局部起旋器的流场特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
螺旋流在自然界十分常见,在工业方面的应用范围极广,也已进入了人们的日常生活领域。圆管螺旋流最近已被用于输沙方面,作为一种新的输沙方式,它具有高浓度、低能耗、远距离和不淤积的优点,克服了平直流管道输送中浓度与能耗之间的矛盾。
     一般来说,螺旋流的常规产生办法有三种:切向进流、安装导流条及旋转管道。本文主要针对局部安装扭曲导流条的方式产生的圆管螺旋流做以研究。本文在前人研究的基础上,主要考虑了导流条边界层对水流的影响。边界层虽很薄,但由于其水流特性与一般的层流、紊流特性相差甚大,因而它对水流的影响是不可忽略的。另外,本文在研究中考虑了雷诺应力的影响,使用了紊流模式进行数学建模,通过数值模拟和试验测量的手段探讨了这类圆管螺旋流形成及流动的规律。
    
    太原理工大学硕士学位论文
     本文以局部起旋条件下的圆管螺旋流为模拟对象,从以
    速度和压强为自变量的微分方程一Nav ier一5 tokes方程出
    发,利用有限差分法对柱坐标系下简化后的N一S方程进行离
    散,建立定常的、轴对称的三维计算模型。采用了数值计算
    中常用的GauSS一Seidel迭代法求解,得出圆管螺旋流在不
    同流量工况下的速度场和压强场。
     本文还通过物理模型试验的方法,得到在不同流量工况
    下,局部起旋条件下的圆管螺旋流在各断面的流速和压力的
    实测值,并将其与数学模型所得计算结果进行了对比分析,
    其变化规律基本一致,验证了数学模型的可靠性。
     分析得出了结论:圆管螺旋流的轴向流速分布为类对数
    分布,且最大值已偏离轴线,且随着螺旋流的衰减,最大值
    与轴线处流速之间的差值逐步减小,分布曲线向平坦化过
    渡;周向流速近似呈线形分布,其峰值随螺旋流的衰减而向
    轴线靠拢;压强呈现出中心低,边壁高的原因是水流旋转运
    动产生的离心力造成的,且随着螺旋流的衰减,径向压差趋
    小,沿轴向方向向下游,壁面处的压强呈顺压,轴线处呈逆
    压。
    
    太原理工大学硕士学位论文
     在物理模型研究的基础上应用数值模拟来进一步研究
    螺旋流特性是可行的,这项研究充实了圆管螺旋流输送理
    论,并为其在工程上的推广应用奠定基础。
Spiral flow can be seen frequently in nature. It was not only wildly used in industry, but also applied in daily life. Sediment transportation by spiral pipe flow has been used. It was a new way of sediment transportation with the advantage of high-concentration, energy-saving and high-efficiency.The paradox of concentration and energy of sediment transportation in smooth flow was conquered.
    In general, spiral pipe flows are generated by three means: tangentially inletting medium, guiding fluid by vanes with a certain angle and axially rotating pipe. In this paper, spiral pipe flows generated by locally installing guide blade were researched. Based on the previous research, the influences of
    
    
    
    boundary layer of guide blade were considered. The characteristics of flow field in boundary layer are different from that of laminar flow and turbulence. So, it was not ignored. For the influences of Reynolds stress, the turbulence model was founded. And then, the formation and development of spiral pipe flow were studied by numerical simulations and experimental measures.
    Based on the Navier-Stockes equation, the finite difference method was applied to variance the simplified N-S equation on cylindrical coordinate system. Then, 3-D model of the spiral flow locally generated in circular pipe with steady and axial-symmetry condition was founded. The ordinary iterative method of Gauss-Seidel was induced. Finally, the velocity field and pressure field of different discharge was obtained.
    By means of experiment, experimental data of velocity and pressure of spiral flow generator-generating spiral flow locally in different discharge were acquired. By contrasting the result of numerical simulation with experimental data, the reliability of
    
    
    3-D model was tested.
    The main conclusions are as follows. The axial velocity distribution of the spiral flow generator is a logarithm-like function. Its maximal value is not at the central. The difference of the axial velocity between the maximum and the central value reduces with the attenuation of the spiral flow. The circumferential velocity distribution is basically a linear function. The maximum value closes to axes with the attenuation of the spiral flow. The pressure is minimum at the pipe centre and maximum near to the pipe wall. The radial difference of pressure is reducing with the attenuation of the spiral flow. Along the axes, the pressure near to the pipe wall is increasing and reducing at the pipe centre.
    Based on the experiment, research on the characteristics of the spiral flow by using numerical simulation is feasible. This paper enriched the theory of sediment transportation by spiral pipe flow. It also laid a foundation for applying in projects.
    
    KEY WORDS: spiral flow,boundary layer,turbulence model,numerical simulation
引文
[1]姜乃森,傅玲燕.中国水库淤积问题.湖泊科学,1997,Vol.9,No.1
    [2]徐国宾.陕西省水库泥沙淤积灾害及其防治对策.水土保持通报,1994,Vol.14,No.4
    [3]向立云.河流泥沙灾害损失估计.自然灾害学报,2002,Vol.11,No.1
    [4]水利部西北水利科学研究所,水利水电科学研究院泥沙所,山西省水利科学研究所编著.中小型水库设计与管理中的泥沙问题.北京:科学出版社,1983
    [5]邵孝治.发展中国家水土流失和水库淤积.东北水利水电,1996,No.1
    [6]夏迈定,任增海.黑松林水库防淤排沙技术与泥沙利用.河流泥沙国际学术讨论会论文集第二卷,北京:光华出版社,1980:717-726
    [7]陕西省水利水土保持厅.水库排沙清淤技术.北京:水利电力出版社,1989
    [8]曾瑞胜,庄建树,冯小琴等.河道疏浚淤泥处理技术探讨.浙江水利科技,2002,No.3
    [9]卢大发,谭立涛,李灿.浅析水库的淤积与防治.湖南水利水电,1999,No.6
    [10]孙西欢,彭龙生,张羽.水库泥沙淤积防治的回顾与前景.太原工业大 学学报,Vol.28(2),1997
    [11]董雪娜.水利水保措施对入黄泥沙、径流影响分析计算.人民黄河,1994,No.5
    [12]贾祥泽,徐庭灿.无定河流域风沙区18条重点小流域治理模式及效益.人民黄河,1994,No.11
    [13][挪]H·斯托尔.水库中的水资源和泥沙资源.刘东摘自《1992年国际水电站会议论文集》
    [14]托马斯,科林斯.下世纪水库淤积管理的策略.水电站设计,1998,Vol.14,No.3(张玉齐译自《Waterpower'95》p2734—2739)
    [15]张天存.“机械疏浚”“机械吹填”.《中国农业百科全书—水利卷》,1987,2
    [16]张天存.水力水电机械疏浚工程综述.水力发电学报,1995,No.3
    [17]董慧迪.引进挖泥船进行河道疏浚和水库清淤的探讨.山西水利,1999,No.4
    [18]张礼.镇子梁水库运用方式机泥沙淤积.山西水利科技,1993,No.1
    [19]张瑞锦,谢鉴衡,王明甫等.河流泥沙动力学.北京:水力电力出版社,
    
    1999
    [20] 张兴荣.管道水力输送.北京:中国水利水电出版社,1998
    [21] 任孝乾,王荣祥.矿物的管道输送技术.
    [22] 白晓宁,胡寿根,张道方等.固体物料管道水力输送的研究进展与应用.水动力学研究与进展,2001,Vol.16,No.3
    [23] Eliott, D.E. and B,J.Gliddon. The Hydrotransport of Densen Coal Slurry Proc of Hydrotransport 1. paper G2,1970.
    [24] Wilson. K.c.. Solid-liquid Pipeline Flow—from Menagrie to Meehanistie Modelling.. World Dredging Congress, 1983,Paper A2.
    [25] Durand. R. and Condolios. E. Hydraulic Transport of Coal and Solid Material in Pipes. Proc., Collog. on Hydraulic Transportation ,London Nov. 1952.
    [26] Mih,W.C.. Solid-Liquid Suspension Flow in Pipes. Sedimentation, by H.W. Shen(ed),P.O.Box 606,Fort Collins, Colorado, 1972,PP 1~23.
    [27] 费祥俊.浆体与粒状物料输送水力学.北京:清华出版社,1994
    [28] 王邵周.粒状物料的浆体管道输送.北京:海洋出版社,1998
    [29] Wasp E.J, Kenny J.P, Gandhi B.L. Solid-Liquid flow slurry pipeline transportation. Clausthal: Trans Tech Publications, 1977
    [30] 丁宏达.90年代中国浆体管道输送的新发展.管道运输,1998,No.3
    [31] 白晓宁,胡寿根.固液两相流管道水力输送的研究进展.上海理工大学学报,1999,Vol.21,No.4
    [32] 汪家铭.管道运输产业发展前景广阔.管道技术与设备,2000,No.1
    [33] Newitt D.M., Richardson J.F., Abbott M et al. Hydraulic convcying of solids horizontal pipes. Trans Inst Engrs, 1955,33(2):93~113
    [34] Durand R. The Hydraulic transportation of coal and solid materials in pipes. Collog of Notional Coal Board, London, 1952:39~52
    [35] Govier G.W., Aziz K. The Flow of Complex Mixtures in Pipes. Canada: Van Nostrand Reinhold Co, 1972
    [36] Newitt D.M., Richardson J.F., Shook C.A.. Hydraulic conveying of solids in horizontal pipes: part 2, distribution of particles and slip velocities. Proc. Symp. Interaction Between Fluids and Particles, London: Inst Chem Engrs, 1962
    [37] Turian R.M., Yuan T.F. Flow of slurries in pipelines. AIChE Journal, 1977,23(3):232~243
    [38] Thomas D.G.. Transport Characteristics of suspensions: part Ⅵ, minimum transport velocity for large particle size suspensions in round horizontal pipes, AIChE Journal, 1962,8(3):373~378
    [39] Charles M.E.,Stevens G.S.. The pipeline flow of slurries: transition velocities. Proc Hydrotransport, 1972,(2):37~62
    
    
    [40] Shen H.W.(沈从汶), Wang J.S.. Incipient lotion and limiting deposit conditions of solid-liquid pipe flow. Proc Hydrotransport, 1970,(1):37~52
    [41] [日]佐滕博,竹村昌太.沉降性浆体在水平管道内流动过程中浓度分布的近似解法.水力采煤与管道运输,1998,(2):38~40
    [42] Durand R. Basic relationship of the transportation of solids in pipes—experimental research. Proc Minnesota Inst Hydraulic Convention, 1953
    [43] Toda M, Konno H, Saito S, et al. Hydraulic conveying of solids through horizontal and vertical pipes. Intern Chem Engin, 1969,9(3):553~560
    [44] Roco M.C., Mahadevan S. Scale-up technique of slurry pipelines: part 2, numerical integration. Trans ASME J Energy Resource Tech, 1986,108:278~285
    [45] Asakura K,Tozawa Y, Nakaja I, et al. Numerical calculation of velocity and concentration distributions and pressure loss of a solid-liquid flow. Proc Ist ASME-JSME Fluid Engin Conf. Liquid-Solid Flow FED, 1991,118:45~51
    [46] Ayukawa K. Hydraulic transport of suspended solid particles in a horizontal pipes; 1st report, velocity distribution and concentration distribution. Trans Japan Soc Mech Engrs, 1972,38(315):2863~2871
    [47] Alajbegovic A, Assad A, Bonetto F, et al. Phase distribution and turbulence strcture for solid-liquid upflow in a pipe. Int J Multiphase Flow, 1994, 20(3):453~479
    [48] 许振良,张永吉,孙宝铮.水平管道沉降性浆体速度分布与浓度分布关系的研究.水力采煤与管道运输,1997,(3):21~27
    [49] 魏进家,姜培正,王长安.密相液固两相流动的数值研究.水动力学研究与进展,1997,12(3):350~355
    [50] 张兴荣.高浓度管道输送中水流结构吉运动机理的研究.管道运输,1997,2(3):19~27
    [51] Graf W.H., Robinson M, Yucel O. The critical deposit velocity for solid-liquid mixtures. Ist Int Conf on Hyd Transport of Solids in pipes, BHRA Fluid Engng. Cranfield, U.K: 1970
    [52] 张兴荣.固液两相流管道输送临界不淤流速研究.管道运输,1996,1(2):7~15
    [53] Shook C.A. Pipelining solids:the design of short distance pipelines. Proc Symp on Pipeline Transport of Solids. Toronto:Cana Soc Chem Engin, 1969
    [54] Zadi I,Govatos G. Heterogeneous flow of solids in pipeline. J Hyd Div, Proc Amer Soc Civil Engrs, 1967,93(3):145~159
    [55] [澳]Cave I, Mcelvain R.E. 细固体物与粗固体物的水力输送.水泵技术,1988(3):35~43
    [56] 刘德忠.矿浆管道水力输送试验研究.泥沙研究,1980,(1):23~36
    
    
    [57] Duckworth R.A, Argyros G. Influence of density ratio on the pressure gradient in pipe conveying suspensions of solids in liquids. Proc Hydrotransport, 1972,(2): 1~11
    [58] 邹履泰.两相流管道水力输送中摩阻损失的估计.杂质泵及管道水力输送学术讨论会论文集,石家庄,1988,176~182
    [59] Shook C.A. Some experimental studies of the effect of particle and fluid properties upon the pressure drop for slurry flow. Proc Hydrotransport, 1972,(2): 13~22
    [60] Thomas A.D. Particle size effect in turbulent pipe flow of solid-liquid suspensions,. Proc 6th Australian Hyd and Fluid Mech Conf, 1997
    [61] 钱宁,万兆惠.泥沙运动力学.北京:科学出版社,1983
    [62] 戴继岚,钱宁.粒径分布和细颗粒含量对两相管流水力特性的影响.泥沙研究,1982,No.1
    [63] Mih, W.C.. Solid-Liquid Suspension Flow in Pipes. Sedimentation, byH.W.Shen(ed),P.O. Box 606, Fort Collins, Colorado, 1972: 1~23.
    [64] 谢军.适宜管道输送的含沙浓度,人民黄河,1993(5).
    [65] 徐继润,罗茜.水力旋流器流场理论.北京:科学出版社,1998
    [66] 朱鹏程.管道高浓度含沙紊流试验资料的初步分析,水利学报,1982(9).
    [67] 蒋素绮,孙东智.管道高浓度输沙的计算方法,泥沙研究,1982(2).
    [68] 王文治,陈武奎.泥浆管路输送的添加剂减阻试验,泥沙研究,1982(2).
    [69] 费祥俊,王可钦,翟大潜等.长距离管道输送中浆体物理特性及输送参数的试验研究,水利学报,1984(11).
    [70] 任增海.管道高含沙水流的阻力特性,泥沙研究,1985(3),
    [71] 宋天成,万兆惠.管道输沙的阻力,泥沙研究,1987(2).
    [72] 费祥俊.固体管道水力输送摩阻损失的预测,水利学报,1986(12).
    [73] 宋天成.管道高含沙水流流速分布的试验研究,泥沙研究,1986(3).
    [74] Dai J.l. and Xia Z.H.,Energy Loss of Pipe Flows Stratified with Suspended-loadandBed—Load, SCIENTIAS1NICA(SeriesA),Vol.31(7),1988.
    [75] 华景生,万兆惠.宾汉浆液在管路中输送时的阻力,泥沙研究,1990(2).
    [76] Peter J.S.,Simon J.T.,and Adrian J.S.. Laboratory Invedtigations into Cohesiv Sediment Transport in Pipes. Water Sinence and Tenchnology ,Vol.33(9),1996.
    [77] Prabhata. K.S.. Design of Sediment-Transport Pipeline. J. Of Hydraulic Engineering, Vol. 121(1), 1995.
    [78] 张书农.管道水力输送研究的动态.泥沙研究,1981(2).
    [79] 柳吉祥.旋转流分选的理论及应用.北京:煤炭工业出版社,1985
    [80] Hay D. and West J.K. Heat transfer in free swirling flow in a pipe. J. Heat Transfer, 1975,97: 411~416
    
    
    [81] Guo Z. and Dhir V.K. Effect of injection induced swirl flow on single and two-phase heat transfer. ASME HTD,1987,81: 77~84
    [82] Dhir V.K. and chang F. Heat transfer enhancement using tangential injection. ASHRAE Trans. 1992,98:383~390
    [83] 熊鳌魁.强稳定螺旋流现象研究及非线形涡粘性模式的应用.北京大学博士学位论文,1998
    [84] 熊鳌魁,魏庆鼎.一种强螺旋流现象的实验研究.流体力学实验与测量,1999,Vol.13,No.4
    [85] 熊鳌魁,魏庆鼎.一种强螺旋流现象的数值试验研究.空气动力学学报,2001,Vol.19,No.1
    [86] 熊鳌魁,魏庆鼎.一类变截面管内轴对称螺旋流的衰减规律分析.应用数学与力学,2001,Vol.22,No.8
    [87] 熊鳌魁,齐文东,魏庆鼎.渐变截面圆管道内粘性流体的相似解[J].力学与实践,1999,Vol.21,No.1
    [88] 熊鳌魁,魏庆鼎.轴对称螺旋流解析解的探讨.力学与实践,1999,Vol.21,No.5
    [89] 张金锁,章本照,鞠剑伟.旋转螺旋管道内粘性流动.水利学报,2001,No.5
    [90] 毛野.涡管排沙研究进展.水利水电科技进展,1998,Voli.18,No.5
    [91] Parshall R.L. Model and prototype studies of sand traps. Trans. ASCE, 1952,117(Separate No.67):204~214
    [92] Robinson A.R. Vortex tube and trap trans. ASCE, 1962,127(Part Ⅲ): 391~433
    [93] E.Atkinsion.张开泉译,涡管排沙1:截沙率.泥沙信息,1995(3)
    [94] E.atkinsion.张开泉译,涡管排沙2:设计.泥沙信息,1995(3)
    [95] Chun-huang LIN, Tyh—Tong Teng. A Study on the Swirling Flow field in the Freeboard of a Vortexing Fluidized Bed Combustor. JSME, International Journal SeriesB, Vol,41,No3,1998
    [96] Xinming Wang and Michihiro NISHI. Analysis of swirling Flow with Spiral Vortex core in a Pipe. JSME International Journal Series B,Vol 41,No.2,1998
    [97] Atkinson E. Vortex-tube sediment extractor, Part Ⅰ: Trpping efficiency. J Hydr Engyg, ASCE, 1994,120(10): 1110~1125
    [98] 张开泉.环流强度的判断和螺旋流排沙.新疆水利科技,1982(4)
    [99] 张开泉,刘焕芳.螺旋流涡管排沙工程设计中的几个问题.新疆水利科技,1990(5)
    [100] 张开泉,刘焕芳.涡管螺旋流排沙的研究与实践.水利水电技术,1991(11)
    [101] 刘焕芳,张开泉.悬移质涡管排沙分析.人民黄河,1995(1)
    [102] 刘焕芳,张开泉.涡管分流量的计算.西北水电,1998(4)
    [103] 王庆祥.螺旋流的形成及排沙效果.西北水利科技,1986(4)
    
    
    [104] 王庆祥.螺旋流的形成和排沙效果试验研究.人民黄河:1987(5)
    [105] 李养志,王庆祥.排沙涡管内流速分布规律的试验研究.西北水利科技,1988(4)
    [106] 王庆祥,李养志等.螺旋流排沙的试验研究和应用.泥沙研究,1990(2)
    [107] 李养志.螺旋流排沙管泄水量及排沙效率分析.西北水资源与水工程,1992,3(3)
    [108] 李养志.螺旋流排沙管泄流量计算方法.西北水资源与水工程,1997,18(1)
    [109] 陈仰吾,郭天恩,高恩恩.涡管流管道排除水库泥沙的机理研究.水利水电技术,1993(2)
    [110] 周著等.强螺旋流排沙漏斗的模型试验和原型观测.水利水电技术,1991(11)
    [111] 唐毅.排沙漏斗三维涡流结构的研究.四川联合大学博士学位论文,1996
    [112] 唐毅,吴持恭,周著.排沙漏斗水流结构及对输沙过程的影响.水动力学研究与进展,1996,11(2)
    [113] 唐毅,周著,吴持恭.排沙漏斗切向流速分布规律的研究.四川水力发电,1997,16(4)
    [114] 王顺久,周著,侯杰等.漏斗式全排沙工程试验研究及其应用.泥沙研究,2000(6)
    [115] 侯杰,王顺久,周著等.漏斗式全排沙混水流场特性及输沙规律.泥沙研究,2000(6)
    [116] 唐毅,周著,吴持恭.排沙漏斗三维涡流流场脉动特性研究.水利学报,2002(2)
    [117] 王顺久,周著,侯杰等.排沙漏斗的水流特性试验研究及其工程应用.水利学报,2002(7)
    [118] T.C. Panl, S.K. Sayal, V.S. Sakhuja et al. Vortex-settling Basin Design Considerations. Journal of Hydraulic Engineering, Vol. 117, No. 2: Feb. 1991
    [119] 彭龙生.螺旋流冲沙与输沙.太原理工大学学报,1998,29(1)
    [120] 武鹏林,彭龙生.水平圆管螺旋流的形成与衰减.太原工业大学学报,1997,28 (4)
    [121] 武鹏林.圆管螺旋流水力性态的试验研究.太原工业大学硕士学位论文,1997
    [122] 武鹏林,彭龙生.螺旋管流输移固粒与起旋器效率.太原工业大学学报,1997,28(3)
    [123] 张羽,张仙娥,彭龙生.水平管螺旋流断面流速分布试验研究.太原理工大学学报,2000,31(5)
    [124] 孙西欢,孙雪岚,赵运革等.圆管螺旋流局部起旋器与出口断面流速分布试验研究.太原理工大学学报,2003,34(2)
    
    
    [125] 彭龙生.水平管螺旋流均匀固粒的分布.太原工业大学学报,1997,28(3)
    [126] Peng Longsheng. Track of Grain in the Forced Vortex with Horizontal Axis.太原工业大学学报,1997,28(增)
    [127] 彭龙生,卢准炜.平轴旋流中均匀悬粒沿极限圆半径的分布.太原理工大学学报,1998,29(2)
    [128] 孙西欢,彭龙生.水平轴圆形边界旋流中固料的运动分析.农业工程学报,1999,15(2)
    [129] 彭龙生,张羽.平轴螺旋管流的能耗初探.太原理工大学学报,1998,29(3)
    [130] 彭龙生,张羽.任万森等.螺旋流输移匀粒的能耗.太原理工大学学报,1998,29(3)
    [131] 张羽.螺旋流输沙模型相似率.太原理工大学硕士学位论文,1998
    [132] 张羽,彭龙生.螺旋流输沙相似率探讨.太原工业大学学报,1997,28(4)
    [133] 孙西欢.水平轴圆管螺旋流水力特性及固粒悬浮机理试验研究.西安理工大学博士学位论文,2000.
    [134] 孙西欢,王文焰,武鹏林等.起旋器出口断面流速分布与起旋效率.西北农业大学学报,2000,Vol 28(5)
    [135] 孙西欢,阎庆绂,武鹏林等..圆管螺旋流起旋器结构参数与阻力研究.流体机械,2000(10)
    [136] 张仙娥,孙西欢,霍德敏.沿程起旋螺旋流流场德数值模拟.太原理工大学学报,2001,32(3)
    [137] 兰雅梅,孙西欢,霍德敏.圆管螺旋流德三维数值模拟.太原理工大学学报,2001,32(3)
    [138] 彭龙生.旋流吸泥头.中国。专利号:85107771.4,1989年
    [139] 刘天宝.流体力学及叶栅理论,北京:机械工业出版社,1983
    [140] 孔珑.工程流体力学,第二版.北京:水利电力出版社,1992
    [141] 吴望一.流体力学,上册.北京:北京大学出版社,1990
    [142] 吴林恭.水力学,上册,第二版.北京:高等教育出版社,1985
    [143] 李建中,宁利中.水流边界层理论.北京:水力电力出版社,1994
    [144] Wilcken, H., Effect of curved surfaces on turbulent boundary layers. NASA 1967(译自:Turbulent Grenschichten an Gewoeibten Ebechen, Eng, Arch, Voi. 1, 1930)
    [145] Meroney, R.N.and Bradshaw, P., Turbulent boundary layer growth over a longitudinally curved surface. AIAA Journal, Vol 13, No. 11, 1975
    [146] 陈树林.泄水建筑物反弧段紊流边界层发展的探讨.陕西机械学院研究生毕业论文,1981
    [147] 陶晓峰,董曾南.光滑溢流坝面水流边界层特性试验研究.水利学报,1984,
    
    第四期
    [148] Li jiangzhong and Niu zhengming, Experimental studys of velocity distributions in the buckets of spillway dams. Proc. Of Seventh Congress of APD-IAHR, Bejing China, 1990
    [149] 牛争鸣,李建中.反弧段紊流边界层研究成果综述.陕西水力发电,1997,Vol.13,No.3(Sep.)
    [150] 张志昌,李建中,牛争鸣等.溢流反弧段紊流过渡区的边界层特性.西安理工大学学报,1997,Vol.13,No.1
    [151] 张志昌,李建中,牛争鸣等.模型溢流反弧的激光测速与紊流过渡区的边界层特性.水利学报,1997,第二期
    [152] 李建中,黄天润.牛争鸣等,粗糙壁面溢流反弧水力特性及紊流边界层的研究.水利学报,1994,第一期
    [153] 何文学,李茶青.考虑边界层发展时溢流反弧段动水压强的确定.水科学进展,1996,Vol.7,No.3(Sep.)
    [154] 周同明,张庄.溢流坝反弧段紊流边界层空间特性的试验研究.水动力学研究与进展,1995,Ser.A,Vol.10,No.5
    [155] 董壮.三维水流数值模拟研究进展.水利水运工程学报,2002,No.3(Sep.)
    [156] 金忠青.N-S方程的数值解和紊流模型[M].南京:河海大学出版社,1998
    [157] 吴江航,韩庆书.计算流体力学的理论、方法及应用,北京:科学出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700