用户名: 密码: 验证码:
多重耐药鲍曼不动杆菌主要β-内酰胺酶基因型及同源性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鲍曼不动杆菌是目前引起医院内感染的重要病原菌。随着广谱抗菌药物的广泛应用,多重耐药的鲍曼不动杆菌比例不断上,并在全球多处的重症监护病房发生爆发流行,成为抗感染治疗的棘手问题。根据美国院内感染监测数据(NNIS)以及中国院内感染病原菌调查显示,不动杆菌属在医院内感染中占第4位,成为仅次于铜绿假单胞菌的又一个重要的非发酵病原菌。自1991年美国首例碳青霉烯类耐药的不动杆菌属(CRA)报道以来,世界各地陆续出现此类菌株。近两年来,CRA已成为国际社会讨论的热点话题之一。因为一旦亚胺培南耐药,就意味着对现有的常用广谱抗菌药物均耐药,即泛耐药株(PDRA)。由PDRA引起的感染,常常无药可用,病死率高。
     不动杆菌的耐药机制复杂,包括产生灭活酶,使抗菌药物失活;改变作用靶部位,从而逃避抗菌药物的作用;改变外膜孔蛋白结构和数量,降低了细菌外膜药物的通透性;激活外排泵系统,进一步降低了细菌胞内抗菌药物的浓度等。近年来山西医科大学第二医院不动杆菌尤其是鲍曼不动杆菌的分离率不断增加,耐药率也不断上,本研究筛选2007年7月到2008年5月临床分离的多重耐药鲍曼不动杆菌,并对其耐药性、同源性及主要β-内酰胺酶基因型进行研究。
     1、多重耐药鲍曼不动杆菌的筛选及耐药性研究
     菌株来源:连续收集山西医科大学附属第二医院2007年7月到2008年5月临床分离的多重耐药鲍曼不动杆菌菌株。
     方法:采用K-B纸片法,以大肠埃希菌ATCC25922、鲍曼不动杆菌ATCC19606为质控菌,筛选多重耐药不动杆菌。采用琼脂稀释法测定12种抗菌药物的MIC值。抗菌药物结果按2007年CLSI标准判定。
     结果:筛选出60株多重耐药鲍曼不动杆菌,它们对12种抗菌药物的抗菌活性中,亚胺培南、美罗培南的耐药率分别为45.2%、33.9%,含酶抑制剂的复合制剂头孢哌酮/舒巴坦、哌拉西林/他唑巴坦的耐药率分别为33.3%、59.0%,米诺环素和多粘菌素E分别为16.1%、9.7%,其它抗菌药物的耐药率均在70%以上。
     2、多重耐药鲍曼不动杆菌同源性研究
     菌株来源:连续收集山西医科大学附属第二医院2007年7月到2008年5月临床分离的多重耐药鲍曼不动杆菌菌株。
     方法:利用脉冲场凝胶电泳(PFGE)技术对我院多重耐药鲍曼不动杆菌进行同源性研究,并对其流行情况、克隆分型进行了分析。
     结果:60株菌株可分为5个克隆株,其中A、B为主要克隆株。A克隆有3个亚型共28株, B克隆有1个亚型共9株, C克隆有2个亚型共4株, D、E各有3和2株,另外还有14株散发菌株。克隆株在病房内、病房间传播成为我院鲍曼不动杆菌分离率上,菌株不断增加的主要原因。
     3、多重耐药鲍曼不动杆菌主要β-内酰胺酶基因型研究菌株来源:连续收集山西医科大学附属第二医院2007年7月到2008年5月临床分离的多重耐药鲍曼不动杆菌60株。
     方法:利用三维实验、双纸片协同实验,进行各种β-内酰胺酶检测。利用PCR扩增、序列分析明确β-内酰胺酶基因型,PCR扩增主要β-内酰胺酶编码基因包括:①ESBLs基因:TEM型、SHV型、PER型、CTX-M-1型、CTX-M-9型、GES型、VEB型;②染色体携带的AmpC酶基因:ADC;③碳青霉烯酶基因:OXA-23型、OXA-24型、OXA-58型、IMP型、VIM型、SIM-1。
     接合实验、质粒抽提、电转化等明确β-内酰胺酶基因定位。
     结果:三维实验阳性,提示菌株可能产β-内酰胺酶。
     60株多重耐药鲍曼不动杆菌PCR扩增后,blaTEM基因阳性的有42株,blaPER有20株阳性,2株菌株携带SHV-2基因;1株菌株CTX-M-1组引物扩增得到阳性产物,序列分析证实为blaCTX-M-3;blaADC1-7基因阳性的有57株,blaADC8基因阳性的有2株;blaOXA-23基因阳性的有15株。
     对产CTX-M-3型ESBLs的菌株成功进行接合试验,并对其原始菌和接合菌抽提了质粒,国内未见相关报道。产SHV型的两株菌株虽然成功抽提了质粒,但接合实验虽进行多次仍未成功,转化实验也未成功。其它菌株反复多次接合试验、抽提质粒以及电转化均未成功。以上研究表明:
     1、我院鲍曼不动杆菌多重耐药现象严重,对多粘菌素E的耐药率最低,对头孢哌酮/舒巴坦的耐药率相对较低。
     2、我院多重耐药的鲍曼不动杆菌的分离率较高,达34%;菌株可分为5个克隆株,其中A、B为主要克隆株。提示我院有多重耐药鲍曼不动杆菌小型爆发流行的可能,因此,控制院内感染至关重要。
     3、表型检测显示所有菌株金属酶检测试验阴性;头孢曲松、头孢西丁三维实验提示菌株产β-内酰胺酶。
     4、我院多重耐药鲍曼不动杆菌主要的ESBL基因型是blaTEM和blaPER,同时检测到SHV型基因;碳青霉烯酶基因型为blaOXA-23,全部为CARB,提示我院的β-内酰胺酶的基因型分布与国内其他地区的分布情况存在很大差异。
     5、我院多重耐药的鲍曼不动杆菌同产多种β-内酰胺酶基因型的菌株较多,提示临床治疗应针对这种耐药分布合理选用抗菌药物。
     6、对产CTX-M-3型ESBLs的菌株成功进行了接合试验,并对其原始菌和接合菌抽提了质粒。质粒介导的鲍曼不动杆菌的耐药性可以在不同种属间广泛传递、导致耐药性播散的可能,造成医院感染的流行,给临床抗感染治疗构成很大威胁。
Acinetobacter baumannii is an important pathogen which caused the nosocomial infection. With the use of a broad range of antimicrobial agents, the proportion of the multi-drug resistant Acinetobacter baumannii strains is rising, and happened outbreak in many intensive care unit around the world. According to monitoring data of National nosocomial infection surveillance (NNIS) and nosocomial infection surveillance in Chinese, Acinetobacter spp. was the 4 most frequently isolated pathogens causing nosocomial infection. Since 1991 ,the first carbapenem- resistant Acinetobacter (CRA) has been reported in the United States , such strains have emerged one after another around the world. Recently, CRA has become one of the hot topics in the international community. Once imipenem-resistant clone was found, it means that those resistant to all classes of antimicrobial agents available ,that is, the pandrug-resistant Acinetobacter (PDRA). Infection caused by PDRA usually cannot use any classes of antimicrobial agents available, and the fatality rate was high.
     Acinetobacter have complex resistance mechanisms, including generating of inactivated enzyme to inactivate of antimicrobial agents; changing the target site to escape the role of antimicrobial agents; changing the outer membrane pore protein structure and quantity to reduce permeability of the bacterial outer membrane; activating the efflux pump systems to decrease the bacterial intracellular concentration of antibiotics. In recent years, the isolation rate and resistance rates of Acinetobacter baumannii increases gradually in the second hospital of Shanxi Medical University rising. This study screened multi-drug resistant Acinetobacter strains from July 2007 to May 2008 , analyzing their resistance, homology and the majorβ-lactamase genotype.
     1. The screen of multi-drug resistant A. baumannii and Minimal Inhibitory Concentrations determination
     Strain Source: collect the multi-drug resistant A. baumannii which were isolated from July 2007 to May 2008 from the second hospital of Shanxi Medical University. All strains were identified by VITEK-2.
     Methods: Muti-resistant A. baumannii were screened by using K-B method. The MICs of 12 antimicrobials to muti-resistant A. baumannii were detected by agar dilution.
     Results: The resistant rates to imipenem and meropenem were 45.2% and 33.9%, and Cefoperzone/sulbactam and piperacillin/sulbactam were 33.9% and 59.0%, respectively. The strains were resistant to minocycline and polymyxin E of 16.1 and 9.7%, respectively. The resistant rates to other antimicrobial agents were more than 70%.
     2. The relateness of multi-drug resistant A. baumannii
     Strain Source: The multi-drug resistant A. baumannii which were isolated from July 2007 to May 2008 from the second hospital of Shanxi Medical University.
     Methods: Pulse field gel electrophoresis (PFGE) was performed to analyze the relateness of 60 isolates of multi-drug resistant A. baumannii.
     Results:Total of 60 strains belonged to the popular 5 clones. Clone A had 28 strains, Clone B had 9 strains. Clone C, Clone D and Clone E had 4 strains,3 strains and 2 strains respectively. We found that clones A and B were the dominant isolates and had spread widely among wards in the hospitals.
     3.Investigation of majorβ-lactamase genotype in multi-drug resistant A. baumannii Strain Source: Collect the multi-drug resistant A. which were isolated from July 2007 to May 2008 from the second hospital of Shanxi Medical University.
     Methods: Crudeβ-lactamase preparations were extracted and three-dimensional tests were performed to detectedβ-lactamase. Metallo-β-lactamaseproducing isolates were screened by the double-disk.
     β-lactamase genotype were analyzed by PCR. Conjugation test, plasmid extraction and electrotransformation were performed to locate theβ-lactamase gene.
     Results: Metallo-β-lactamase were not detected by the double-disk. Three-dimensional tests were positive, suggesting that the strains can produceβ-lactamases.
     42 multi-drug resistant A. baumannii contained blaTEM-1, blaPER has 20 positive. 2 strains and 1 strains carried blaSHV-2 and CTX-M-1 respectively. blaOXA-23 gene-positive was detect in 15 strains. And the 15 strains were CARB.
     The conjugation test of producing CTX-M-3-type ESBLs strains were performed successfully. There is no reports which we investigated on A. baumannii C in China. Although the strains blaSHV-1 extracted the plasmid , the conjugation test failed. Plasmid extraction, conjugation test, electrotransformation, and Sourthern blot were not successful in other strains.
     The above sresults shows:
     1. Multi-drug resistance was more and more serious. Colinstin remained good susceptibility against A. baumannii. The resistance rates to cefoperazone/sulbactam were low relatively.
     2. The isolate rates of multi-drug resistant Acinetobacter baumannii increased.Total of 60 strains belonged to the popular 5 clones and clones A and B were the dominant isolates.It suggested that there ia a small outbreak of multi-drug resistant Acinetobacter baumannii in our hospital.
     3. Metallo-β-lactamase were not detected by the double-disk. Three-dimensional tests were positive, suggesting that the strains can produceβ-lactamases.
     4. In our multi-drug resistant A. baumannii, blaTEM and blaPER are the main ESBL genotype. blaOXA-23 was main carbapenemases genotype,and the strains were CARB.It show that there was a diversity in the distribution of lactamase genotype between our hospital and other regions.
     5. There are strains producing the more than twoβ-lactamase genotypes. It suggested that we should choose the antibacterial agent reasonably to this situation.
     6.The conjugation test of producing CTX-M-3-type ESBLs strains were performed successfully. The plasmid-mediated resistance of A. baumannii can be transfered widely in different species, leading to disseminating resistance. It resulted in the prevalence of nosocomial infection .
引文
[1] Perez F, Hujer AM, Hujer KM et al. Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2007; 51: 3471-3484.
    [2]于勇,常东.烧伤病区抗生素使用与铜绿假单胞菌耐药水平变化的关系[J].中国抗生素杂志,2004,29(2):92-95.
    [3]王辉,郭萍,孙宏莉等.碳青霉烯类耐药的不动杆菌分子流行病学及其泛耐药的分子机制,中华检验医学杂志,2006,29(12)1066-1073.
    [4] Celenza G, Pellegrini C, Caccamo M et al. Spread of bla(CTX-M-type) and bla(PER-2) beta-lactamase genes in clinical isolates from Bolivian hospitals. J Antimicrob Chemother 2006; 57: 975-978.
    [5] Naas T, Bogaerts P, Bauraing C et al. Emergence of PER and VEB extended-spectrum beta-lactamases in Acinetobacter baumannii in Belgium. J Antimicrob Chemother 2006; 58: 178-182.
    [6] Poirel L, Cabanne L, Vahaboglu H et al. Genetic environment and expression of the extended-spectrum beta-lactamase blaPER-1 gene in gram-negative bacteria. Antimicrob Agents Chemother 2005; 49: 1708-1713.
    [7] Yu YS, Yang Q, Xu XW et al. Typing and characterization of carbapenem-resistant Acinetobacter calcoaceticus-baumannii complex in a Chinese hospital. J Med Microbiol 2004; 53: 653-656.
    [8] Hujer KM, Hujer AM, Hulten EA et al. Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother 2006; 50: 4114-4123.
    [9] Huang ZM, Mao PH, Chen Y et al. Study on the molecular epidemiology of SHV type beta-lactamase-encoding genes of multiple-drug-resistant acinetobacter baumannii. Zhonghua Liu Xing Bing Xue Za Zhi 2004; 25: 425-427.
    [10] Naiemi NA, Duim B, Savelkoul PH et al. Widespread transfer of resistance genes between bacterial species in an intensive care unit: implications for hospital epidemiology. J Clin Microbiol 2005; 43: 4862-4864.
    [11] Endimiani A, Luzzaro F, Migliavacca R et al. Spread in an Italian hospital of a clonal Acinetobacter baumannii strain producing the TEM-92 extended-spectrum beta-lactamase. Antimicrob Agents Chemother 2007; 51: 2211-2214.
    [12] Nagano N, Nagano Y, Cordevant C et al. Nosocomial transmission of CTX-M-2beta-lactamase-producing Acinetobacter baumannii in a neurosurgery ward. J Clin Microbiol 2004; 42: 3978-3984.
    [13] Walsh TR, Toleman MA, Poirel L et al. Metallo-beta-lactamases: the quiet before the storm? Clin Microbiol Rev 2005; 18: 306-325.
    [14] Watanabe M, Iyobe S, Inoue M et al. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother 1991; 35: 147-151.
    [15] Walsh TR. The emergence and implications of metallo-beta-lactamases in Gram-negative bacteria. Clin Microbiol Infect 2005; 11 Suppl 6: 2-9.
    [16] Yum JH, Yi K, Lee H et al. Molecular characterization of metallo-beta-lactamase-producing Acinetobacter baumannii and Acinetobacter genomospecies 3 from Korea: identification of two new integrons carrying the bla(VIM-2) gene cassettes. J Antimicrob Chemother 2002; 49: 837-840.
    [17] Lee K, Yum JH, Yong D et al. Novel acquired metallo-beta-lactamase gene, bla(SIM-1), in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemother 2005; 49: 4485-4491.
    [18] Hujer KM, Hamza NS, Hujer AM et al. Identification of a new allelic variant of the Acinetobacter baumannii cephalosporinase, ADC-7 beta-lactamase: defining a unique family of class C enzymes. Antimicrob Agents Chemother 2005; 49: 2941-2948.
    [19] Walther-Rasmussen J, Hoiby N. OXA-type carbapenemases. J Antimicrob Chemother 2006; 57: 373-383.
    [20] Brown S, Amyes S. OXA (beta)-lactamases in Acinetobacter: the story so far. J Antimicrob Chemother 2006; 57: 1-3.
    [21] Coelho JM, Turton JF, Kaufmann ME et al. Occurrence of carbapenem-resistant Acinetobacter baumannii clones at multiple hospitals in London and Southeast England. J Clin Microbiol 2006; 44: 3623-3627.
    [22] Linden PK, Paterson DL. Parenteral and inhaled colistin for treatment of ventilator-associated pneumonia. Clin Infect Dis 2006; 43 Suppl 2: S89-94.
    [23] Pournaras S, Markogiannakis A, Ikonomidis A et al. Outbreak of multiple clones of imipenem-resistant Acinetobacter baumannii isolates expressing OXA-58 carbapenemase in an intensive care unit. J Antimicrob Chemother 2006; 57: 557-561.
    [24] Poirel L, Nordmann P. Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 2006; 12: 826-836.
    [25] Turton JF, Ward ME, Woodford N et al. The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol Lett 2006; 258: 72-77.
    [26] Villers D, Espase E, Coste-Burel M, et al. Nosocomial Acinetobacter baumannii infections: microbiological and clinical epidemiology. Ann InternMed, 1998, 129: 182-189.
    [27] Zarrulli R, CrispinoM, BagattiniM, et al. Molecular epidemiology of sequential outbreaks of Acinetobacter baumannii in an intensive care unit shows the emergency of carbapenem resistance. J Clin Microbiol, 2004, 42: 946-953.
    [28] Dalla-Costa LM, Coelho JM, Souza HA et al. Outbreak of carbapenem-resistant Acinetobacter baumannii producing the OXA-23 enzyme in Curitiba, Brazil. J Clin Microbiol 2003; 41: 3403-3406.
    [29] Tatman-Otkun M, Gurcan S, Ozer B et al. Annual trends in antibiotic resistance of nosocomial Acinetobacter baumannii strains and the effect of synergistic antibiotic combinations. New Microbiol 2004; 27: 21-28.
    [30] Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 2005; 40: 1333-41.
    [31] Kallel H, Bahloul M, Hergafi L et al. Colistin as a salvage therapy for nosocomial infections caused by multidrug-resistant bacteria in the ICU. Int J Antimicrob Agents 2006; 28: 366-369.
    [32] Wood GC, Hanes SD, Boucher BA et al. Tetracyclines for treating multidrug-resistant Acinetobacter baumannii ventilator-associated pneumonia. Intensive Care Med 2003; 29: 2072-2076.
    [33] Coelho JM, Turton JF, Kaufmann ME et al. Occurrence of carbapenem-resistant Acinetobacter baumannii clones at multiple hospitals in London and Southeast England. J Clin Microbiol 2006; 44: 3623-3627.
    [34] Livermore DM, Woodford N. The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 2006; 14: 413-20.
    [35] Tenover FC, Arbeit RD, Goering RV et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 1995; 33: 2233-2239.
    [36]周华.多重耐药鲍曼不动杆菌耐药机制及同源性研究:博士学位论文.浙江:浙江医科大学,2008
    [37] Barbolla RE, Centron D, Di Martino A et al. Identification of an epidemic carbapenem-resistant Acinetobacter baumannii strain at hospitals in Buenos Aires City. Diagn Microbiol Infect Dis 2003; 45: 261-264.
    [38] Houang ET, Chu YW, Leung CM et al. Epidemiology and infection control implications of Acinetobacter spp. in Hong Kong. J Clin Microbiol 2001; 39: 228-234.
    [39] Liu SY, Lin JY, Chu C et al. Integron-associated imipenem resistance in Acinetobacterbaumannii isolated from a regional hospital in Taiwan. Int J Antimicrob Agents 2006; 27: 81-84.
    [40] Naas T, Levy M, Hirschauer C et al. Outbreak of carbapenem-resistant Acinetobacter baumannii producing the carbapenemase OXA-23 in a tertiary care hospital of Papeete, French Polynesia. J Clin Microbiol 2005; 43: 4826-4829.
    [41] Quale J, Bratu S, Landman D et al. Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. Clin Infect Dis 2003; 37: 214-220.
    [42] Van Looveren M, Goossens H. Antimicrobial resistance of Acinetobacter spp. in Europe. Clin Microbiol Infect 2004; 10: 684-704.
    [43] Yu YS, Yang Q, Xu XW et al. Typing and characterization of carbapenem-resistant Acinetobacter calcoaceticus-baumannii complex in a Chinese hospital. J Med Microbiol 2004; 53: 653-656.
    [44] van Dessel H, Dijkshoorn L, van der Reijden T et al. Identification of a new geographically widespread multiresistant Acinetobacter baumannii clone from European hospitals. Res Microbiol 2004; 155: 105-112.
    [45] Landman D, Quale JM, Mayorga D et al. Citywide clonal outbreak of multiresistant Acinetobacter baumannii and Pseudomonas aeruginosa in Brooklyn, NY: the preantibiotic era has returned. Arch Intern Med 2002; 162: 1515-1520.
    [46] Da Silva GJ, Quinteira S, Bertolo E et al. Long-term dissemination of an OXA-40 carbapenemase-producing Acinetobacter baumannii clone in the Iberian Peninsula. J Antimicrob Chemother 2004; 54: 255-258.
    [47] Coudron PE,Moland ES,Thomoson KS.Occurrence and detection of AmpCβ-lactamases among Escherichia coli. Klebuiella pneumonia, and Proteus mirabilis isohtes at a veteranis medical center[J].J Clin Mierobiol,2000:38:1791-1796.
    [48]吴伟元,陈民钧,王辉,等阴沟肠杆菌去阻遏持续高产AMPC酶和ESBLS的检测[J].中国临床药理学杂志,2001,17(2):104-110.
    [49] Yunsong Yu, Shujuan Ji, Yagang Chen, et al. Resistance of strains producing extended-spectrumβ-lactamases and genotype distribution in China.[J] Journal of Infection, 2007 Jan;54(1):53-57.
    [50]薛峰,蒋晓飞,倪语星. PER-1型超广谱β-内酰胺酶在革兰阴性杆菌中的流行情况调查.中国抗感染化疗杂志,2004,4(1):18-20.
    [51]俞云松.超广谱β-内酰胺酶研究进展.中华医学杂志,2006,86(9):641-644.
    [52]侯晓娜,傅炜昕,杨婧等.检测AmpC酶三维试验方法的改进[J].中华医院感染学杂志.2005,15(9):1077-1080.
    [53] FARRELL D J ,MORRISSEY I ,BA KKER S. Gllobal distribution of TEM-1 and ROB-1 beta-lactamases in Haemophilus influenz ae[J] . Antimicrob Chemother, 2005, 56 (4) :233-236.
    [54]蒋晓飞,乐军,朱月秋,等.上海出现PER-l型超广谱β-内酰胺酶.中华检验医学杂志,2003, 26:229-232.
    [55] Vahaboglu H ,Ozturk R ,Aygun G,et al . Widespread Detection of PER-1-type extended- spectrum beta-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey : a nationwide multicenter study. Antimicrob Agents Chemother,1997,41: 2265-2269.
    [1]Bou G,Cervero G,Domingn ez MA,et a1.Characterization of a nosocomial outbreak caused by a multiresistant Acinetobacter baumannii strain with a carbapenem-hydrolyzing enzyme: high-level carbapenem resistance in A baumannii is not due solely to the presence of beta-lactamases. J Clini Microbiol,2000, 38(9):3299-3305.
    [2]方晓霞,杨月霞,邱付兰,等.多重耐药鲍曼不动杆菌致烧伤患者重度感染一例.上海医学检验杂志,1999,14(3):191.
    [3]Aygun G, Demirkiran O, Utku T, et al. Enviromental contamination during a carbapenem-resistant Acinetobacter baumannii outbreak in an intensive care unit. J Hosp Infect,2002,52:259-262.
    [4]黄支密,毛培华,陈榆,等.鲍曼不动杆菌SHV型内酰胺酶耐药基因分子流行病学研究.中华流行病学杂志,2004 ,25:425-427.
    [5]Vahaboglu H, Ozturk R, Aygun G, et al. Widespread Detection of PER-1-type extended-spectrum beta-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob Agents Chemother,1997,41:2265-2269.
    [6]蒋晓飞,乐军,朱月秋等.上海出现PER-1型超广谱β内酰胺酶[J]中华检验医学杂志, 2003, 26(04) 229-232 .
    [7]Poirel L , Menuteau O, Agoli N , et al . Out break of extended-spectrumβ-Lactamas VEB-1 producing isolates of acinetobacter baumannii in a french hospital . J Clin Microbiol ,2003 ,39 :3542-3547.
    [8]Nagano N , Nagano Y, Cordevant C , et al . Nosocomial transmission of CTX-M-2 beta-lactamase-producing Acinetobacter baumannii in a neurosurgery ward. J Clin Microbiol ,2004 ,42 :3978-3984.
    [9]Riccio ML,Franceschini N, Boschi L,et al.Characterization of the metallo-β- lactamase determinant of Acinetobacter baumannii AC-54/97 reveal the existence of blaIMP allelic variants carried by gene cassettes of different phylogeny. Antimicrob Agents Chemother,2000,44:1229-1235.
    [10]Takahashi A, Yomoda S, Kobayashi I, et al. Detection of carbapenemase-producing Acinetobacter baumannii in a hospital. J Clin Microbiol,2000,38:526-529.
    [11]Urban C,Go E,Mariano N,et al.Interaction of sulbactam,clavulanic acid and tazobactam with penicillin-binding protein of imipenen-resistant and susceptible Acinetobacter baumannii. FEMSMicrobiol Lett,1995,125:193-198.
    [12]Tsakris A ,Ikonomidis A,Pournaras S,et al. VIM-1 metallo-beta-lactamase in Acinetobacter baumannii. Emerg Infect Dis,2006,12:981-983.
    [13]Lee K, Yum J H , Yong D , et al . Novel acquired metallo-beta- lactamase gene , bla ( SIM-1 ) , in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob Agents Chemot her ,2005 ,49 :4485-4491.
    [14]Go ES, Urban C, Bruns J, et al. Clincal and molecular epidemiology of Acinetobacter infections sensitive only to polymyxin B and sulbactam. Lancet,1994,3444 :1329-1332.
    [15]Corvec S , Caroff N , Espaze E , et al . AmpC cephalosporinase hyperprodution in Acinetobacter baumanniiclinical st rains. J Antimicrob Chemother ,2003 ,52 :629-635.
    [16]Hujer KM ,Hamza NS ,Hujer AM ,et al . Identificatinon of a new alleic variant of the Acinetobacter baumanniiclinical cephalosporinase , ADC-7 beta-lactamase : defining a unigue family of class C enzymes. Antimicrob Agents Chemother , 2005,49:2941-2948.
    [17]蒋燕群,曹娜,陈泰尧,等.革兰阴性杆菌中质粒ampC基因的检测与分析.上海医学检验杂志,2003,18 :328-330.
    [18]Afzal-Shah M, Woodford N, Livermore DM. Characterization of OXA-25,OXA-26,and OXA-27,molecular class D beta-lacta-mases associated with carbapenem resistance in clinical isolates of Acinetobacter baumannii. Antimicrob Agents Chemother,2001,45(2):583-588.
    [19]Thanassi DG,Cheng L W,Nikaido H. Active efflux of bile salts by Escherrichia coli[J] .Bacteriol ,1997,179 (8) :2512-2518.
    [20]Quale J,Bratu S,Landman D,et a1.Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter banmannii endemic in New York City baumannii.Clin Infect Dis,2003,37(2):2l4-220.
    [21]Nemec A ,Dolzani L ,Brisse S ,et al . Diversity of aminoglycoside-resistance genes and their assiciation with 1 integrons among strains of Acinetobacter baumannii pan-European clones. J Med Microbiol ,2004,53:1233-1240.
    [22]Magnet S,Courvalin P,Lambert T. Resistance nodulation cell division—type eflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob Agents Chemother,200l,45(12):337-338.
    [23]Higgins PG, Wisplinghoff H , Stefanik D , et al . Selection of topoisomerase mutations and overexpression of adaB rnRNA transcripts during an outbreak of Acinetobacter baumannii. J Antimicrob Chemot her ,2004 ,54 :821-823.
    [24]Spence RP,Towner KJ.Frequencies and mechanisms of resistant to moxifloxacin innosocomial isolates of Acinetobacter banmannii.J Antimicrob Chemothe, 2003,52(4);687-690.
    [25]陆春雨,张正.鲍曼不动杆菌多重耐药与胞膜主动外排作用关系的研究.北京医学,2007,29(6)356-360.
    [26]Altoparlak U,Aktas F,Celebi D ,et a1.Prevalence of metallo-β-1actamase among Pseudomonas aeruginosa and Acinetobacter baumannii isolated from burn wounds and in vitro activities of antibiotic combinations against these isolates.Bums,2005,3l(6):707-7l0.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700