quantitative analysis of twelve sulphonamides inhoney after acidic hydrolysis by high-performance liquid chromatography with post-column derivatization and fluorescence detection. J. Chromatogr. A,2004,(1047):85~92
    Mena M.L., Martínez-Ruiz P., Reviejo A.J., Pingarrón J.M.. Molecularly imprinted polymersfor on-line preconcentration by solid phase extraction of pirimicarb in water samples.Anal. Chim. Acta.,2002,(451):297~304
    Miao X., March R. E., Metcalfe C. D.. A tandem mass spectrometric study of the N-oxides,quinoline N-oxide, carbadox, and olaquindox, carried out at high mass accuracy usingelectrospray ionization. Int J Mass Spectrom,2003,230:123~133
    Moring S. E., Wong O. S., Stobaugh J. F.. Target specific sample preparation from aqueousextracts with molecular imprinted polymers. J. Pharm. Biomed. Anal.,2002,(27):719~728
    Mornet S, Grasser F, Portier J, et al. Magnetic silica nanoparticles for biological applications.Eur. Cells Mater.,2002,(3):110~113
    Mullet W.M., Dirie M.F., Lai E.P.C., Guo H., He X.. A2-aminopyridine molecularlyimprinted polymer surrogate micro-column for selective solid phase extraction anddetermination of4-aminopyridine. Anal. Chim. Acta.,2000,(414):123~131
    Norrl w O., Glad M., Mosbach K.. Acrylic polymer preparations containing recognition sitesobtained by imprinting with substrates. J. Chromatogr. A,1984,299:29~41
    Pascal C., Pascal J. L., Favier F.. Electrochemical Synthesis for the Control of γ-Fe2O3Nanoparticle Size. Morphology, Microstructure, and Magnetic Behavior. Chem. Mater.,1999,(1l):141~147
    Pauling L. J.. A Theory of the Structure and Process of Formation of Antibodies. J. Am. Chem.Soc.,1940,(62):2643~2657
    Perez N., Whitcombe M. J., Vulfson E.. Molecularly imprinted nanoparticles prepared bycore-shell emulsion polymerization. J.Appl. Poly. Sci.,2000,(77):1851~1859
    Piletsky S. A., Piletska E. V., Chen B., Karim K., Weston D., Barrett G.. Chemical grafting ofmolecularly imprinted homopolymers to the surface of microplates. Application ofartificial adrenergic receptor in enzyme-linked assay for β-agonists determination. Anal.Chem.,2000,(72):4381~4385
    Pinel C., Loisil P., Gallezot P.. Preparation and utilization of molecularly imprinted silicas.Adv. Mater.,1997,9(7):582~585
    Poucke C. V., Dumoulin F., Peteghem C.V.. Detection of banned antibacterial growthpromoters in animal feed by liquid chromatography-tandem mass spectrometry:optimization of the extraction solvent by experimental design. Anal. Chim. Acta.2005,(529):211~220
    Qin L., He X. W., Li W. Y., Zhang Y. K.. Molecularly imprinted polymer prepared withbonded-cyclodextrin and acrylamide on functionalized silica gel for selective recognitionof tryptophan in aqueous media. J. Chromatogr. A,2008,(1187):94~102
    Ramanaviciene A.. Molecularly imprinted polypyrrole-based synthetic receptor for directdetection of bovine leukemia virus glycoproteins. Biosens. Bioelectron.,2004,(20):1076~1082
    Ramos D., Jorge F., Da Silveira I.N., De Graaf G.. Column liquid chromatographicdetermination of carbadox and olaquindox in feeds. J. Chromatogr. A.1991,558:125~130.
    Sellergren B. Direct drug determination by selective sample enrichment on an imprintedpolymer. Anal. Chem.,1994,66(9):1578~1582
    Sellergren B. Molecularly imprinted polymers: man-made mimics of antibodies and theirapplications in analytical chemistry [M]. Amsterdam,2001
    Sellergren B..Imprinted chiral stationary phases in high-performance liquid chromatography.J. Chromatogr. A,2001,(906):227~252
    Sergeyeva T. A., Matuschewski H., Piletsky S. A., Bendig J.,Schedler U., Ulbricht M..Molecularly imprinted polymer membranes for substance-selective solid-phase extractionfrom water by surface photo-grafting polymerization. J. Chromatogr. A,2001,(907):89~99
    Shi H.,Tsal W. B., Garrison M. D., Ferrari S., Ratner B. D.. Template-imprintednanostructured surfaces for protein recognition. Nature,1999,(398):593~597
    Shoji R., Takeuchi T., Kubo I.. Atrazine sensor based on molecularly imprinted polymer-modified gold electrode. Anal. Chem,2003,(75):4882~4886
    Sulitzky C., Rückert B., Hall A. J., Lanza F., Unger K., Sellergren B.. Grafting of MolecularlyImprinted Polymer Films on Silica Supports Containing Surface-Bound Free RadicalInitiators. Macromolecules,2002,(35):79~91
    Surugiu I., Svitel J., Ye L., Haupt K., Danielsson B.. Development of a flow injectioncapillary chemiluminescent ELISA using an imprinted polymer instead of the antibody.Anal. Chem.,2001,(73):4388~4392
    Tamayo F.G., Turiel E., Martín-Esteban A.. Molecularly imprinted polymers for solid-phaseextraction and solid-phase microextraction: Recent developments and future trends. J.Chromatogr. A,2007,(1152):32~40
    Tang J., Myers M., Bosnick K. A., Brus L. E.. Magnetite Fe3O4Nanocrystals: SpectroscopicObservation of Aqueous Oxidation Kinetics. J. Phys. Chem. B,2003,107(30):7501~7508
    Tayor J. I., Hurst C. D., Davis M. J., Sachsinger N., Bruce I. J.. Application of magnetite andsilica-magnetite composites to the isolation of genomic DNA. J. Chromatogr. A,2000,(890):159~166
    Uezu K., Nakamura H., Goto M., Nakashio F., Furusaki S.. Metal-imprinted microsphereprepared by surface template polymerization with W/O/W emulsions. J. Chem. Eng. Jpn.,1999,32(3):262~267
    Vicente B. S., Navarro F., Moreno-Bondi M.C.. Continuous solid-phase extraction andpreconcentration of bisphenol A in aqueous samples using molecularly imprinted columns.Anal. Bioanal. Chem.,2004,(380):115~122
    Vlatakis G., Andersson L. I., Muller R., Mosbach K.. Drug assay using antibody mimics madeby molecular imprinting. Nature,1993,(361):645~647
    Wang X. B., Ding X. B., Zheng Z. H.. Magnetic molecularly imprinted polymer particlessynthesized by suspension polymerization in silicone oil. Macromol. Rapid Commun.,2006,(27):1180~1184
    Watabe Y., Kondo T., Morita M., Tanaka N., Haginaka J., Hosoya K.. Determination ofBisphenolA in environmental water at ultra-low level by high-performance liquidchromatography with an effective on-line pretreatment device. J. Chromatogr. A,2004,(1032):45~49
    Whitcombe M. J., Rodriguez M. E., Villar P., Vulfson E. N.. A new method for theintroduction of recognition site functionality into polymers prepared by molecularimprinting, synthesis and characterization of polymeric receptors for cholesterol. J. Am.Chem. Soc.,1995,117:7105~7111
    Wu L Q, Zhu K C, Zhao M P.. Theoretical and experimental study of nicotinamidemolecularly imprinted polymers with different porogens. Anal Chim Acta,2005,549:39~44
    Wu Y.J., Wang Y.L., Huang L.L., Tao Y.F., Yuan Z.H., Chen, D.M.. Simultaneousdetermination of five quinoxaline-1,4-dioxides in animal feeds using ultrasonic solventextraction and high performance liquid chromatography. Anal. Chim. Acta.2006,569:97~102.
    Wulff G. Molecular imprinting in cross-linked materials with the aid of molecular templates-away towards artificial antibodies. Angew. Chem. Int. Ed.,1995,(34):1812~1832
    Wulff G., Sarchan A., Zabrocki K.. Enzyme-analogue built polymers and their use for theresolution of racemates. Tetrahedron. Lett.,1972,(44):4329~4332
    Wulff G., Wesper W., Grobe-Einsler R., Sarhan A.. Enzyme-analogue built polymers, on thesynthesis of polymers containing chiral cavities and their use for the resolution ofracemates. Die. Makromolekulare Chemie.,1977,(178):279~280
    Xia Y. Q., GuoT. Y., Song M. D., Zhang B. H., Zhang B. L.. Selective separation of quercetinby molecular imprinting using chitosan beads as functional matrix. React. Funct. Polym.2006,(66):1734~1740
    Yamamoto S., Ejaz M., Tsujii Y., et al. Surface Interaction Forces of Well-Defined, High-Density Polymer Brushes Studied by Atomic Force Microscopy.1. Effect of Chain Length.Macromolecules,2000,33(15):5602~5607
    Yamaura M, Camilo R. L., Sampaio L. C.. Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetic nanoparticles. J Magn. Magn. Mater.,2004,279:210~217
    Yang H. H., Zhang S. Q., Tan F., Zhuang Z.X., Wang X. R.. Surface molecularly imprintednanowires for biorecognition. J. Am. Chem. Soc.,2005,(127):1378~1379
    Yilmaz E., Haupt K., Mosbach K.. The use of immobilized templates-a new approach inmolecular imprinting. Angew. Chem. Int. Ed.,2000,(39):2115~2118
    Yoshida M, Uezu K, Goto M, Furusaki S.. Metal ion imprinted microsphere prepared bysurface molecular imprinting technique using water-in-oil-in-water emulsions, J. Appl.Polym. Sci.,1999,73(7):1223~1230
    Yu Y., Ye L., De B. V., Mosbach K.. Removal of the fermentation by-product succinyl L-tyrosine from the β-lactamase inhibitor clavulanic acid using a molecularly imprintedpolymer. Biotechnol. Bioeng,2002,79(1):23~28
    Zarranz B., Jaso A., Aldana I., Monge A.. Quinoxaline N,N′-dioxide derivatives and relatedcompounds as growth inhibitors of Trypanosoma cruzi. Structure–activity relationships.Bioorg. Med. Chem.,2004,(12):3711~3721
    Zhao D.,He L., Pu C.. A highly sensitive and specific ployclonal antibody-based enzyme-linked immunosorbent assay for detection of antibiotic olaquindox in animal feed samples.Anal. Bioanal. Chem.2008,(391):2653~2661
    Zhong N., Byun H. S., Bittman R.. Hydrophilic cholesterol-binding molecular imprintedpolymers. Tetrahedron. Lett.2001,(42):1839~1841
    Zourob M., Mohr S., Mayes A. G., Macaskill A., Moral N. P., Fielden P. R, Goddard N. J.. Amicro-reactor for preparing uniform molecularly imprinted polymer beads. Lab. Chip.,2006,6(1):296~301

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700