慢光光纤陀螺关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤陀螺作为惯性测量器件,其潜在的优势和应用前景倍受关注,已成为新一代惯性制导系统的主导器件。随着对光纤陀螺研究的深入,研究人员提出了一系列的改进措施,使光纤陀螺性能不断提高。本学位论文结合“探索一代***预研项目”,对基于慢光技术的耦合谐振腔结构的光纤陀螺原理、陀螺随机噪声和误差的分析与建模、慢光光纤陀螺信号时间差检测等问题展开了深入的研究和探索。
     分析慢光产生的机理,以及光纤中慢光的实现方法,为将慢光应用于光纤陀螺奠定了基础。从理论上论证了两种慢光光纤陀螺的结构方案,一种是基于高色散介质中当介质与干涉仪存在相对运动产生Doppler效应的慢光光纤陀螺结构,其刻度因数可以提高ng2倍(ng的量级可达到105~108),但这种结构的陀螺只能用来测量相对旋转,不能作为导航陀螺;另一种是利用高色散介质产生慢光,基于耦合谐振腔的慢光光纤陀螺结构方案,论证其提高陀螺精度的原理,这种结构的陀螺其刻度因数可提高ng/n0倍,给出了慢光光纤陀螺输出信号与谐振腔数目N,耦合系数μ,谐振腔半径R之间的关系,同时设计了慢光光纤陀螺测试单轴转台系统,为探索新型高灵敏度的光纤陀螺奠定了基础。
     以加窗函数为基础将动态Allan(DAVar)方差分析方法用于慢光光纤陀螺随机误差分析中。将经典Allan方差与动态Allan(DAVar)方差用于陀螺误差分析的结果进行对比,系统地分析了引起慢光光纤陀螺漂误差的随机噪声的种类及其来源和特性,特别是产生光速减慢的受激布里渊散射(SBS)效应和光速控制不稳恶化了噪声指数,降低信噪比,而动态Allan方差分析方法的优势在于不仅能确定慢光光纤陀螺各种随机误差的系数,而且可以跟踪和描述信号随时间变化的稳定性,通过分析和仿真指出动态Allan方差分析是对慢光光纤陀螺随机误差进行研究的有效方法,可以对影响陀螺精度的主要随机误差项的统计特性进行细致的表征和辨识。
     随机漂移也是影响慢光光纤陀螺精度的主要因素,建立慢光光纤陀螺随机漂移数学模型是分析陀螺运动规律、改善其动态性能的基础。采用时间序列ARMA模型建立随机漂移模型,针对慢光光纤陀螺SBS效应使光速变慢引入新的附加噪声后,时间序列模型辨识精度低的问题,提出基于衰减正弦曲线方法和相关匹配方法估计ARMA模型系统参数,仿真实验结果表明,对于具有较低信噪比噪声干扰的系统,该算法具有良好的收敛性和准确性,应用该算法所确定的模型对慢光光纤陀螺随机信号模型进行预测,通过对图表的分析可知模型能够比较全面的描述慢光光纤陀螺随机过程的真实全貌,可以对随机信号中的变化进行基本准确的预测分析。
     针对采用慢光技术的新型光纤陀螺中两束反向传播光的时间差量级在ns级左右,提出采用时间差检测的方法获得慢光光纤陀螺输出角速度。在理论上对时间差测量的方法进行研究,分析了广义互相关法在时差估计中的应用并做仿真,但该方法对于信噪比较低的信号时间差估计显得无能为力。提出采用四阶累积量的方法对时间差进行估计取得较好的效果,并在噪声相关与不相关的情况下与广义互相关算法时间差估计结果进行了比较。其次研究了几种实际时间差测量方法,采用时间数字转换芯片TDC-GP2对慢光光纤陀螺时间差进行测量,采用粗计数与细时间测量组合的方式,分辨率可达到65ps ,并给出了时间差测量系统硬件框图和软件流程。
Fiber optic gyroscope (FOG) is an inertial measurement unit. The advantage andapplication prospect of FOG is received much concern. It has become the core compo-nent in the new generation of inertial guidance system. In order to improve the perfor-mance, a series of improvement measures are put forward with further study on FOG.Based on requirements of high precision of FOG, principle of FOG consisting of cou-pled micro-ring resonators using slow light technology in fiber, analysis and modeling ofFOG’s random noise and error, and time difference measurement of output signal of slowlight FOG are studied deeply in this dissertation, which is funded by the Pre-ResearchFund for Explore No.1 *** Item. The main contents of this dissertation are as the follows:Principle for producing slow light and slowing velocity of light in fiber are analyzed.
     Two structures of fiber optic gyroscope with slow light is analyzed, one of which isdesigned configuration of slow light FOG with slow light that utilizes phenomena ofDoppler effect, it may greatly boost the scale factor of slow light FOG by n2g times (ng as large as 105~108 magnitude). However, the premise of the calculation is thatthere is a relative motion between the interferometer and the medium. This constraintindicates that the gyroscope with slow light is not suitable for the navigation gyroscope.Another structure is based on coupled-resonator fiber optic gyroscope with slow lightthat the group velocity slows down in high dispersive medium. In this dissertation, wedemonstrate the principle of using this process to enhance the sensitivity of fiber opticgyroscope, which can improve the scale factor by ng/n0 times. Meanwhile, the relationis obtained between output signal of new structure FOG and the numbers of coupledresonator rings N, the coupling coefficientμ, the resonator rings’radius R. At the sametime, the single axis table system for test slow light gyroscope is designed. In order tostudy new high sensitivity of FOG, a new way is opened up.
     Based on Allan variance principle, the analysis is proposed using dynamic Allanvariance (DAVar) for random error of slow light FOG by the applying of window func-tion to Allan variance. The types, source and characteristics of random noise whichinduce drift error of fiber optic gyroscope is analyzed systematically. Specially, the SBSeffect and stability of light velocity deteriorated noise figure and reduced signal-noise-ratio. The effect of classical Allan variance is to be compared with the DAVar in analysisrandom error of slow light FOG. Dynamic Allan variance has advantages in that not only the method can determine the coefficient of various random drift, but also can track anddescribe the variation in time of the clock stability. The results of simulation data showthat the dynamic Allan variance is the effective method for study the random error offiber optic gyroscope. Meanwhile, this method can reveal and identify in detail the sta-tistical characteristics of main random error which in?uence the precision of slow lightFOG.
     The random drift is main factor which in?uence the precision of slow light FOG.The mathematical model of random drift of slow light FOG is the basis to analyze therule of motion of FOG, to improve the dynamic performance. In this dissertation randomdrift model is built by time series ARMA model. Because of the problem that the identifi-cation precision is reduced when noise corrupts the observations. Thus the ARMA modelparameters are obtained directly form the estimates of the damped sinusoidal model pa-rameters with guaranteed stability and using a correlation matching technique. The sim-ulation results show that the proposed method has a good convergence and accuracy,in particular for low signal-to-noise ratio. The determinate ARMA model is applied topredict random signal model of slow light FOG. The model can describe well and trulyrandom process of slow light FOG by analyzing diagram and can predict accurately thechanges of random signal.
     Because of the magnitude is about ns of the time difference between two counter-propagating light in the new fiber optic gyroscope by slow light technology, so themethod which using the time difference measurement to derive the angle of slow lightFOG is proposed. In theory we do much research of the time difference measurementmethod and apply and simulate generalized cross correlation algorithm to estimate timedifference, but this method is poor when signal-to-noise radio low in time differenceestimation. In this dissertation the time difference estimation based on fourth-order cu-mulant is proposed. Better effect has been obtained by the method and the results underthe conditions of correlated and uncorrelated noise are compared with generalized crosscorrelation algorithm. Then some time difference measurement is studied and the time-to-digital converter chip TDC-GP2 is used to time difference measurement for slow lightFOG. This method combines coarse-count with fine-counts measurement, and the resolu-tion achieves 65ps. Finally hardware block diagram and software ?ow of time differencemeasurement system is given.
引文
1 H. J. Arditty, H. C. Lefe`vre. Sagnac Effect in Fiber Gyroscopes[J]. Optics Letters,1981, 6(8).
    2毛献辉,田芊,滕云鹤,等.几种光学陀螺的研究进展[J].压电与声光, 2003,25(1): 15–19.
    3张志君.基于光纤陀螺的寻北定向技术研究[D].长春:中国科学院长春光学精密机械与物理研究所, 2005:1–18.
    4戴旭涵.单模去偏光陀螺温度效应研究[D].杭州:浙江大学, 2000: 1–4.
    5 R. Carroll, C. D. Coccoli, D. Carderelli, et al. Passive Resonator Fiber Optic Gyroand Comparison to the Interferometer Fiber Gyro[J]. SPIE, 1986, 719: 169–177.
    6 F. zarnetchi. Stimulated Brillouin Fiber-Optic Laser Gyroscope[J]. Optics Letters,1991, 16: 229–231.
    7 M. Y. Jeen. Mode-Locked Fiber Laser Gyroscope[J]. Optics Letters, 1993, 18(4):320–322.
    8 M. Teshima, M. Koga. Accurate Frequency Control of a Mode-Locked LaserDiode by Reference-Light Injection[J]. Optics Letters, 1997, 22(2): 126–128.
    9 S. K. Kim. Er3+-doped Fiber Ring Laser for Gyroscope Applications[J]. OpticsLetters, 1994, 19(22): 1810–1812.
    10 U. Leonhardt. A Primer to Slow Light[J]. eprint arXiv:qc-gr, 2001, 0108085.
    11 J. Fiura′s?ek, U. Leonhardt, R. Parentani. Slow-Light Pulses in Moving Media[J].eprint arXiv:quant-ph, 2002, 0011100.
    12 R. Tripathi, G. S. Pati, M. Messall, et al. Experimental Constraints of UsingSlow-Light in Sodium Vapor for Light-Drag Enhanced Relative Rotation Sens-ing[J]. eprint arXiv:quant-ph, 2005, 0512259.
    13 K. T. McDonald. Slow Light[J]. eprint arXiv:physics, 2000, 0007097.
    14 M. S. Shahriar, G. Pati, V. Gopal, et al. Precision Rotation Sensing and Inter-ferometry Using Slow Light[J]. IEEE Quantum Electronics and Laser ScienceConference, 2005, 3: 1457–1459.
    15范保华,掌蕴东,袁萍.固体介质中光速减慢现象的研究[J].物理学报, 2005,54(10): 4692–4695.
    16掌蕴东,范保华,袁萍.固体材料中慢光现象的实验观测[J].中国激光, 2004,31(Sup): 175–176.
    17 U. Leonhardt, P. Piwnicki. Ultrahigh Sensitivity of Slow-Light Gyroscope[J].Physical Review A, 2000, 62(055801).
    18 M. S. Shahriar, G. S. Pati, R. Tripathi, et al. Ultrahigh Precision Absolute andRelative Rotation Sensing Using Slow and Fast Light[J]. eprint arXiv:quant-ph,2005, 0505192.
    19 B. Z. Steinberg. Rotation Photonic Crystals: A Medium for Compact OpticalGyroscopes[J]. Phys. Rev. E, 2005, 71(056621).
    20 A. B. Matsko, A. A. Savchenkov, V. S. Ilchenko, et al. Optical Gytoscope withWhispering Gallery Mode Optical Cavities[J]. Optics Communications, 2004,233: 107–112.
    21杨亭鹏,刘星桥,陈家斌.光纤陀螺仪(FOG)技术及发展应用[J].火力与指挥控制, 2004, 29(2): 76–79.
    22 S. J. Sanders, L. K. Strandiord, D. Mead. Fiber Optic Gyro Techmology Trends–A Honeywell Perspective[J]. IEEE, 2002.
    23 A. Cordova, R. Patterson. Progress in Navigation Grade IFOG Performance[J].SPIE, 1996, 2837: 207–217.
    24 H. C. Lef ev`re. Fundamentals of the Interferometric Fiber-Optic Gyroscope[J].SPIE, 1996, 2837: 2–17.
    25 G.A.Sanders, B. Szafraniec, R.-Y.Liu, et al. Fiber-Optic Gyro Development for aBroad Range of Applications[J]. SPIE, 1995, 2510: 2–11.
    26周海波,刘建业,赖际舟,等.光纤陀螺仪的发展现状[J].传感器技术, 2005,24(6): 1–3.
    27 K. Hotate. Fiber Optic Gyros Put a New Spin on Navigation[J]. Photonics Spectra,1997: 108–112.
    28舒晓武.新型惯导系统光纤陀螺[J].激光与红外, 1998, 28(4): 205–209.
    29孙丽,王德钊.国内外光纤陀螺的最新进展[J].控制工程, 2002, 1: 9–14.
    30 G. Nicholson. Reliability Considerations: Optical Sensors for the Control andMeasurement of Power[J]. IEEE, 2001, 1(28): 122–126.
    31曾庆化,刘建业,赖际舟,等.环形激光陀螺的最新进展[J].传感器极速, 2004,23(11): 1–4.
    32 Novel Fibre Optic Gyroscope with a Configuration Combingnig Sagnac Intererom-eter with Fibre Ring Resonator[J]. IEEE, 1992, 28(19): 1778–1780.
    33裴金成,杨熙春,朱汝德,等.受激布里渊光纤陀螺[J].激光与光电子学进展,2006, 43(11): 53–60.
    34赵晓丹,冯霞.工程信号处理中离散傅立叶变换的误差[J].江苏大学学报,2006, 27(2): 136–139.
    35 I. Std952-1997. Ieee Standard Specitcation Format Guide and Test Procedure forSingle-Axis Interferometric Fiber Optic Gyros[J]. 1998: 1–83.
    36 E. Brian, P. E. Grantham. A Least-Squares Normalized Error Regression Algo-rithm with Application to the Allan Variance Noise Analysis Method[J]. LocationAnd Navigation Symposium IEEE, 2006: 750–756.
    37张代兵.一种基于allan方差方法的激光陀螺性能评价方法[J].仪器仪表学报, 2004, 25(4): 715–717.
    38黄磊,王巍.闭环光纤陀螺的输出误差特性研究[J].中国惯性技术学报,2005, 13(3): 52–55.
    39赵玉新,李绪友,刘承香,等.光纤陀螺信号处理方法的比较研究[J].中国惯性技术学报, 2003, 11(2): 52–56.
    40 F. Sun, C. Luo, W. Gao, et al. Research on Modeling and Compensation Methodof Fiber Optic Gyro Random Error[J]. Proceedings of the IEEE International con-ference on Mechatronics & Automation, 2005, Page(s): 461–464.
    41 F. Ding, Y. Shi, T. Chen. Performance Analysis of Estimation Algorithms of Non-stationary ARMA Processes[J]. IEEE Transactions on signalprocessing, 2006,54(3): 1041–1053.
    42林来兴.应用时间序列分析[M].桂林:广西师范大学出版社, 1999: 1–24.
    43 S. Li, B. W. Dickinson. Application of the Lattice Filter to Robust Estimation ofAR and ARMA Models[J]. IEEE Transactions on Acoustics Speech and SignalProcessing, 1988, 36(4): 502–512.
    44 F. Ding, Y. Shi, T. Chen. Performance Analysis of Estimation Algorithms of Non-stationary ARMA Processes[J]. IEEE Transactions on Signal Processing, 2006,54(3): 1041–1053.
    45 L. N. Xu, Z. L. Deng. Research on Neural Networks for Compensated Error of theGyro Starting Drift Rate[J]. The 3th World Congress on Intelligent Control andAutomation, 2000: 1156–1158.
    46吴美平,胡小平.基于动态神经网络的激光陀螺输出误差模型[J].中国惯性技术学报, 2000, 8(4): 84–88.
    47王群仙,李少远,李俊芳.小波分析及其在控制中的应用[J].控制与决策,2000, 15(4): 385–394.
    48 Z. Luo, J. L. Yuan, H. X. Xia, et al. A Study on Gray Neural Network Modeling[J].IEEE Conference on Machine Learning and Cybernetics, 2002: 2021–2023.
    49李迪,孙尧,李绪友.闭环光纤陀螺数字检测方法研究及实现[J].弹箭与制导学报, 2003, 23(4): 90–92.
    50 C. Y. Liaw, Y. Zhou, Y. L. Lam. Characterization of an Open-Loop InterferometricFiber-Optic Gyroscope with the Sagnac Coil Closed by an Erbium-Doped FiberAmplifier[J]. Journal of Lightwave Thechnology, 1998, 16(12): 2385–2392.
    51 H. G. Park, K. A. Lim, Y. J. Chin, et al. Feedback Effects in Erbium-Doped FiberAmplifier/source for Open-Loop Fiber-Optic Gyroscope[J]. Journal of LightwaveTechnology, 1997, 15(8): 1587–1593.
    52 S. J. Spammer, P. L. Swart. A Quadrature Phase Tracker for Open-LoopFiber-Optic Gyroscopes[J]. IEEE Transactions on Cirvuits and Systems: Fun-damental Theory and Applications, 1993, 40(2): 86–91.
    53张登伟,舒晓武,牟旭东,等.光纤陀螺开环检测系统的数字化研究[J].兵工学报, 2005, 26(1): 42–45.
    54 L. X. Zhu, J. F. Wang, S. Z. Yang. All Digital Closed Loop FOG Detection Sys-tem[J]. ICSP’02 Procedings, 2002, 2: 1715–1718.
    55 A. Noureldin, M. Mintchev, D. I. Halliday, et al. Computer Modelling of Micro-electronic Closed Loop Fiber Optica Gyroscope[J]. Procedings of the 1999 IEEECanadian Conference on Electrical and Computer Engineering, 1999, 2: 633–638.
    56 C. Laskoskie, H. Hung, T. E. Wailly, et al. Ti-LiNbO3 Waveguide Serrodyne Mod-ulator with Ultrahigh Sideband Suppression for Fiber Optic Gyroscopes[J]. Journalof Lightwave Technology, 1989, 7(4): 600–606.
    57 D. F. Phillips, A. Fleischhauer, A. Mair, et al. Storage of Light in Atomic Vapor[J].Phys. Rev. Lett., 2001, 86: 783–786.
    58 Observation of Ultraslow Light Propagation in a Ruby Crystal at Room Tempera-ture[J]. Phys. Rev. Lett., 2003, 90(113903).
    59 S. E. Harris. Nonlinear Optics at Low Light Levels[J]. Phys. Rev. Lett., 1999, 82:4611–4614.
    60 M. M. Kash, V. A. Sautenkov, A. S. Zibrov, et al. Ustraslow Group Velocity andEnhanced Nonlinear Optical Effects in a Coherently Driven Hot Atomic Gas[J].Phy. Rev. Lett., 1999, 82(26): 5229–5232.
    61 L. V. Hau, S. E. Harris, Z. Dutton, et al. Light Speed Reduction to 17 m/s in aUltracold Atomic Gas[J]. Nature, 1999, 397(6720): 594–598.
    62 M. S. Bigelow, N. N. Lepeshkin, R. W. Boyd. Superluminal and Slow Light Prop-agation in a Room-Temperature Solid[J]. Science, 2003, 301: 200–202.
    63 G. Q. Zhang, F. Bo, R. Dong, et al. Phase-Coupling-Induced Ultraslow LightPropagation in Solids at Room Temperature[J]. Phys. Rev. Lett, 2004, 93(133903).
    64邱巍,掌蕴东,叶建波,等.室温条件下掺铒光纤中光脉冲群速可控特性的研究[J].物理学报, 2007, 56(12): 7009–7014.
    65掌蕴东,翁文,喻波,等.光子晶体波导慢光技术[J].激光与光电子学进展,2007, 44(10): 26–32.
    66 K. Y. Song, M. Gonzalez, L. Thévenaz. Long Optically Controlled Delays inOptical Fibers[J]. Opt. Lett., 2005, 30(14): 1782–1784.
    67刑亮,詹黎,义理林,等.光纤中可控光速减慢技术研究的最新进展[J].激光与光电子学进展, 2006, 43(7): 56–62.
    68 E. J. Post. Sagnac Effect[J]. Rev. Mod. Phys., 1967, 39: 475–493.
    69 R. A. Bergh, H. C. Lefevre, H. J. Shaw. An Overview of Fiber-Optic Gyro-scopes[J]. J. Lightwave Technol, 1984, 2: 91–107.
    70 G. B. Malykin. The Sagnac Effect: Correct and Incorrect Explanations[J]. PhysicsUspekhi, 2000, 43(12): 1229–1252.
    71 J. Scheuer, A. Yariv. Sagnac Effect in Coupled-resonator Slow-light WaveguideStructures[J]. Phys. Rev. Lett, 2006, 96(053901).
    72 F. Zimmer, M. Fleischhauer. Sagnac Interferometry Based on Ultraslow Polaritonsin Cold Atomic Vapors[J]. Phys. Rev. Lett, 2004, 92(253201).
    73 S. E. Harris, J. E. Field, A. Imamoglu. Nonlinear Optical Processes Using Elec-tromagnetically Induced Transparency[J]. Phys. Rev. Lett, 1990, 64: 1107–1110.
    74 L. W. Hillman, R. W. Boyd, J. Krasinski, et al. Observation of a Spectral HoleDue to Population Oscillations in a Homogeneously Broadened Optical Absorp-tion Line[J]. Opt. Commun., 1983, 45: 416–419.
    75 S. E. Schwarz, T. Y. Tan. Wave Interactions in Saturable Absorbers[J]. AppliedPhysics Letters, 1967, 10(4).
    76 M. S. Bigelow. Ultra-Slow and Superluminal Light Propagation in Solids at RoomTemperature[D]. Rochester:University of Rochester, 2004: 20–110.
    77 D. Dahan, G. Eisenstein. Tunable all Optical Delay via Slow and Fast Light Prop-agation in a Raman Assisted Fiber Optical Parametric Amplifier a Route to allOptical Buffering[J]. Opt. Express, 2005, 13(16): 6234–6249.
    78 A. Hache, L. Poririer. Anomalous Dispersion and Superluminal Group Velocityin a Coaxial Photonic Crystal: Theory and Experiment[J]. Phys. Rev. E, 2002,65(036608).
    79 Z. M. Zhu, A. M. Dawes, D. J. Gauthier, et al. Broadband SBS Slow Light in anOptical Fiber[J]. arXiv: physics, 2006, 0607169v1.
    80 K. Y. Song, M. G. Herra′ez, L. The′venaz. Observation of Pulse Delaying andAdvancement in Optical Fibers Using Stimulated Brillouin Scattering[J]. Opt.Express, 2005, 13(1): 82–88.
    81 A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, et al. Observation of Super-luminal and Slow Light Propagation in Erbium-Doped Fiber[J]. Europhys. Lett.,2006, 73(2): 218–224.
    82 T.Nakanishi, K.Sugiyama, M.Kitano. Simulation of Slow Light with ElectronicsCircuits[J]. eprint arXiv:quant-ph, 2004, 0407086.
    83 M. Kitano, T. Nakanishi, K. Sugiyama. Negative Group Delay and SuperluminalPropagation: An Electronic Cirvuit Approach[J]. IEEE Journal of Selected Topicsin Quantum Electronics, 2003, 9: 43–51.
    84 M. S. Shahriar, G. S. Pati, R. Tripathi, et al. Ultrahigh Enhancement in Absoluteand Relative Rotation Sensing Using Slow and Fast Light[J]. Phys. Rev. A, 2007,053807.
    85 Herve′C Lefe`vre原著,张桂才and王巍译.光纤陀螺仪[M].北京:国防工业出版社, 2002: 1–90.
    86 M. F. Yanik, W. Suh, Z. Wang, et al. Stopping Light in a Waveguide with anAll-Optical Analog of Electromagnetically Induced Transparency[J]. Phys. Rev.Lett, 2004, 93(233903).
    87 J. E. Heebner, P. Chak, S. Pereira, et al. Distributed and Localized Feedback inMicroresonator Squences for Linear and Nonlinear Optics[J]. J. Opt. Soc. Am. B,2004, 21: 1818–1832.
    88 C. K. Madsen, G. Lenz. Optical All-Pass Filters for Phase Response Design withApplications for Dispersion Compensation[J]. IEEE Photon. Technol. Lett., 1998,10: 994–996.
    89 C. Peng, Z. Li, A. Xu. Rotation Sensing Based on a Slow-light Resonating Struc-ture with High Group Dispersion[J]. Applied Optics, 2007, 46(19): 4125–4131.
    90 D. D. Smith, H. Chang, K. A. Fuller. Whispering-gallery Mode Splitting in Cou-pled Miciroresonators[J]. J. Opt. Soc. Am. B, 2003, 20(9): 1967–1974.
    91王天聪.耦合谐振腔诱导透明用于旋转角速度测量分析[D].长春:长春理工大学, 2008:7–42.
    92韩剑辉,陈桂红,杨功流.光纤陀螺测试系统设计[J].航空精密制造技术,2003, 39(3): 37–39.
    93于海成,张春熹,王妍.利用DSP实现光纤陀螺数字信号处理中的多采样率转换[J].测控技术, 2003, 22(3): 12–15.
    94韩旭,马艳莉,赵金玉.一种高速宽动态陀螺信号采集电路的设计[J].应用科技, 2005, 32(7): 23–25.
    95郭秀中.惯导系统陀螺仪理论[M].北京:国防工业出版社, 1996: 13–297.
    96 C. Seidel, G. F. Trommer. Modeling of Bias Errors in Fiber-Optic Gyroscopes withNew Simulation Tool[J]. SPIE, 2004, 5451: 114–123.
    97 L.Galleani, P.Tavella. The Characterization of Clock Behavior with the DynamicAllan Variance[J]. Proceedings of 2003 IEEE International Frequency ControlSymposium and PDA Exhibition Jointly, 2003, Page(s): 239–244.
    98 Y. Yeh, D. I. Kim, B. Y. Kim. New Digital Closed-Loop Processor for a Fiber-OpticGyroscope[J]. IEEE Photonics Technology Letters, 1999, 11(3): 361–363.
    99王维.光纤陀螺噪声分析与数字闭环控制系统设计[D].哈尔滨:哈尔滨工程大学, 2007: 34–39.
    100孙中亮.基于光纤受激布里渊散射的慢光研究[D].北京:北京交通大学,2008:8–31.
    101刑亮.光纤中可控制慢光的研究[D].上海:上海交通大学, 2008: 46–51.
    102 R. A. Bergh, H. C. Lefevre, H. J. Shaw. Compencation of the Optic Kerr Effect inFiber Optic Gyroscope[J]. Optics Letter, 1982, 7(6): 282–284.
    103 C. Y. Liaw, Y. Zhou, Y. L. Lam. Theory of an Amplified Closed-Sagnac-LoopInterferometric Fiber-Optic Gyroscope[J]. IEEE Journal of Quantum Electronics,1999, 35(12): 1777–1784.
    104张延顺.干涉式光纤陀螺(IFOG)漂移特性的研究[D].哈尔滨:哈尔滨工程大学, 2002: 48–69.
    105 K. Hotate, K. Tabe. Drift of an Optical Fiber Gyroscope Caused by the FaradayEffect: In?uence of the Earth’s Magnetic Field[J]. Applied Optics, 1986, 25(7):1086–1092.
    106靳伟,廖延彪,张志鹏.导波光学传感器[M].北京:科学出版社, 1986:148–175.
    107杨亭鹏,高亚楠,陈家斌.光纤陀螺仪零漂信号的allan方差分析[J].光学技术, 2005, 31(1): 87–89.
    108 H. Y. Hou. Modeling Inertial Sensors Errors Using Allan Variance[D]. Cal-gary:University of Calgary, 2004: 95–116.
    109 C. N. Lawrence. Charecterization of Ring Laser Gyro Performance Using theAllan Variance Method[J]. J. Guidance, 1996, 20(1): 211–214.
    110 L. Galleani, P. Tavella. Tracking Nonstationarities in Clock Noises Using the Dy-namic Allan Variance[J]. Proceedings of the 2005 IEEE InternationalFrequencyControl Symposium and Exposition, 2005, Page(s): 392–396.
    111 L. Galleani, P. Tavella. Interpretation of the Dynamic Allan Variance of Nonsta-tionary Clock Data[J]. IEEE, 2007, 0647: 992–997.
    112 J. Skaloud, A. M. Bruton, K. P. Schwarz. Detection and Filtering of Short-term(1/fγ) Noise in Inertial Sensors[J]. Navigation, 1999, 46(2): 97–107.
    113 N. J. Kasdin. Disctete Simulation of Colored Noise and Stochastic Processes and1/fγPower Law Noise Generation[J]. Proc. of the IEEE, 1995, 83(5): 802–827.
    114王海,陈家斌,黄威,等.光纤陀螺随机漂移测试及分析[J].光学技术, 2004,30(5): 623–625.
    115何朕,王毅,周文雅,等.控制系统中随机信号的仿真与分析[J].系统仿真学报, 2005, 18(7): 2014–2017.
    116 T. Washi, A. Kawamura, Y. Iiguni. Sinusoidal Noise Reduction Method UsingLeaky Lms Algorithm[J]. International Symposium on Inteligent Signal Process-ing and Communication System, 2006, Tottori, Japan: 303–306.
    117 IEEE单轴干涉型光纤陀螺仪标准规范格式指南与测试规程[J].舰船导航,2002, (1): 27–31.
    118 H. Kanai, M. Abe, K. Kido. Accurate Autoregressive Spectrum Estimation at LowSignal-to-Noise Ratio Using a Phase Matching Technique[J]. IEEE Transactionson Acoustics Speech and Signal Processing, 1987, ASSP-35(9): 1264–1272.
    119朱奎宝,张春熹,张小跃.光纤陀螺随机漂移arma模型研究[J].宇航学报,2006, 27(5): 1118–1121.
    120扬叔子,吴雅.时间序列分析的工程应用[M].武汉:华中理工大学出版社,1992: 1–39.
    121 A. Noureldin, D. I. Halliday, H. Tabler, et al. New Technique for Reducing theAngle Random Walk at the Output of Fiber Optic Gyroscopes During AlignmentProcesses of Inertial Navigation Systems[J]. Opt.Eng, 2001, 40(10): 2097–2106.
    122 W. Ecke, K. Hilpert, A. Holz, et al. Reduction of Light Source-InducedScale-Factor Nonlinearities in Low-Cost Fiber Optic Gyroscope[J]. SPIE, 1996,2837: 249–258.
    123李宏,杨祥林.分布式EDFA中受激布里渊散射效应的研究[J].中国激光,1997, 24(5): 421–425.
    124 J.Zheng. Differential Singlemode Fibre Frequency-Modulated Continuous WaveSagnac[J]. Electronics Letters, 2005, 41(13): 727–728.
    125臧荣春,崔平远.陀螺随机漂移时间序列建模方法研究[J].系统仿真学报,2005, 17(8): 1845–1847.
    126王新龙,陈涛,杜宇.基于ARMA模型的光纤陀螺漂移数据建模方法研究[J].弹箭与制导学报, 2006, 26(1): 5–7.
    127吴怀宇.时间序列分析与综合[M].武汉:武汉大学出版社, 2004: 97–136.
    128 A. Kaderli, A. S. Kayhan. Spectral Estimation of ARMA Processes Using ARMACepstum Recursion[J]. IEEE Signal Processing Letters, 2000, 7(9): 259–261.
    129李志农,何永勇,吴昭同,等. ARMA模型盲辨识仿真研究及其在机械故障诊断中的应用[J].振动与冲击, 2006, 25(1): 122–126.
    130 P. T. Broersen, S. D. Waele. Automatic Identification of Time-series Models fromLong Autoregressive Models[J]. IEEE Transaction on Instrumentation and mea-surement, 2005, 54(5): 1862–1868.
    131 S. Li, B. W. Dickinson. Application of the Lattice Filter to Robust Estimation ofAR and ARMA Models[J]. IEEE Transactions on Acoustics Speech and SignalProcessing, 1988, 36(4): 502–512.
    132王振龙.时间序列分析[M].北京:中国统计出版社, 2002: 108–113.
    133 E. George.时间序列分析预测与控制[M].北京:中国统计出版社, 1999:150–170.
    134 I. K. Strandjord, G. F. Rouse. Effect of Imperfect Serrodyne Phase Modulation inResonator Fiber-optic Gyroscopes[J]. SPIE, 1994, 2292: 272–282.
    135 H. Kazuo, H. Michiko. Resonator Fiber Optic Gyro Using Digital Serrodyne Mod-ulation[J]. Journal of Lightwave Technology, 1997, 15(3): 466–473.
    136 M. A. Abas, G. Russell, D. J. Kinniment. Embedded High Resolution Delay Mea-surement System Using Time Amplification[J]. IET Comput. Digit. Tech., 2007,1(2): 77–86.
    137 C. H. Knapp, G. C. Carter. The Generalized Correlation Method for Estimationof Time Delay[J]. IEEE Transactions on Acoustics Speech and Signal Processing,1976, 24(4): 320–327.
    138 J. K. Tugnait. Time Delay Estimation in Unknown Spatially Correlated GaussianNoise Using Higher Order Statistics[J]. Proc 23rd Asilomar Conf Signals SystComput Pacific Grove CA, 1989: 211–215.
    139李莉.基于时间测量值的无线定位算法研究[D].成都:西南交通大学, 2002:5–16.
    140湛洪然.基于TDC-GP1的激光测距系统[D].天津:天津工业大学, 2003: 1–10.
    141 C. H. Knapp, G. C. Carter. The Generalized Correlation Method for Estimation ofTime Delay[J]. IEEE Transactions on Acoustics. Speech and Signal Processing,1976, 24(4): 320–325.
    142任连峻.时差测量及无源多站定位方法研究[D].哈尔滨:哈尔滨工业大学,2006: 9–20.
    143 D. Avitzour. Time Delay Estimation at High Signal to Noise Ratio[J]. IEEE Trans-actions on Aerospace and Electronic Systems, 1991, 27(2): 234–237.
    144 E. J. Wegman, S. C. Schwartz, J. B. Thomas, et al. Topics in Non-Gaussian SignalProcessing[J]. Springer-Verlag, 1989.
    145金俊丽,杨洁.卫星干扰源定位中四阶累积量时间差估计[J].中国测试技术,2008, 34(1): 56–59.
    146李从英.基于四阶累积量的时延估计研究[D].成都:西南交通大学, 2003:6–16.
    147 Z. C. Liang, X. Z. Liu, Y. tan Liu. A Modified Time Delay Estimation AlgorithmBased on Higher Order Staatistics for Signal Detection Problems[J]. ICSP’02Processings, 2002: 255–258.
    148黄昌九.基于四阶累积量的阵列信号参数估计[D].成都:西南交通大学,2006: 26–37.
    149 H. C. So, P. C. Ching. Comparative Performance of LMSTDE and ETDE forDelay and Doppler Estimation[J]. Processings of the 28th Annual Asilomar onConference on Signals Systems and Computers, 1994: 1501–1505.
    150陈虎成,安琪,张鹏杰,等.高精度短时间间隔测量系统[J].核电子学与探测技, 1999, 19(1): 51–54.
    151 J. B. Rettig, L. Dobos. Picosecond Time Interval Measurements[J]. IEEE Trans-actions on Instrumentation and Measurement, 1995, 44(2): 284–287.
    152 M. L. Simpson, M. J. Paulus. Discriminator Design Considerations for Time In-terval Measurement Circuits in Collider Detector Systems[J]. IEEE Transactionson Nuclear Science, 1998, 45(1): 420–423.
    153 K. C.Scholten. Fiber Optic Gyro Inertial Measurement Unit for Fly-by-Light Ad-vanced Systems Hardware[J]. SPIE, 1994, 2292: 264–271.
    154霍玉晶,陈千颂,潘志文.脉冲激光雷达的时间间隔测量综述[J].激光与红外, 2001, 31(3): 136–139.
    155 J. Kalisz, R. Szplet, R. Pelka, et al. Single-Chip Interpolating Time Counter with200-ps Resolution and 43-s Range[J]. Proceedings of the IEEE International con-ference on Mechatronics & Automation, 1997, 46(4): 851–856.
    156 T. Kim, M. Fiorentino, P. V.Gorelik, et al. Low-Cost Nanoseccond ElectronicCoincidence Detector[J]. arXiv:physics, 2005, 0501141.
    157刘博超.慢光光纤陀螺信号检测电路设计[D].哈尔滨:哈尔滨工业大学,2008:17–28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700