光场与原子相互作用动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文的第一部分对纠缠态的定义及物理性质、量子光学中的非经典态以及量子化的辐射场与原子相互作用模型进行了概述。
     论文的第二部分研究了V-型量子拍频三能级原子与单模压缩真空场和二项式态光场相互作用过程中光场的压缩效应。数值计算结果表明:(1)单模压缩真空场与三能级原子相互作用过程中,光场的压缩效应与单模压缩真空场的压缩因子γ和三能级原子的失谐量λ相关联。(2)二项式态光场与三能级原子相互作用过程中,光场的压缩效应与三能级原子的失谐量λ和二项式态光场参数M、η相关联。选择合适的参数,二项式态光场与V-型三能级原子相互作用能产生完全压缩光。
     论文的第三部分工作是采用时间演化算符和数值计算方法,研究了两全同二能级纠缠原子与相干态光场相互作用过程中,原子布居、原子偶极压缩、光场的二阶相干和光场压缩性质的时间演化特性。结果表明:(1)相干态光场的强度和两原子的初始纠缠度对原子的动力学行为有很大的影响。原子布居的振荡频率及幅度和原子偶极压缩的演化规律与光场强弱和两原子初始纠缠度相关联。在弱光场下,选择合适的两原子初始纠缠态,原子偶极矩可以完全被压缩。(2)相干态光场的强度和两原子的初始纠缠度对光场的量子特性也有很大的影响。光场的二阶相干性质(聚束与反聚束)和光场的压缩效应均与光场强度和两原子纠缠度相关联。在弱光场中,选择合适的两原子初始纠缠度,光场压缩深度和时间可达到最大。
In this thesis we firstly review the definition and physical properties of entangled states, and the non-classical states in the quantum optics, as well as some models of the atoms interacting with radiation field.
    Secondly, the squeezing properties of the light of the F-type quantum-beat three-level atom interacting with the single-mode radiation fields in squeezed vacuum states or in binomial states have been studied by means of quantum theory and the numerical method. The results show that: (1) in the system of F-type three-level atom interacting with the single-mode squeezed vacuum radiation field, the squeezing property of the light is dependent on the squeezing parameter r of the squeezed vacuum field and the detuning X of the F-type three-level atoms; (2) in the system of F-type three-level atom interacting with the radiation field in binomial states, the squeezing property of the light is dependent on the detuning X of the F-type three-level atom and the parameters M, of the optical field. The radiation field can be completely squeezed via choosing the parameters of the system appropriately.
    Finally, by means of time evolution operator and numerical calculations, the time evolution of the atomic population, the atomic dipole squeezing, the time evolution of the squeezing and coherence properties of the light in the system of the two identical two-level entangled atoms interacting with the coherent optical field have been studied. The results show: (1) that the dynamical properties in the system depend on the degree of entanglement of the initial two identical two-level entangled atoms and the intensity of the coherent optical field, and the atomic dipole moment can be completely squeezed via choosing optimal degree of entanglement of the initial atoms in the feeblish optical field; (2) that the quantum properties of the system also depend on the degree of entanglement of the initial two identical two-level entangled atoms and the intensity of the coherent optical field, and the radiation field can be effectively squeezed via choosing optimal degree of entanglement of the initial atoms in the fee
    blish optical field.
引文
[1] Einstein A, Podolsky B and Rosen N. Phys. Rev., 47(1935) 777.
    [2] 李传锋,郭光灿.物理学进展,20(2000)407.
    [3] White A G, et al. Phys. Rev. Lett., 83 (1999) 3103.
    [4] Sackett C A, et al. Nature, 404 (2000) 256.
    [5] 郭光灿等.物理,28(1999)120.
    [6] Horodecki M, Horodecki P and Horodecki R. e-print quant-ph/9908065.
    [7] Vedral V, et al. Phys. Rev. Lett., 78 (1997) 2275.
    [8] Hughston L P, Jozsa R, Wootters W K. Phys. Lett. A, 183 (1993) 14.
    [9] Bennett C H, et al. Phys. Rev. A, 54 (1996) 3824.
    [10] Bennett C H, et al. e-print quant-ph/9908073.
    [11] Bennett C H, et al. Science American, 267 (1992) 50.
    [12] Bennett C H, et al. Phys. Rev. Lett., 70 (1992) 1895.
    [13] Di Vincenzo D. Science, 270 (1995) 255.
    [14] Bennett C H, et al. Nature, 404 (2000) 247.
    [15] 于祖荣,物理学进展,19(1999)72.
    [16] Walls D F, Milburn. Quantum Optics, Springer-Verlag (1995) 7.
    [17] Scully M O, Zubairy M S, Quantum Optics, Cambridge (1997) 9, 46.
    [18] 郭光灿,量子光学,科学出版社(1990)534.
    [19] Stoler D, Saleh B E A, Teich M C. Opt. Acta, 32 (1985) 345.
    [20] Joshi A, Lawande S V. J. Mod. Opt, 38 (1989) 2009.
    [21] Dattoli G, Galarde J, Torre A. J. Opt. Soc. Am., B2 (1987) 185.
    [22] Agarwal G S, Phys. Rev. A, 45 (1992) 1787.
    [23] Fu H C, Sasaki R. J. Phys. Soc. Jap. A, 45 (1992), 6925.
    [24] Fan H Y, Jing S C. Phys. Rev. A, 50 (1994) 1909.
    [25] Souza R D, Mishra A P. phys. Rev. A, 45 (1992) 6925.
    [26] Barranco A V, Roversi J. Phys. Rev. A, 50 (1994) 5233.
    [27] 王晓光,于荣金,李文.物理学报,47(1998)1798.
    [28] 张礼,葛墨林.量子力学的前言问题,清华大学出版社,(2000)231.
    
    
    [29] Tavis M and Cummings F W. Phys. Rev., 170 (1968) 379.
    [30] Dicke R. Phys. Rev. 93 (1954) 99.
    [31] Jaynes E and Cummings F. Proc. IEEE, 51(1963) 89.
    [32] Meschede D, Walther H and Muller G. Phys. Rev. Lett., 54 (1985)551.
    [33] Filipowicz P, Javanainen J and Meystre P. Phys. Rev. A, 34 (1986) 3077.
    [34] Elmfors P, B. Lautrup B and Skagerstarn B-S. Phys. Rev. A, 54 (1996) 5171.
    [35] Raimond J M, Brune M and Haroche S. Rev. Mod. Phys., 73 (2001) 565.
    [36] 刘翔,方卯发,刘安玲.物理学报,49(2000)1707.
    [37] 赖振讲,刘自信.物理学报,49(2000)1714.
    [38] Zhou P, Peng J S. Phys. Lett. A., 124 (1981) 351.
    [39] Yu S, Rauch H and Zhang Y. Phys. Rev. A, 52 (1995) 2585.
    [40] Yang X, Wu Y and Li Y. Phys. Rev. A, 55 (1997) 4545.
    [41] 黄燕霞,汪毅,詹明生.物理学报,51(2002)2249.
    [42] 黄春佳,贺慧勇,厉江帆等.物理学报,51(2002)1049.
    [43] Vadeiko I P, Miroshnichenko G P, Rybin A V et al. Phys. Rev. A, 67 (2003)053808.
    [44] Walls D W. Squeezed state of light. Nature., 306 (1983) 141.
    [45] Wu L G, Kimble H J, Hail J Let al. Phys. Rev. Lett., 57(1986) 2520.
    [46] Meystre P, Zubairy M S. Phys. Lett. A, 89(1982) 390.
    [47] Compagno G, Pen J S, Persico F. Opt. Commun., 57(1986) 415.
    [48] 徐大海,彭金生,田永红等.光学学报,19(1999)1592.
    [49] 许雪梅,罗文东.物理学报,48(1999)2154.
    [50] 林秀,李洪才.物理学报,50(2001)1689.
    [51] 周明,黄春佳.物理学报,51(2002)2514.
    [52] 张立辉,李高翔,甘仲惟.物理学报,52(2003)1168.
    [53] 田永红,彭金生等.物理学报.48(1999)1439.
    [54] 田永红,彭金生.物理学报,48(1999)2060.
    [55] 何林生,冯勋立,季广德等.量子光学学报,3(1997)90.
    [56] 方家元,黄春佳等.物理学报,53(2004)1081.
    [57] 黄春佳,周明,刘安玲.物理学报,50(2001)1064.
    
    
    [58] Scully M, Zhu S Y,. Phys. Rev. lett., 62 (1989) 2831.
    [59] Kaler F S, Eschner J, Morigi G, et al. Appl. Phys. B, 73 (2001) 807.
    [60] Plastina F, Pipemo F. Eur. Phys. J. D, 5 (1999) 411.
    [61] Fesseha K. Phys. Rev. A, 63(2001) 033811.
    [62] Dong P, Tang S H. Phys. Rev. A, 65 (2002) 033816.
    [63] Klimov A B, Sanchez-Soto L L, Delgado J, et al. Phys. Rev. A, 67 (2003)013803.
    [64] 郭光灿,曹卓良.物理学报,42(1992)1600.
    [65] 曹卓良,孙兆奇.量子电子学报,15(1998)362.
    [66] 曹卓良,郭光灿.中国科学技术大学学报,29(1999)232.
    [67] 徐岩,陈朝阳,邢怀忠.光学学报,20(2000)1461.
    [68] 储开芹,梁文青,张智明.光学学报,22(2002)523.
    [69] Loudon R, Knight P L. J. Mod. Opt., 34 (1987) 709.
    [70] Eberly J H, Wodkiewiez K, Narozhny N B. Phys. Rev. Lett., 44(1980) 1323.
    [71] Agarwal G A. J. Opt. Sco. Am. B, 2(1985) 480.
    [72] Meystre P, Zubaery M S. Phys. Lett. A, 89(1982) 390.
    [73] Zheng S B, Guo G C. Phys. Rev. Lett., 85 (2000) 2392.
    [74] Zheng S B, Guo G C. Phys. Rev. A, 63(63) 044302.
    [75] Guo G P, Li C F, Li J, Guo G C. Phys. Rev. A, 65(2002)042102.
    [76] Sleator T, Weingurter H. Phys. Rev. Lett., 74(1995)4087.
    [77] Domokos P, Raimond J M, Brune M, et al. Phys. Rev. A, 52(1995) 3554.
    [78] Cao Z L, Zhou Z W, Guo G C, et al. Chinese J. of Lasers, B11(2002)413.
    [79] Guo G C, Yang C P. Physica A, 260(1998)173.
    [80] Yang C P, Guo G C. Phys. Lett. A, 255(1999)129.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700