热声核特性参数实验研究及高频微型热声实验装置的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文的课题是在多项科学基金的资助下完成的,以高频热声装置的微型化为研究背景,以热声核为研究对象,在分析了热声核的特性参数和网络参数的基础上,提出了采用特征时间来作为分析和评价热声系统的性能指标,以便于指导和分析热声系统的理论研究和设计工作。通过对高频热声制冷机及其外激励装置微型化的设计和性能实验测试,从理论和实验两方面来探索提高热声装置的效率和实用化的优化方法。主要工作内容包括以下几个方面:
     首先通过对热声核的参数激励原理的分析,指出热声核子系统符合三频率参数网络模型,热声效应中能量的反馈和增益来自于不同频率的耦合,因此热声核的频率特性是影响热声效应的重要参数。随着频率的提高,系统的尺寸变小,其空间尺度和时间尺度已经可以与系统的动态过程时间相比,此时把系统的特征时间ωOτTA即热声弛豫时间和频率的乘积一起作为衡量热声效应的一个指标,可以有效的评价热机系统的工作性能,通过采用Zuber的时变率相似分析方法进一步验证了这个指标的可行性,其有助于简化以往用于热声系统的复杂的分析方法。
     其次,鉴于热声核在热声热机中的重要地位和作用,正确的设计和选择高效率的热声核就成为热声热机设计中的关键一步。由于不同热声核与同一谐振管匹配后的频谱特性不同,导致其对频率的选择性不同。通过对二者匹配后的频率特性进行实验辨识,比较了五种不同类型热声核填料的复流容,在此基础上,以品质因数为评价指标对这五种热声核的性能进行了对比,以此作为优选不同热声核与谐振管匹配的依据。
     第三,采用系统辨识的方法是分析热声核中的复杂流动关系的一个简化而有效的手段,在建立热声核子系统网络模型的基础上,利用参数辨识技术对热声核在两种不同长度谐振管中的网络参数声阻、声感和声容分别在加热和不加热的情况下进行了实验辨识,并与理论计算结果进行了对比分析,初步验证了系统辨识方法可用于热声系统的参数辨识。
     第四,较高的频率使得热声热机的整体尺寸较小,因而要求与其配合使用的所有装置的尺寸也都比较小,同时,不降低其工作性能指标。结合热声热机的实际特点和工作要求,对热声热机的外激励驱动装置进行了微型化的优化设计,以动磁结构为基本形式,设计并计算了内外两种磁路结构;以改进后的柔性蜗旋弹簧组件作为悬吊结构,对比了型线改进前后的相关性能指标;利用弹性材料和结构设计来调整整机中各部件的同轴度,以有效提高动磁激振器的使用寿命,在此基础上,设计了内磁路结构形式的动磁激振器,以替代效率不高的扬声器作为热声制冷机的驱动装置。
     第五,谐振管的形状对于热声热机的性能有一定的影响,通过对圆形截面和扁形截面的两种谐振管进行静态模拟计算分析,提出可以通过优化谐振管的截面来获取高振幅的声场。此外,对于高频的热声制冷机,鉴于可借鉴的设计经验比较少,为了尽快实现可实用化的目的,设计并加工了一台小尺寸的风冷式热声制冷实验样机,以制冷温降为性能指标,进行了实验验证,并对实验中发现的问题进行了分析。
This research was supported by several science and project foundations which focused on the studies of high frequency thermoacoustic engine. Based on the analysis of characteristic and network parameters of thermoacoustic core, the characteristic time was used to evaluate the performance of thermoacoustic core in order to simplify the theory study method and instruct the engine design work. Through the design process and experimental performance test on the high frequency thermoacoustic refrigerator and its external excitation device, the optimizing experience could be achieved from theory and reality. The following were the main work:
     At first, basing on the analysis of parameter exciting principle, the network of the thermoacoustic core was conformed to a three-frequency parameter. The coupling of different frequencies was devoted to the energy gain and feedback. So it was the frequency who decided the ability and efficiency of the thermoacoustic effect in the engine. With the rising of the frequency, the size of the thermoacoustic engine would become smaller and smaller. The characteristic space and time dimensions were comparative with the time of system dynamic process. Then the relaxation time and frequency together could be used to scale the thermoacoustic effect. By the help of Professor Zuber's fractional scaling analysis, the characteristic time was proved to simplify the current theory research on thermoacoustic system effectively.
     Secondly, the thermoacoustic core was should be designed and chose correctly and effectively for its import role on the thermoacoustic effect. Since different thermoacoustic cores had different frequency properties, they had different frequency choices in the same resonator. Then by the experimental identification on the frequency characteristic of five kinds of thermoacoustic core coupled with the same resonator, the complex compliance and quality factor of these matrixes were experimentally analyzed respectively in the system of loudspeaker-driven thermoacoustic resonator (TAR). And the quality factor was then used to evaluate the performance of the thermoacoustic core to study the matching relationship with the resonator.
     Thirdly, the system identification method could help to analyze the complicated flow phenomena of gas whin the theromacoustic core. After setting up the network model of thermoacoustic core, the parameter identification skill was used to identify the network parameter of thermoacoustic core experimentally. The resistance, inertance and compliance were identified in two kinds of length resonator with and without temperature gradient and compared with the theory results to test and verify the feasibility of the system identification
     Fourthly, the high frequency made the size of thermoacoustic engine and external exiting device small without performance reduction. After consideration the requirement of thermoacoustic engine, a miniature moving magnet actuator was designed and made to drive a small thermoacoustic refrigerator. Two kinds of magnet configuration was designed and calculated for different application. The line of spring was improved and its static load was simulated and compared with the unimproved one. The concentricity of the whole engine was designed to be adjusted through the frame.
     At last, the shape of the resonator had some influences on the thermoacoustic engine. By simulating two kinds of cross section resonator, the performance of circular and flat tube was compared and analyzed. The result showed that the flat tube could improve the sound field in some degree. Furthermore, a high frequency thermoacoustic refrigerator was made to investigate experimentally its refrigeration performance and accumulate the miniature engine experience.
引文
[1]Viswannath R, Nair R, Wakharkar V, et al. Emerging directions for packaging technologies. Intel Technology Journal,2002,6:61-74
    [2]刘腾,李静.芯片冷却技术的最新研究进展及其评价,制冷学报,2004,3:22-32.
    [3]High-Power Microelectronics Thermal Management and Packaging Fundmenals.
    [4]郭方中,李青.热动力学.第一版.武汉:华中科技大学,2007.
    [5]Putnam A A, Dennis W R. Survey of organ-pipe oscillations in combustion systems. J. Acoust Soc. Am,1956,28(2):246-259.
    [6]Feldman K T. Review of the literature on Sondhauss thermoacoustic phenomena. J. Sound. Vib.,1968,7(1):71-82.
    [7]Feldman K T. Review of the literature on Rijke thermoacoustic phenomena. J Sound Vib.,1968,7(1):83-89.
    [8]Kirchhoff G. Ueber den Einfluss der Warmeleitung in einem gas auf die challbewegung. Ann Phys (Leipzig),1868,177:134.
    [9]Rayleigh L. The theory of sound. Dover, New York,1945,2:Sec.322.
    [10]Taconis K W. Vaper-liquid equilibrium of solutions of He3 in He4. Physica,1949, 15:738.
    [11]Rott N. Thermally driven acoustic oscillations, Part II:Stability limit for helium. Z. Angew. Math. Phys.,1973,24:54.
    [12]Rott N. The influence of heat conduction on acoustic streaming. Z. Angew. Math. Phys.,1974,25:417-421.
    [13]Rott N. Thermally driven acoustic oscillations, Part III:Second-order heat flux. Z. Angew. Math. Phys.,1975,26:43-49.
    [14]Rott N, and Zouzoulas G. Thermally driven acoustic oscillations, Part IV:Tubes with variable cross section. Z. Angew. Math. Phys.,1976,27:197-224.
    [15]Rott N. Thermoacoustics. Adv. Appl. Mech.,1980,20:135-175.
    [16]Wheatley J C, Cox A. Natural engines. Physics Today,1985,38:50.
    [17]Swift G W. Thermoacoustic engines. J Acoust Soc Am,1988,84(4):1145-1180.
    [18]Swift G W. Thermoacoustics:A unifying perspective for some engines and refrigerators, Fifth draft, America:LANA,2001.
    [19]Ward WC, Swift GW. Full tested software and user's guide available at http://www.lanl.gov/thermoacoustics/
    [20]Carter R L, White M, Steele AM. Private communication of Atomics International Division of North American Aviation, Inc.,1962.
    [21]Feldman K T. A study of heat generated pressure oscillation in a closed end pipe, Ph.D. dissertation. Mechanical Engineering, University of Missouri,1966.
    [22]Feldman K T. Review of the literature on Sondhauss thermoacoustic phenomena. J. Sound Vib,1968,7:71-82.
    [23]Feldman K T. Review of the literature on Rijke thermoacoustic phenomena. J. Sound Vib,1968,7:83-89.
    [24]Hofler T J. Thermoacoustic refrigertaor design and performance. PhD dissertation, physics departement, University of Clifornia at San Diego,1986.
    [25]Garrett S, Adeff J A, Hofler T J. Thermoacoustic refrigerator for space applications. Journal of Thermophysics and Heat transfer,1993,50:595-599.
    [26]Ceperley P H. A pistonless Stirling engine-the traveling wave heat engine. J. Acoust. Soc.Am,1979,66(5):1508-1513
    [27]Ceperley P H. Gain and efficiency of a short traveling wave heat engine. J. Acoust. Soc. Am.,1985,77(3):1239-1244.
    [28]Backhaus S, Swift G W. A thermoacoustic-Stirling heat engine. Nature,1999,399: 335-338.
    [29]Backhaus S, Swift G W. A thermoacoustic-Stirling heat engine:Detailed study. J. Acoust. Soc. Am.,2000,107(6):3148-3166.
    [30]Chen R L, Garrett S L. Solar/heat-driven thermoacoustic engine. J Acoust Soc Am, 1998; 103(5):2841.
    [31]Garrett S L, Backhaus S. The power of sound. American Scientist,2000,88: 516-525.
    [32]Jay A. Adeff, Thomas J. Hofler. Design and construction of a solar-powered, thermoacoustically driven, thermoacoustic refrigerator. J Acoust Soc Am,2000, 107(6):L37-42.
    [33]Gardner D L, Swift G W. A cascade thermoacoustic engine. J Acoust Soc Am, 2003,114(4):1905-1919.
    [34]Space thermoacoustic refrigerator, http://www.acs.psu.edu/thermoacoustics/refr-igeration/star.htm.
    [35]Shipboard electronics thermoacoustic cooler, http://www.acs.psu.edu/thermoa-coustics/refrigeration/setac.htm.
    [36]Poese M E, Smith R W M, Garrett S L. Thermoacoustic refrigeration for ice cream sales, http://www.structuredproducts.ge.com
    [37]Swift G W. Thermoacoustic natural gas liquefier. DOE Natural Gas Conference, Houston.1997.1-5.
    [38]Arman B, Wollan J J, Swift G W, et al. Thermoacoustic natural gas liquefiers and recent developments. In:Chen, G B, Hebral, B, and Chen, G M. Cryogenic and Refrigeration Proceedings of ICCR. Hang Zhou:International Academic Publisher and World Publishing Corporation,2003.123-127.
    [39]Matsubara Y, Zhou S L, Experimental research of thermoacoustic prime mover, Cryogenics,1998,387:813-822
    [40]Yazaki T, Iwata A, Maekawa T, et al. Traveling wave thermoacoustic engine in a looped tube. Physical Review Letter,1998,81(15):3128-3131.
    [41]Biwa T, Ueda Y, Yazaki T, et, al. Work flow measurements in a thermoacoustic engine. Cryogenics,2001,41:305-310
    [42]Ueda Y, Biwa T, Uichiro M. Acoustic field in a thermoacoustic Stirling engine having a looped tube and resonator. Applied Physics Letters,2002,81(27): 5252-5254.
    [43]Ueda Y, Biwa T, Yazaki T, et al. Construction of a thermoacoustic Stirling cooler. Physica B,2003,329-333:1600-1601.
    [44]Ueda Y, Biwa T, Mizutani U, et al. Experimental studies of a thermoacoustic Stirling prime mover and its application to a cooler. J. Acoust. Soc. Am.,2004, 115(3):1134-1141.
    [45]Biwa T, Tashiro Y, Mizutani U, Experimental demonstration of thermoacoustic energy conversion in a resonator, Physical Reviewe,2004,69:066304-1-6
    [46]Ueda Y, Biwa T, Mizutani U, et al. Thermodynamic cycles executed in a looped-tube thermoacoustic engine (L). J. Acoust. Soc. Am.,2005,117(6): 3369-3372.
    [47]Biwa T, Ueda Y, Nomura H, et al. Measurement of the Q value of an acoustic resonator. Physical Reviewe,2005,72:026601-1-6.
    [48]Biwa T. Energy flow measurements in acoustic waves in a duct. Ultrasonics,2006, 44:e1523-e1526.
    [49]Biwa T, Ishigaki M, Tashiro Y, Ueda Y. Visualization of Acoustic Streaming in a Looped Tube Thermoacoustic Engine with a Jet Pump. In:Atchley AA, Sparrow VW and Keolian RM. Innovations in Nonlinear Acoustics:17th International Symposium on Nonlinear Acoustics, American Institute of Physics,2006.395-398.
    [50]Miwa M, Sumi T, Biwa T, et al. Measurement of acoustic output power in a traveling wave engine, Ultrasonics,2006,44:e1527-e1529
    [51]Sugimoto N, Horimoto H, Masuda M, et al. Thermoacoustic effects on propagation of a nonlinear pulse in a gas-filled tube with a temperature gradient. In:Atchley AA, Sparrow VW and Keolian RM. Innovations in Nonlinear Acoustics:17th International Symposium on Nonlinear Acoustics, American Institute of Physics, 2006.359-362.
    [52]Biwa, T, Tashiro Y, Ishigaki M, et al. Measurements of acoustic streaming in a looped-tube thermoacoustic engine with a jet pump, Journal of Applied Physics, 2007,101:064914-1-5.
    [53]Biwa T, Hasegawa D Yazaki T. Low temperature differential thermoacoustic Stirling engine. Applited physics letters,2010,97:034102-1-3
    [54]Suigata H, Matsubara Y, Kushino A, et al. Experimental study on thermally actuated pressure wave generator for space cryocooler. Cryogenics,2004,44: 431-437.
    [55]Suigata H, Toyama S, Dai W, et al. Basic study on space borne thermal compressor for pulse tube cryocooler.
    [56]Mastrubra, Dai W, Suigata H, et al. Pressure wave generator for a pulse tube cooler. Cryocoolers,2003,12:343-348.
    [57]Tijani M E H, Zeegers J C H, De Waele, A T A M. A gas-spring system for optimizing loudspeakers in thermoacoustic refrigerators. Journal of Applied Physics,2002,92(4):2159-2165
    [58]Tijani M E H, Zeegers J C H, De Waele, A T A M. Construction and performance of a thermoacoustic refrigerator. Cryogenics,2002,42:59-66.
    [59]Tijani M E H, Zeegers J C H, De Waele, A T A M. Design of thermoacoustic refrigerators. Cryogenics,2002,42:49-57.
    [60]Tijani M E H, Zeegers J C H, De Waele, A T A M. Prandtl number and thermoacoustic refrigerators. J. Acoust. Soc. Am.,2002,112 (1):134-143.
    [61]Tijani M E H, Zeegers J C H, De Waele, A T A M. The optimal stack spacing for thermoacoustic refrigeration. J. Acoust. Soc. Am.,2002,112 (1):128-133.
    [62]Tijani M E H, Spoelstra S, Bach P W. Thermal-relaxation dissipation in thermoacoustic systems, Applied Acoustics,2004,65:1-13.
    [63]Herman C., "Chip level thermal management using MEM thermoacoustic refrigerators", submitted to the Rockwell Science Corporation, http://www. darpa.mil/MTO/HERETIC/projects/6.html
    [64]Chen R L, Chen Y C, Chen C L. Development of Miniature Thermoacoustic Refrigeration. In:40th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 2002,1-10.
    [65]Symko O G. High Frequency Thermoacoustic Refrigerator. Department of Physics University of Utah,1999.1-19.
    [66]Symko O G. Acoustic Approach to Thermal Management:Miniature Thermoacoustic Engines. IEEE,2006,771-776.
    [67]Symko O G, Abdel-Rahman E, Kwon Y S, et al. Design and development of high-frequency thermoacoustic engines for thermal management in microelectronics. Microelectronics Journal,2004,35:185-191.
    [68]Symko O G, Kwon Y S.2009 Compact thermoacoustic energy converter. US, Patent Application Publication,2009/0184604 Al,2009.1-11.
    [69]Symko O G, Abdel-Rahman E, Zhang D J.High Frequency Thermoacoustic Refrigerator. US, Patent Innovotion,6574968B1,2003.1-23.
    [70]Symko O G, Abdel-Rahman E, Zhang D J.High Frequency Thermoacoustic Refrigerator. US, Patent Innovotion,6804967B2,2004.1-22.
    [71]Symko O G, Abdel-Rahman E, Zhang D J. High Frequency Thermoacoustic Refrigerator US, Patent Application Publication,2004/0000150A1,2004.1-24.
    [72]Kwon Y S. Study of Thermoacoustic Engines Operating at Frequencies Between 2KHz and 25KHz:[Ph.D] Salt Lake City, US:The University of Utah,2006.
    [73]McLaughlin B J, Study and Development of High Frequency Thermoacoustic Prime Movers With Piezoelectric Transducers:[Thesis for Ph.D] Salt Lake City, US:The University of Utah,2008.
    [74]Rodrigudz I A. Performance of Annular High Frequency Thermoacoustic Engines: [Thesis for Ph.D] Salt Lake City, US:The University of Utah,2008.
    [75]Andersen B J, Symko O G. Helmholtz-like resonators for thermoacoustic prime movers. J. Acoust. Soc. Am.,2009,125(2):787-792.
    [76]Gillman B J.A Study of Coupled Thermoacoustic Engines:[Thesis for Ph.D] Salt Lake City, US:The University of Utah,2009.
    [77]Sadia national lab. Microelectronics and Microsystems Power Systems
    [78]肖家华.低温交变流动回热器流动和热力特性的解析模型及实验装置:[硕士学位论文].武汉:华中科技大学图书馆,1986.
    [79]Guo F Z, Chou Y M, Lee S Z, et al. Flow characteristics of a cyclic flow regenerator. Cryogenics,1987,27:152-155.
    [80]Guo F Z. The investigation on cyclic flow regenerator for Stirling cycle cryocooler. Proc. of JSJS-3, Japan,1989,59.
    [81]Guo F Z. Network model of cyclic flow regenerator for Stirling cryocooler. In: Proceedings of ICEC-13, Beijing,1990,199
    [82]Guo F Z, Li Q. Progress of the research work on network modeling of split cycle Stirling cryocooler. In:Proc. of JSJS-4, Beijing,1993,152.
    [83]肖家华.热声效应与回热式制冷机(热机)的热声理论:[博士学位论文].北京:中国科学院情报文献中心,1990.
    [84]邓晓辉.回热器的热声机理及热声热机设计理论:[博士学位论文].武汉:华中科技大学图书馆,1994.
    [85]Huang B J. Linear network analysis of refrigerator in a cyclic-flow system. Cryogenics 1994,34(s1):207-210
    [86]Huang B J. Split-type free-displacer stirling refrigerator design using linear network analysis. Cryogenics,1996,36(12):1005-1007
    [87]李青.低温动力机械的研制—热机研制的系统动力学方法:[博士学位论文].武汉:华中科技大学图书馆,1996.
    [88]余文峰.快速变压吸附系统的动力学研究:[博士学位论文].武汉:华中科技大学图书馆,1999.
    [89]董凯军.热声系统的网络模拟及其实验研究:[博士学位论文].武汉:华中科技大学图书馆,2000.
    [90]罗运文TAD-PTR系统的有源热声网络模型及参数匹配方案研究:[博士学位论文].武汉:华中科技大学图书馆,2000.
    [91]张晓青,郭方中.开式循环热声原理研究.低温工程,2001,2:33-38
    [92]Xiang Y, Kuang B, Guo F Z. Parity simulation of thermoacoustic effect in regenerator of Stirling cryocooler. Cryogenics,1995,35(8):489-.494
    [93]向宇.汽液两相欠热沸腾声辐射及其自激热声振荡形成机理的实验和理论研究:[博士学位论文].武汉:华中科技大学图书馆,1995.
    [94]匡波.基于动力学方法的欠热沸腾两相热声系统的机理和实验研究:[博士学位论文].武汉:华中科技大学图书馆,1995.
    [95]邓晓辉.热声谐振管的实验和理论研究:[华中科技大学博士后研究工作报告].武汉:华中科技大学能源与动力工程学院,1996.
    [96]张晓青.热声热机系统的仿真与优化研究—仿真软件的研制与实验验证:[博士学位论文].武汉:华中科技大学图书馆,2001.
    [97]涂虬.热声器件的寻优及其与热声热机系统的匹配:[博士学位论文].武汉:华中科技大学图书馆,2004.
    [98]Zhang C P, Liu W, Wu F, et al. Identification of complex compliance for stacks in TA system. Journal of Central South University of Technology,2009,16:320-325
    [99]Zhang C P, Guo F Z, Zhang X Q, et al. Quality factor identification for stacks in resonant thermoacoustic system. In:APPEEC2009, Wuhan, China,2009.
    [100]刘煜.微型热声制冷机的参数选择:[硕士学位论文].武汉:华中科技大学图书馆,2003.
    [101]刘益才.热声制冷机机微型化研究:[博士学位论文].武汉:华中科技大学图书馆,2004.
    [102]涂虬,李青,刘钧霞等.热声热机系统振荡频率的理论计算与实验验证.低温工程,2003,2:8-14.
    [103]涂虬,李敏,李青等.热声回热器自激振荡特性的研究.真空与低温,2003,9(4):239-242.
    [104]涂虬,李青,张晓青.热声回热器频谱特性的研究—网络类比法的应用.低温工程,2003,6:17-22.
    [105]Tu Q, Wu Ch, Li Q, et al. Influence of temperature gradient on acoustic characteristic parameters of stack in TAE. International Journal of Engineering Science,2003,41:1337-1349.
    [106]涂虬,陈正军,张晓青等,针束型回热器的优化及其与电声制冷机的匹配.低温工程,2004,5:35-40.
    [107]涂虬,陈正军,张晓青等.热声理论的研究进展及其应用.真空与低温,2004,10(3):125-131
    [108]Tu Q, Gusev V, Bruneau M, et al. Experimental and theoretical investigation on frequency characteristic of loudspeaker-driven thermoacoustic refrigerator. Cryogenics,2006,45:739-746.
    [109]刘钧霞,涂虬,李青等.回热器填料热声特性研究—网络模型算法的应用和验证. 低温工程,2003,6:21-29.
    [110]鄂青.热声斯特林系统微型化的研究—微型声压机研究:[硕士学位论文].武汉:华中科技大学图书馆,2005.
    [111]Li Q, Wu J H, Guo F Z. Investigation on a high frequency travelling-wave thermoacoustic system. In:ICC 12,2002.
    [112]Yu Z B, Li Q, Chen X, et al. Investigation on the oscillation modes in a thermoacoustic Stirling prime mover:mode stability and mode transition. Cryogenics,2003,43:687-691.
    [113]禹智斌.热声斯特林发动机回热器优化与振动模态的理论及实验研究:[博士学位论文].北京:中国科学院情报文献中心,2005.
    [114]谢秀娟.高频斯特林新型热声发动机和制冷机的理论探索及研制:[博士学位论文].北京:中国科学院情报文献中心,2006.
    [115]周刚,李青,李正宇等.热声发动机径向尺寸对谐振频率的影响.声学技术,2007,27(4):761-766.
    [116]周刚,李青,李正宇等.行波热声发动机容腔管和反馈管的调相作用研究.低温与超导,2006,34(4):250-252.
    [117]周刚.小型行波热声热机系统的研究:[博士学位论文].武汉:华中科技大学图书馆,2007.
    [118]胡鹏.高频微型声驱动热声制冷机的理论探索与实验研究:[博士学位论文].中国科学院情报文献中心,2007.
    [119]刘海东.行波热声发动机的热力分析和实验研究:[硕士学位论文].北京:中国科学院理化技术研究所,2000.
    [120]Luo E C, Ling H, Dai W, et al. A high pressure-ratio, energy-focused thermoacoustic heat engine with a tapered resonator. Chinese Science Bulletin, 2005,50(3):284-286.
    [121]Yu G Y, Luo E C, Dai W, et al. An energy-focused thermoacoustic-Stirling heat engine reaching a high pressure ratio above 1.40. Cryogenics,2007,47(2): 132-134.
    [122]Chen G B, Jin T. Experimental investigation on the onset and damping behavior of the oscillation in a thermoacoustic prime mover. Cryogenics,1999,39:843-846.
    [123]孙大明,邱利民,陈国邦等.以氦气为工质的行波热声发动机研究.太阳能学报,2005,25(6):845-849.
    [124]金滔,范理,王本仁等.PZT驱动热声制冷的性能分析.压电与声光,200325(3):259-262
    [125]金滔,范理,王本仁等.压电声源驱动的微型热声制冷.工程热物理学报,2004,25(5):776-778.
    [126]金滔,张葆森,贾正中等.微型热声驱动器的实验研究.低温工程,2006,1:12-15.
    [127]吴锋,陈林根,孙丰瑞等.热声制冷机的性能优化,声学技术,1998,18(4):186-189.
    [128]吴锋,郭方中,李端勇.热声回热器有源网络的系统辩识.应用科学学报,2001,19(4):67-69
    [129]吴锋.热声网络理论及其在热声热机工程中的应用.武汉化工学院学报,2004,24(1):86-90
    [130]沈超,何雅玲,李玉光等.太阳能热声发动机的设计与性能仿真.工程热物理学报,30(7):1098-1100
    [131]陈茂,巨永林.行波热声发动机的实验研究进展.制冷学报,31(3):21-29
    [132]Fan L, Zhang S Y, Zhang H. Nonlinear effects in thermoacoustic refrigerators driven by voltage-excited loudspeaker. Journal of Applied Physics,2008, 104:113506-1-5.
    [133]刘益才,张明研,黄谦等.热声热机板叠式回热器结构数值计算.中南大学学报(自然科学版),41(3):1186-1189.
    [134]Sakamoto S, Hirano H, Watanabe, F, et al. Experimental study on resonant frequency of the thermoacoustic cooling system. In:Atchley AA, Sparrow VW and Keolian RM. Innovations in Nonlinear Acoustics:17th International Symposium on Nonlinear Acoustics, American Institute of Physics,2006.367-370.
    [135]Biwa T, Ueda Y, Nomura H, et al. Measurement of the Q value of an acoustic resonator. Physical Review E,2005,72:026601-1-6
    [136]张肃文,陈兆熊.高频电子线路.第三版,北京:高等教育出版社,1993
    [137]Richards, J A. Analysis of Periodically Time-Varying Systems. Germany: Springer-Verlag Berlin,1983
    [138]Zuber N, Wilson G E, Ishii M, et al. An integrated structure and scaling methodology for severe accident technical issue resolution:Development of methodology. Nuclear Engineering and Design,1998,186:1-21.
    [139]Zuber N.The effects of complexity, of simplicity and of scaling in thermal-hydraulics. Nuclear Engineering and Design,2001,204:1-27
    [140]Rohatgi U S, Wulff W, et al. Application of fractional scaling analysis (FSA) to loss of coolant accidents (LOCA) Methodology development. Nuclear Engineering and Design,2007,237:1593-1607
    [141]Zuber N. Scaling:From quanta to nuclear reactors. Nuclear Engineering and Design,2010,240:1986-1996
    [142]Strutt J W (Lord Rayleigh). Theory of Sound.2nd ed., New York:Dover,1945, Vol. Ⅱ, Sec.351.
    [143]Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J. Acoust. Soc. Am.,1956,28(1):168-178.
    [144]Biot M A. Theory of propagation of elastic waves in a fluid-saturated porous solid. Ⅱ. Higher frequency range. J. Acoust. Soc. Am.,1956,28(1):179-191.
    [145]K. Attenborough. Acoustical characteristics of porous materials. Phys.Rep., 1982,82(1):179-227.
    [146]Arnott W P, Bass H E, Raspet R. General formulation of thermoacoustics for stacks having arbitrarily shaped pore cross sections. J.Acoust. Soc. Am.,1991,90(5): 3228-3237.
    [147]M. R. Stinson. The propagation of plane sound waves in narrow and wide circular tubes, and the generalization to uniform tubes of arbitrary cross-sectional shape. J. Acoust. Soc. Am.,1991,89(2):550-558.
    [148]Swift G W, Keolian R M. Thermoacoustics in pin-array stacks. J.Acoust. Soc. Am., 1993,94(2):941-943.
    [149]Hayden M E, Swift G W. Thermoacoustic relaxation in a pin array stack. J. Acoust. Soc. Am.,1997,102(5):2714-2722.
    [150]Lightfoot J A. Thermoacoustic engines in alternate geometry resonators:[Ph.D. dissertation]. US:University of Mississippi,1997.
    [151]Reed M S, Hofler T J. Measurements with wire mesh stacks in thermoacoustic prime movers. J. Acoust. Soc. Am.,1996, S99(5):2559-2565
    [152]Adeff J A, Hofler T J, Atchley A A, et al. Measurements with reticulated vitreous carbon stacks in thermoacoustic prime movers and refrigerators. J. Acoust. Soc. Am.,1998,104(1):32-38
    [153]Denny M. Chance in Biology, Using Probability to explore Nature. US:Princeton University Press,2009
    [154]Xiang Y. Parity Simulation of Thermoacoustic effect in Regenerator of Stirling Cryocooler. Cryogenics,1995,35(8):203-206
    [155]Wu J H. Experimental Investigation on Onset Modes of Oscillation in Self-excited Loop TA Engine. Proceeding of ICEC-19, France,2002.
    [156]Llinskii Y A, Lipkens B, Zabolotskaya E A. Energy losses in an acoustical resonator. J Acoust Soc Am,2001,109(5):1859-1870.
    [157]Floyd T L. Electric Circuits Fundamentals. First draft, USA, Upper Saddle River, N.J.:Prentice Hall,2001:552-554
    [158]Lafarge D, Lemarinier P. Dynamic compressibility of air in porous structures at audible frequencies. J. Acoust. Soc. Am.,1997,102 (4):1995-2006
    [159]Ralph T M, Walter C B, Brandon D T. Measurements and empirical model of the acoustic properties of reticulated vitreous carbon. J. Acoust. Soc. Am.,2005,117(2): 536-544
    [160]Tarnow V. Compressibility of air in fibrous materials. J. Acoust. Soc. Am,1996, 99(5):3010-3017
    [161]Willen L A. Measurements of scaling properties for acoustic propagation in a single pore. J Acoust Soc Am,1997,101(3):1388-1397.
    [162]Willen L A. Measurements of thermoacoustic functions for single pores. J Acoust Soc Am,1998,103(3):1406-1412.
    [163]Tarnow V. Dynamic measurements of the elastic constant of glass wool. J. Acoust. Soc. Am.,2005,118(6):3672-3678
    [164]Tarnow V. Measurement of sound propagation in glass wool. J.Acoust. Soc. Am., 1995,97(4):2272-2281
    [165]杨叔子,杨克冲等.机械工程控制基础,第五版,武汉:华中科技大学出版社,2005.
    [166]李言俊,张科.系统辨识理论及应用,第一版,北京:国防工业出版社,2003.
    [167]张洪锇,胡干耀.现代控制理论(第四册)—系统辨识.第一版,北京:北京航空学院出版社,1987
    [168]于开平,庞世伟,赵婕.时变线性/非线性结构参数识别及系统辨识方法研究进展.科学通报,2009,54(20):3147-3156.
    [169]于开平,庞世伟,邹经湘.非线性时变结构系统辨识方法研究进展,在第九届全国振动理论及应用学术会议论文集(NVTA'2007),杭州,2007.
    [170]Cory J A. Reciprocator and linear suspension element therefore. US Patent: 6841900 B2
    [171]Cory J A. Reciprocating device and linear duspension. US Patent:6492748 B1
    [172]Cory J A. Low 1Loss reciprocating electromagnetic device. US Patent:6927506 B2
    [173]Chertok A, Linear electrical machine for electric power generation or motive drive. US Patent:6914351 B2
    [174]Lilie D E. Linear motor and linear compressor including said motor. US Patent: 7215047 B2
    [175]Lilie D E, Reciprocating compressor driven by a linear motor. US Patent:7316547 B2
    [176]陈楠.大冷量斯特林制冷机用动磁式直线压缩机关键部件及整机性能研究:[博士学位论文].上海:上海交通大学图书馆,2007.
    [177]Byckling E, Perkio K. Dynamic properties of moving magnet transducers. IEEE Transactions on Magnetics,1980,16(2):468-473
    [178]Fitagerald A E, Kingsley C, Electric machinery.6th ed. Press of electronic industry, Beijing,2004.
    [179]赵玲.外激励热声谐振管的研究:[硕士学位论文].武汉:华中科技大学图书馆, 2006.
    [180]张春萍,刘伟,张晓青等.外激励热声谐振管有限元模型研究.低温工程,2008,1:24-28.
    [181]Chester. W. Resonant oscillations in closed tubes. Journal of Fluid Mechanics,1963 18:45-65.
    [182]鄂青.热声斯特林系统微型化的研究:[硕士学位论文].武汉:华中科技大学,2005
    [183]Livvarcin O. Design and cost-benefit analysis of a mini thermo-acoustic refrigerator driver:[Thesis of Master Degree]. US:Naval Postgraduate School,2000
    [184]Direk S. Design of a mini thermoacoustic thermo-acoustic refrigerator:[Thesis of Master Degree]. US:Naval Postgraduate School,2001
    [185]Petrina D. Performance measurement of a mini thermoacoustic refrigerator and associated drivers:US:Naval Postgraduate School,2002
    [186]张靖周.高等传热学.第一版,北京:科学出版社,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700