不确定多体系统动力学分析及可靠性预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的多体系统模型是建立在确定性基础上,即把分析工程中各种因素作为确定性物理量来进行处理,认为它们是精确确定的或可以精确测量的。但由于不确定性因素是客观存在的、不可避免的,在实际工程中存在大量的误差和不确定因素,基于确定性假设的模型并不能有效的描述多体系统的动力学行为,甚至可能导致前后矛盾或有悖于工程实际的结果。随着现代机构日益向着高速化、轻量化、精密化的方向发展,对不确定性多体系统进行动力学分析及可靠性预测有着重要的理论和现实意义。本文围绕工程中客观存在的不确定性问题,对含随机参数的刚柔耦合、含动力刚化、多输入输出、含间隙铰、含间隙润滑铰的多体系统动力学问题进行分析并给出了一般解算方法,进一步对多体系统的可靠性问题进行了研究。通过工程实例进行仿真计算,验证了方法的正确性和有效性,并得到了诸多有益的结论。主要内容如下:
     1.基于Lagrange方程建立了含随机参数的多体系统的动力学模型,利用广义坐标分离法将随机微分代数方程转化为纯随机微分方程,利用Newmark逐步积分法进行数值解算。应用随机因子法求解系统随机响应的数字特征,获得统计意义下的解。以旋转杆滑块系统为例,考虑系统中载荷、物理和几何参数的随机性,验证了文中方法的正确性和有效性。计算结果表明,部分随机参数的分散性对多体系统动力响应的影响不可忽略,利用随机参数的动力学模型将能客观地反映出系统的动力学行为。
     2.在柔性梁的纵向变形位移中计及耦合变形量的条件下,采用Lagrange方程与假设模态法建立了旋转柔性梁系统的刚柔耦合动力学模型,考虑系统物理参数和几何参数的随机性,基于随机响应面法对其动力响应进行随机性分析并对其运动功能的可靠性进行预测。通过算例验证了文中模型和方法的合理性和有效性。研究结果表明,三阶随机响应面法具有良好的计算精度,且效率更高。
     3.将Lagrange方程和假设模态法相结合建立了考虑摩擦的双连杆柔性机械臂的动力学模型。考虑随机因素的影响,将随机因子法的处理方式引入随机响应面法中,提出一种处理多输入随机参数的双连杆柔性机械臂系统分析方法,并分别建立了系统强度、刚度和运动功能的功能函数,然后对该系统动力响应的随机性及可靠性进行分析。通过算例验证了文中模型和方法的合理性和可行性,同时预测了系统的可靠度,并分析了系统参数的随机性对双连杆柔性机械臂可靠性的影响。
     4.以含间隙的曲柄滑块系统为研究对象,分析其在考虑铰间摩擦力及系统参数具有随机性时的动力响应及系统中滑块位移的可靠性问题。利用连续接触模型和修正的Coulomb摩擦模型分别求出间隙处接触力及切向摩擦力,基于Lagrange方程建立曲柄滑块机构的动力学模型。分别利用BP神经网络法和支持向量机法给出了系统随机参数与动力响应之间的近似函数关系式。在此基础上,利用矩法求解系统动力响应的数字特征和系统中滑块位移的可靠度。通过算例,考察了系统物理参数和几何参数的随机性对系统动力响应及可靠性的影响,并验证了所建模型和方法的合理性和可行性。研究结果表明,系统参数的随机性不可忽略,在参数变异系数相同的情况下,间隙的随机性对系统动力响应随机性和系统可靠性的影响较大。
     5.研究了在考虑间隙润滑作用下并同时考虑系统参数具有随机性时曲柄滑块机构的可靠性问题。利用连续接触模型和流体动压润滑理论分别求出铰间隙处的接触力及润滑作用力,基于Lagrange方法建立曲柄滑块系统的动力学模型。为了克服因为参数选择不准确而使支持向量机回归的预测精度难以达到目标精度这一缺陷,通过遗传算法对支持向量机回归预测模型的各项参数进行寻优处理,获得最优参数值,有效提高了分析的精度,为解决支持向量机的参数选择问题提供了一条有效途径。然后利用该方法讨论了曲柄滑块机构中润滑铰间反作用力的可靠性问题。通过算例,验证了该方法的可行性和有效性。
The traditional dynamic model of multi-body system is based on the certainty,namely, all kinds of physical factors are considered as certain datum in the process ofanalysis, and they are accurate or can be accurately measured. But there are plenty oferror and uncertain factors in actual engineering because uncertainty is objective andinevitable. The dynamic model based on the accurate assumption cannot effectivelydiscrible the dynamic action of multi-body system, and may lead to contradictory results.With the development of modern mechanisms increasingly towards high-speed,lightweight and high precision, the dynamic analysis and prediction on reliability ofmulti-body with uncertainty have important theoretical significance and researchworthiness. Concertrated on the uncertain phenomenon existing in engineeringproblems, multibody systems including rigid-flexible coupling, dynamic stiffeningterms, multiple stochastic inputs and outputs, clearance joint and lubricate joint arepresented and their solutions are proposed. Furthermore the reliability of them is studied,the engineering examples are simulated according to the above theories and theeffectiveness and validity of the theories are verified by the results as well as somebenefit conclusions are obtained. The main research works can be described as follows:
     1. Dynamic analysis of multibody systems with probabilistic parameters waspresented. Dynamic modeling of multibody systems was obtained by Lagrange’smethod. The Probabilistic Differential Algebraic equations were transformed into pureProbabilistic Differential equations by Generalized Coordinate Partitioning method. TheNewmark step by step integration method was used to calculate the results. Using themethod of random factor method, the numerical characteristics of responses of thesystem were derived, and the results were expressed in statistic. As an illustratingexample, dynamic modeling of a rotating bar and sliding block system considering theprobabilistic of load, geometric and physical parameters is presented and the accuracyand efficiency of the method are verified. The results illustrate the probabilisticparameters affect the dynamic response of the multibody system and the dynamicmodeling with probabilistic parameters can objectively reflect the dynamic behavior ofthe objective systems.
     2. Based on the Lagrange’s equations and the assumed mode method, therigid-flexible coupling dynamic model of a rotating flexible beam which took the coupling term of the deformation in the expression of longitudinal deformation wasstudied. Then considering the physical and geometrical parameters under randomness,the randomness analysis of dynamic responses was developed and the motion functionreliability was forecasted by stochastic response surface method. The rationality andefficiency of the modeling and the method presented were verified by an example. Theresults demonstrate third order stochastic response surface method has good precisionwith acceptable time consumption.
     3. The Lagrange dynamic differential equations and the assumed mode methodwere combined to establish the modeling of a two-link flexible robot manipulatorconsidering friction in the joints. Considering the effect of stochastic factors, therandom factor method was embedded into the stochastic response surface method toimprove the analysis method of two-link flexible robot manipulator with multiplestochastic inputs. The system performance functions of strength, stiffness and themotion function were developed. Then, the dynamic responses and the reliability of thesystem were analysised. The rationality and feasibility of the modeling and the methodpresented were verified by an example, and the reliability of the system was predicted.Some expressions of random parameters about the two-link fexible robot manipulatorare derived.
     4. The dynamic responses and the reliability of output displacement for slider-cranksystem with clearance considering of the friction forces and the randomness of systemparameters were developed. The continuous contact force approach and a modifiedCoulomb`s friction model were used to evaluate the contact force and the friction of theintra-joint respectively. The dynamic model of mechanism was set up based onLagrange method. The approximate functional relationship between the system randomparameters and the dynamic responses was given by using the BP neural network andthe support vector machine method, respectively. The numerical characteristics of thesystem dynamic responses and the reliability of the output displacement of the sliderwere solved by moment method. The effects of the system physical parameters andgeometric parameters on the system dynamic response and the reliability were inspected.In addition, the results illustrate that the randomness of the system parameters can’t beignored, and the randomness of the clearance has greatest effect on the randomness ofthe responses and the reliability of the system under the same coefficient of variationconditions.
     5. The reliability of the slider-crank mechanism considering realistic jointcharacteristic, namely, joint with clearance and lubrication, and the randomness of the system parameters is presented. The continuous approach and the hydrodynamic theoryare used to evaluate the contact force for the case of joints modeled as a contact pairwith dry contact and the force generated by lubrication action respectively. The systemdynamic model was set up based on Lagrange’s equation. The prediction accurary ofSupport Vector Machine Regression is difficult to reach the target accurary because theselection of parameters isn’t accurate. In order to overcome this limitation, theparameters are pretreated through Genetic Algorithm to get the optimum parametersvalues. The precision of analysis on the system is effectively improved, which providesan effectively way to solve the problem of parameters selection in Support VectorMachine Regression. Then the reliability of the reaction force developed in thelubricated revolute joint of the crank-slider mechanism is discussed by the method.Finally, take an example to verify the feasibility and effectiveness of the proposedmethod.
引文
[1] Magnus K. Dynamics of multibody systems[M]. Springer-Verlag, Berlin,1978.
    [2] Schiehlen W. Computational dynamics: theory and applications of multi-body systems[J].European Journal of Mechanics A/Solids,2006,25:566-594.
    [3] Yoo W S, Kim K N, Kim H W, et al. Developments of multi-body system dynamics: computersimulations and experiments[J]. Multi-body syst Dyn,2007,18:35-58.
    [4] Wasfy Tamer M, Noor Ahmed K. Computational strategies for flexible multi-body systems[J].Appl Mech Rev,2003,56(6):553-613.
    [5]戎保,芮筱亭,王国平,杨富锋.多体系统动力学研究进展[J].振动与冲击,2011,30(7):178-187.
    [6] Wittenburg J. Dynamics of multi-body systems[M]. Springer, Ber Lin,2008.
    [7]陆佑方.柔性多体系统动力学[M].北京:高等教育出版社,1996,8-9.
    [8]何柏岩.柔性多体系统的广义确定性动力学模型及其仿真研究[D].天津:天津大学,2003.
    [9] Nikravesh P E. Computer aided analysis of mechanical systems[M]. Prentice Hall, EnglewoodCliffs, New Jersey,1988.
    [10] Liu J Y, Hong J Z. Dynamic modeling and modal truncation approach for a high-speedrotating elastic beam[J]. Archive of Applied Mechanics,2002,72:554-563.
    [11] Yang H, Hong J Z, Yu Zheng-yue. Dynamics modeling of a flexible hub-beam system with atip mass [J]. Journal of Sound and Vibration,2003,266:759-774.
    [12] Cai G P, Hong J Z,Yang S X. Dynamic analysis of a flexible hub-beam system with tipmass[J]. Mechanics Research Communications,2005.32:173-190.
    [13] Cai G P, Lim C W. Dynamics studies of a flexible hub-beam system with significant dampingeffect[J]. Journal of Sound and Vibration,2008,318:1-17.
    [14]尤超蓝.大变形多体系统刚柔耦合动力学建模理论研究[D].上海交通大学博士学位论文,2006.
    [15]刘锦阳.洪嘉振.刚柔耦合动力学系统的建模理论研究[J].力学学报,2002,34(3):408-415.
    [16]杨辉,洪嘉振,余征跃.刚-柔耦合多体系统动力学建模与数值仿真[J].计算力学学报,2003,20(4):402-408.
    [17]蔡国平,洪嘉振.中心刚体-柔性悬臂梁系统的动力特性研究[J].航空学报,2004,25(3):248-253.
    [18]刘锦阳,洪嘉振.温度场中的柔性梁系统动力学建模[J].振动工程学报,2006,19(4):469-474.
    [19]刘锦阳,袁瑞,洪嘉振.考虑几何非线性和热效应的刚-柔耦合动力学[J].固体力学学报,2008,29(1):73-77.
    [20]刘锦阳,崔麟.热载荷作用下大变形柔性梁刚柔耦合动力学分析[J].振动工程学报,2009,22(1):48-53.
    [21]杨辉,洪嘉振,余征跃.刚柔耦合建模理论的实验验证[J].力学学报,2003,35(2):253-256.
    [22]杨辉,洪嘉振,余征跃.动力刚化问题的实验研究[J].力学学报,2004,36(1):118-124.
    [23]杨辉,洪嘉振,余征跃.一类刚-柔耦合系统的模态特性与实验研究[J].宇航学报,2002,23(2):67-72.
    [24]邓峰岩,和兴锁,李亮等.计及变形耦合项的平面柔性梁动力学建模及频率分析[J].振动工程学报,2006,19⑴:75-80.
    [25]邓峰岩,和兴锁,李亮等.耦合变形对大范围运动柔性梁动力学建模的影响[J].计算力学学报,2006,23(5):599-606.
    [26]和兴锁,邓峰岩,王睿.具有大范围运动和非线性变形的空间柔性梁的精确动力学建模[J].物理学报,2010,59(3):1428-1436.
    [27]吴根勇,和兴锁,邓峰岩.旋转复合材料板的动力学性能研究[J].振动与冲击,2008,27(8):149-154.
    [28]吴根勇,和兴锁.做大范围运动复合材料板的动力学建模研究[J].计算力学学报,2010,27(4):667-672.
    [29]金国光,刘又午,王树新,张大钧.含动力刚化项的一般多柔体系统动力学研究[J],哈尔滨工业大学学报,2005,37(1):101-103.
    [30]陈礼,齐朝晖.多体动力学程序切断铰的处理方法[J].计算力学学报,2007,24(6):795-799.
    [31]齐朝晖,许永生,方慧青.多体系统中的冗余约束[J].力学学报,2011,43(2):390-399.
    [32]齐朝晖,罗晓明,黄志浩.含非理想空间棱柱铰的多体系统接触分析[J].力学学报,2011,43(3):570-578.
    [33]刘才山,陈滨,王示.多体系统斜碰撞动力学中的结构柔性效应[J].振动与冲击,2000,19(2):24-27.
    [34]刘才山,陈滨.做大范围回转运动柔性梁斜碰撞动力学研究[J].力学学报,2000.32(4):457-465.
    [35]肖世富,陈滨,刘才山.平动柔性矩形薄板的动力学特性与屈曲分析[J].固体力学学报,2005,26(1):47-54.
    [36]肖世富,陈滨.大范围运动刚体上矩形薄板力学行为分析[J].应用数学和力学,2006,27(4):495-504.
    [37] Zhang D J, Liu C O, Huston R L. On the dynamics of an arbitrary flexible body with largeoverall motion, an integrated approach[J]. Mech Struct and Mach,1995,23(3):419-438.
    [38] Zhang D J,Huston R L. On dynamic stiffening of flexible bodies velocity[J]. Mech Struct andMach,1996,24(3):313-329.
    [39]金国光,刘又午,王树新.有大范围运动的柔性矩形板系统动力学建模[J].哈尔滨工业大学学报,2009,41(1):232-238.
    [40]柯柏岩,王树新,金国光,王辉.基于拟合模态法的大范围运动柔性曲线梁动力学建模方法研究[J].宇航学报,2003,24(3):237-277.
    [41]金国光,刘又午,王树新.大范围运动的柔性曲线梁动力学建模及仿真[J].天津大学学报,2004,37(7):629-633.
    [42]吴胜宝,章定国.大范围运动刚体-柔性梁刚柔耦合动力学分析[J].振动工程学报,2011,24(1):1-7.
    [43]华卫江,章定国.柔性机器人系统碰撞动力学建模[J].机械工程学报,2007,43(12):222-228.
    [44] Zhang D G. Zhou S F. Dynamics of Flexible-Link and Flexible-Joint Robots [J].AppliedMathematics and Mechanics.2006.26(5):695-704.
    [45] Zhang D G. Recursive Lagrangian dynamic modeling and simulation of multi-link spatialflexible manipulator arms[J]. Applied Mathematics and Mechanics,2009.30(10):1283-1294.
    [46]吴胜宝,章定国,康新.刚体-微梁系统的动力学特性研究[J].机械工程学报,2010,46(3):76-82.
    [47]陈思佳,章定国.中心刚体-变截面梁系统的动力学特性研究[J].力学学报,2011,43(4):790-794.
    [48]章定国,吴胜宝,康新.考虑尺度效应的微梁刚柔耦合动力学分析[J].固体力学学报,固体力学学报,2010,31(1):32-39.
    [49]杨东武,段宝岩,狄洁建.多体系统Euler-Lagrange方程组的一类新数值分析方法[J].应用力学学报,2006,23(1):26-30.
    [50]刘明治,刘春霞.柔性机械臂动力学建模和控制研究[J].力学进展,2001,31(1):1-8.
    [51]李团结,张琰,段宝岩.周边桁架可展开天线展开过程仿真方法[J].系统仿真学报,2008,20(8):2081-2084.
    [52] Wasfy T M, Noor A K. Computational strategies for flexible multibody systems[J]. Appl MechRev,2003,56(6):553-613.
    [53] Liu A Q, Liew K M. Non-linear substructure approach for dynamic analysis of rigid-flexiblemultibody system [J]. Computer Methods in Applied Mechanics and Engineering,1994,114:379-396.
    [54] Yang H, Hong J Z, Yu Zheng-yue. Dynamics modeling of a flexible hub-beam system with atip mass [J]. Journal of Sound and Vibration,2003,266:759-774.
    [55] Wallrapp O, Schwertassek R. Representation of geometric stiffening in multibody systemsimulation[J]. Int Journal for Numerical Methods in Engineering,1991,32:1833-1850.
    [56] Banerjee A K, Lemak M E. Multi-flexible body dynamics capuring motion-induced stiffness[J]. Journal of Applied Mechanics,1991,58:766-775.
    [57] Banerjee A K. Block-diagonal equations for multibody elastodynamics with geometricstiffness and constraints [J]. Journal of Guidance. Control and Dynamics,1994,16(6):1092-1100.
    [58] Zhang D J, Liu C O, Huston R L. On the dynamics of an arbitrary flexible body with largeoverall motion, an integrated approach [J]. Mech Struct and Mach,1995,23(3):419-438.
    [59] Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a movingbase[J]. Journal of Guidance, Control and Dynamics,1987,10(2):139-151.
    [60] Banerjee A K, Kane T R. Dynamics of a plate in large overall motion[J]. Journal of AppliedMechanics,1989,56:887-892.
    [61] Ryu J, Kim S S. A general approach to stress stiffening effects on flexible multibody dynamicsystems[J]. Mech Struct and Mach,1994,22(2):157-180.
    [62] Ider S K, Amirouche F M L. Influence of geometric nonlinear in the dynamics[J] Journal ofApplied Mechanics,1989,55:830-837.
    [63] Padilla C E, Floton A H. Nonlinear strain-displacement relations and flexible multibodydynamics[J]. Journal of Guidance, Control and Dynamics,1992,15:128-136.
    [64] Haering W J, Ryan R R. New formulation for flexible beams undergoing large overallinotions[J]. Journal of Guidance, Control and Dynamics,1994,17(1):76-83.
    [65] Mayo J, Dominguez J. Geometrically nonlinear formulation of flexible multibody systems interms of beam elements: Geometric stiffness[J]. Computers and Structures,1996.59;1039-1050.
    [66] Hong H C, Wen Y L, Kuo M H. Co-rotational finite element formulation for thin-walledbeams with generic open section[J]. Computational Methods Applied Mechanics Engineering,2006,195:2334-2370.
    [67]钟万勰,暂态历程的精细计算方法[J].计算结构力学及其应用,1995,12(1):1-6.
    [68]吕和祥,于洪洁,裘春航.动力学方程的解析逐步积分法[J].工程力学,2001,18(5):1-7.
    [69]刘铁林,刘钧玉.基于最小转换能原理的一种逐步积分法[J].工程力学,2005,22(2):1-24.
    [70] Oghbaei M, Anderson K S. A new time finite element implicit integration scheme formultibody system dynamics simulation[J]. Comput Methods Appl Mech Engrg,2006,195:7006-7019.
    [71] Rill G. A modified implicit Euler algorithm for solving vehicle dynamic equation[J].Multibody System Dynamics,2006,15:1-24.
    [72] Laulusa A, Bauchau O A. Review of classical approaches for constraint enforcement inmultibody systems[J]. Journal of Computational and Nonlinear Dynamics,2008,3(1):011004-011005.
    [73] Kurdila A, Papastavridis J G, Karmat M P. Role of Maggi’s equations in computationalmethods for constrained multibody systems[J]. J. Guid. Control Dyn,1990,13(1):116-120.
    [74] Papastavridis J G. Maggi’s equations of motion and the determination of constraintreactions[J]. J.Guid.Control Dyn,1990,13(2):213-220.
    [75] Hemami H, Weimer F C. Modeling of nonholonomic dynamic systems with applications[J].Journal of Applied Mechanics,1981,48(1):177-182.
    [76] Jalon J G, Unda J, Avello A, et al. Dynamic analysis of three dimensional mechanisms in“Nature” coordinates[J]. ASMEJ. Mech Transm Autom Des,1987,109:460-465.
    [77] Blajer W. A projection method approach to constrained dynamic analysis[J]. Journal ofApplied Mechanics,1992,59(3):643-649.
    [78] Baumgarte J. Stabilization of constraints and integrals of motion in dynamical systems[J].Computer Methods in Applied Mechanics and Engineering,1972,1:1-16.
    [79] Eich E, Hanke M. Regularization Methods for Constrained Mechanical Multibody systems[J].Z. Angew. Math. Mech,1995,75(10):761-773.
    [80] Chang C O, Nikravesh P E. An adaptive constraint violation stabilization method fordynamics analysis of mechanical systems[J]. Journal of Mechanisms Transmissions andAutomation in Design,1985,107(4):488-492.
    [81] Yoon S, Howe R M, Greenwood D T. Stability and accuracy analysis of Baumgarte’sconstraint violation stabilization method[J]. Journal of Mechanical Design,1995,117(3):446-453.
    [82] Park K C, Chiou J C. Stabilization of computational procedures for constrained dynamicalsystems[J]. J.Guid.Control Dyn,1988,11(4):365-370.
    [83] Bayo E, Jalon J G, Avello A, et al. An efficient computational method for real time multibodydynamic simulation in fully cartesian coordinates[J]. Computer Methods in AppliedMechanics and Engineering,1991,92(3):377-395.
    [84] Newmark N M. A method of computation for structure dynamics[J]. J.Engrg.Mech.Div,1959,112:67-94.
    [85] Bottasso C L, Bauchau O A, Cardona A. Time step size independent conditioning andsensitivity to perturbations in numerical solution of index three differential algebraicequations[J]. Siam Journal on Scientific Computing,2007,29(1):197-414.
    [86] Hilber H M, Hughes T J R, Taylor R L. Improved numerical dissipation for time integarationalgorithms in structure dynamics[J]. Earthquake Engineering&Structure Dynamics,1977,5(3):283-292.
    [87] Chung J, Hulbert G M. A time integration algorithm for structure dynamics with improvednumerical dissipation: the generalized alpha method[J]. Journal of Applied Mechanics,1993,60(2):371-375.
    [88]潘振宽.多体系统动力学微分代数方程位置、速度约束违约自动修正方法[C].多体系统动力学与控制,北京:北京理工大学出版社,1996,31-35.
    [89]于清,洪嘉振.受约束多体系统一种新的违约校正方法[J].力学学报,1998,30(3):300-306.
    [90]王琪,黄克累,陆启韶.树形多体系统动力学的隐式数值算法[J].力学学报,1996,28(6):717-725.
    [91] Betsch P, Uhlar S. Energy momentum conserving integration of multibody dynamics[J].Multibody Syst Dyn,2007,17:240-289.
    [92]姚廷强,迟毅林,黄亚宇.柔性多体系统动力学新型广义α数值分析方法[J].机械工程学报,2009,45(10):53-60.
    [93]田富洋,吴红涛,赵大旭,等.空间柔性机器人动力学分析的快速积分算法[J].山东大学学报,2009,39(3):94-98.
    [94]刘锦阳.刚-柔耦合动力学建模理论研究[D].上海交通大学博士学位论文,2000
    [95]蒋丽忠.柔性多体系统刚-柔耦合动力学建模理论研究[D].上海交通大学博士学位论文,1999
    [96]章定国,周胜丰.柔性杆柔性铰机器人动力学分析.应用数学和力学,2006,27(5):615-623
    [97] Zhang N, Feng Y and Yu X. Optimization of terminal sliding control for two-link flexiblemanipulators, IEEE30th Annual Conference of Industrial Electronics Society2004,1318-1322
    [98] Kim HK, Choi SB and Thompson BS. Compliant control of a two-link flexible manipulatorfeaturing piezoelectric actuators. Mechanism and Machine Theory,2001,36(3):411-424
    [99]王从庆,张承龙.自由浮动柔性双臂空间机器人系统的动力学控制.机械工程学报,2007,43(10):196-200
    [100] Dwivedy S K, Eberhard P. Dynamics analysis of flexible manipulators, a literature review[J].Mechanism and Machine Theory,2006,41(1):749-777.
    [101] Meghdari A, Fahimi F. On the first-order decoupling of dynamical equations of motion forelastic multibody systems as applied to a two-link flexible manipulator[J]. Multibody SystemDynamics,2001,5:1-20.
    [102] Han RPS, Mao SG. Hamilton equation based symplectic finite element modeling of flexiblemultibodies undergoing large overall motions[J]. Proc. Instn. Mech. Engrs. Part K Journal ofMultibody Dynamics,2001,215,75-92.
    [103] Zhang X, Xu W, Nair S S, et al. PDE modeling and control of a flexible two-linkmanipulator[J]. Control Systems Technology, IEEE Transactions on,2005,13(2):301-312.
    [104] Zhang Chunyi, Bai Guangchen, Extremum response surface method of reliability analysis ontwo-link flexible robot manipulator[J]. Journal of Central South University,2012,19:101-107.
    [105] Guo Zhiwei, Bai Guangchen. Application of least squares support vector machine forregression to reliability analysis[J]. Chinese Journal of Aeronautics,2009,22(2):160-166.
    [106] Flores P, Ambrósio J, Claro J C P, et al. Kinematics and Dynamics of Multibody Systems withImperfect Joints[J]. Springer Berlin Heidelberg,2008:1-21.
    [107]刘才山,陈滨.多柔体系统碰撞动力学研究综述[J].力学进展,2000,30(l):7-14.
    [108] Dubowsky S, Freudenstein F. Dynamic Analysis of Mechanical Systems WithClearances—Part1: Formation of Dynamic Model[J]. Journal of Engineering for Industry,1971,93(1):305-309.
    [109] Dubowsky S, Freudenstein F. Dynamic Analysis of Mechanical Systems WithClearances—Part2: Dynamic Response[J]. Journal of Engineering for Industry,1971,93(1):310-316.
    [110] Earles SWE, Wu CLS. Motion analysis of a rigid link mechanism with clearance at a bearingusing Lagrangian mechanics and digital computation[C]. Mechanisms (Proceedings,Institution of Mechanical Engineers), London,1973,83-89.
    [111] Miedema B, Mansour WM. Mechanical joints with clearance: a three mode model[J]. Journalof Engineering for Industry,1975,98(4):1319-1323.
    [112] Hunt KH, Crossley FR. Coefficient of restitution interpreted as damping in vibroimpacet[J].Journal of Applied Mechanics,1975:440-445.
    [113] Khulief YA, Shabana AA. Acontinuous force model for the impact analysis of flexiblemultibody systems[J]. Mechanism and Machine Theory,1987,22(3):213-224.
    [114] Lankarani HM, Nikravesh PE. A contact force model with hysteresis damping for impactanalysis of multibody systems[J]. ASME Journal of Mechanical Design,1990,112:369-376.
    [115] Flores P, Ambrósio J.Revolute joints with clearance in multibody systems[J]. Computers andStructures,2004,82:1359-1369.
    [116] Flores P, Ambrósio J, Claro JCP. Dynamic analysis for planar multibody mechanical systemswith lubricated joints[J]. Multibody System Dynamics,2004,12:47-74.
    [117] Flores P, Ambrósio J, Claro JCP, et al. A study on dynamics of mechanical systems includingjoints with clearance and lubrication[J]. Mechanism and Machine Theory,2006,41(3):247-261.
    [118] Flores P, Ambrósio J, Claro JCP, et al. Dynamics of multibody systems with sphericalclearance joints[J]. ASME Journal of Computational and Nonlinear Dynamics,2006,1:240-247.
    [119] Flores P,et al.Translational joints with clearance in rigid multibody systems[J]. ASMEJournal of Computational and Nonlinear Dynamics,2008,3:0110071-01100710.
    [120] Dubowsky S, Gardner TN. Design and analysis of multilink flexible mechanisms withmultiple clearance connections[J]. ASME Journal of Engineering for Industry,1977,99:88-96.
    [121] Dubowsky S, Deck JF, Costello H. The dynamics modeling of flexible spatial machinesystems with clearance connections[J]. ASME Journal of Engineering of Mechanisms,Transmissions and Automation in Design,1987,109:87-94.
    [122] Bauchau OA, Rodriguez J. Modelling of joints with clearance in flexible multibodysystems[J]. International Journal of Solids and Structures,2002,39:41-63.
    [123]田强.基于绝对节点坐标方法的柔性多体系统动力学研究与应用[D].华中科技大学博士学位论文,2009.
    [124] Dubowsky S, Deck JF, Costello H. The dynamic modeling of flexible spatial machine systemswith clearance connections[J]. Trans. ASME, J. Mech. Transmiss. Automat. Des.,1987,109:87-94.
    [125] Soong K, Thompson BS. A theoretical and experimental investigation of the dynamic responseof a slider-crank mechanism with radial clearance in gudgeon-pin joint[J]. Journal ofMechanical Design,1990,112(2):183-189.
    [126] Haines RS. A theory of contact loss at revolute joints with clearance[J]. Journal MechanicalEngineering Science,1980,22(3):129-136.
    [127] Cheriyan SK. Characterization of mechanical system with real joints and flexible links[D].Wichita State University, Ph.D thesis,2006.
    [128] Flores P. Dynamic analysis of mechanical systems with imperfect kinematic joints[D].Portugal: Universidade Do Minho, Ph.D thesis,2004.
    [129]黄铁球,吴德隆,阎绍泽等.带间隙伸展机构力学仿真研究[J].中国空间科学技术,1999,6(3):16-22.
    [130]靳春梅.含间隙机构非线性动态特性、控制及实验研究[D].西安:西安交通大学博士论文,2001.
    [131] Chen J J, Che J W, Sun H A, et al. Probabilistic dynamic analysis of truss structures[J].Structural Engineering&Mechanics,2002,13(2):231-239.
    [132] Dai J, Chen J J, Li Y G. Dynamic response optimization design for engineering structuresbased on reliability[J]. Applied Mathematics and Mechanics,2003,24(1):43-52.
    [133] Gao W, Chen J J, Ma H B. Dynamic response analysis of closed loop control system forintelligent truss structures based on probability[J]. Structural Engineering&Mechanics,2003,15(2):239-248.
    [134]李杰.随机结构系统─分析与建模(第一版)[M].北京:科学出版社,1996.
    [135] Ewins D J, Han Z S. Resonant Vibration Levels of Mistune Bladed Disk[J]. ASME,1984,106:185-188.
    [136] Srinivasan A V. Vibrations of bladed-disk assemblies-a selected survey[J]. Vibration AcousticsStress Reliability in Design,1984,106:165-168.
    [137]王光远.论不确定性结构力学的进展[J].力学进展,2002,32(2):205-211.
    [138]刘开弟,吴和琴,庞彦军等.不确定性信息数学处理及应用[J].北京:科学出版社,2000.
    [139] Thoft-Christensen P, Baker M J. Structural reliability theory and its applications[J].Springer-Verlag,1982.
    [140] Muscolino G. Improved dynamic analysis of structures with mechanical uncertainties underdeterministic input[J]. Probabilistic Engineering Mechanics,1999,15:199-212.
    [141]何柏岩,冯屹,王树新.计及不确定性的多体系统动力学研究[J].河北工业大学学报,2005,34(4):7-14.
    [142]张海根,何柏岩,王树新,王锐.计及参数不确定性的柔性空间曲线梁动力学建模方法[J].天津大学学报,2003,36(1):37-40.
    [143] Wang Shuxin, Wang Yanhui, He Baiyan. Dynamic modeling of flexible multibody systemswith parameter uncertainty[J]. J Tianjin Chaos, Solitons and Fractals2008,36:605-611.
    [144] Corina Sandu, Adrian Sandu and Mehdi Ahmadian. Modeling multibody systems withuncertainties. Part II: Numerical applications[J]. Multibody System Dynamics,2006,15(3):241-262.
    [145] Adrian Sandu, Corina Sandu and Mehdi Ahmadian. Modeling Multibody Systems withUncertainties. Part I: Theoretical and Computational Aspects[J]. Multibody System Dynamics,2006,15(4):369-391.
    [146]皮霆,张云清,吴景铼.基于多项式混沌方法的柔性多体系统不确定性分析[J].中国机械工程,2011,22(19):2341-2348.
    [147] Tamer M, et al. Finite element analysis of flexible multibody systems with fuzzyparameters[J]. Computer Methods in Applied Mechanics and Engineering,1998,160:223-243.
    [148]王光远.未确知信息及其数学处理[J].哈尔滨建筑大学学报.1990,23(4):1-9.
    [149] Chen S H, Qiu Z P. A new method for computing the upper and lower bounds on frequenciesof structures with interval parameters[J]. Mechanics Research Communication,1994,2:583-592.
    [150] Qiu Z P, Chen S H, Elishakoff. Natural frequencies of structures withuncertain-but-non-random parameters[J]. Journal of Optimization Theory and Applications,1995,86(3):669-683.
    [151] Qiu Z P, Chen S H, Elishakoff I. Bounds of eigenvalues for structures with an intervaldescription of uncertain-but-non-random parameters[J]. Chaos, Soliton, and Fractral,1996,7(3):425-434.
    [152] Ellishakoff I. Essay on uncertainties in elastic and viscoelastic structures: from A MFreudenthal's criticisms to modern convex modeling[J]. Computers&Structures,1995,56(6):871-895.
    [153]吴景铼,张云清.求解含不确定参数多体系统的区间方法研究[C].第七届全国多体系统动力学暨第二届全国航天动力学与控制学术会议会议论文集,2011年,福州.
    [154] Soong T T, Bogdanoff J. On the natural frequencies of a disordered linear chain of n degree offreedom[J]. International Journal of Mechanical Science,1963,5(2):237-265.
    [155] Boyce, E W, Goodwin B E. Random transverse vibration of elastic beams[J]. SIAM Journal,1964,12(3):613-629.
    [156] Collins J D, Thompson W T. The eigenvalue problem for structural system with uncertainparameters[J]. AIAA Journal,1969,7(4):642-648.
    [157] Rubinstein RY. Simulation and the Monte Carlo method. New York: Wiley,1981.
    [158]杨杰,陈虬. Legendre积分法在随机有限元法中的应用[J].计算力学学报,2005,22(2):214-216.
    [159]杨杰,陈虬,高芝晖.基于Hermite积分的非线性随机有限元法[J].重庆大学学报,2003,26(12):15-17.
    [160] Zhao Yan-yang, Tetsureo Ono. New point estimates for probability moments[J]. Journal ofEngineering Mechanics,2000,126(4):433-436.
    [161] Ghanem RG, Spanos PD. Stochastic finite elements: a spectral approach[J]. New York:Springer,1991.
    [162] Li Jie, Roberts J B. An expanded system method for the stochastic dynamic analysis[R].Research Report No.1in Univ. of Sussex, Brighton,1993.
    [163]李杰,随机结构动力分析的扩阶系统方法[J].工程力学,1996,13(1):93-102.
    [164]李杰.复合随机振动分析的扩阶系统方法[J].力学学报,1996,28(1):66-75.
    [165]李杰,陈建兵.随机结构动力反应分析的概率密度演化方法[J].力学学报,2003,35(4):437-441.
    [166]李杰,陈建兵.随机结构非线性动力响应的概率密度演化分析[J].力学学报,2003,35(6):716-722.
    [167]陈建兵,李杰.随机结构复合随机振动分析的概率密度演化方法[J].工程力学,2004,21(3):90-95.
    [168]黄斌,索建臣,毛文药.随机杆系结构几何非线性分析的递推求解方法[J].力学学报,2007,39(6):835-842.
    [169]戴君,陈建军,马洪波,崔明涛.随机参数结构在随机和在激励下的动力响应分析[J].工程力学,2002,19(3):64-68.
    [170] Dai J, Chen J.J., Li Y G. Dynamic response optimization design for engineering structuresbased on reliability[J]. Applied Mathematics and Mechanics,2003,24(1):43-52.
    [171] Gao W., Chen J. J., Ma H. B. Dynamic response analysis of closed loop control system forintelligent truss structures based on probability[J]. Structural Engineering&Mechanics,2003,15(2):239-248.
    [172] Gao W., Chen J. J., Ma J., Liang Z. T. Dynamic response analysis of stochastic framestructures under nonstationary random excitation[J]. AIAA Journal,2004,42(9):1818-1822.
    [173] Freudenthal A M. Safety of structures[J]. Trans. ASME,1947,112.
    [174] Coenell C A. A probability-based structural code[J]. Journal of the American ConcreteInstitute,1969,66(12):974-985.
    [175] Hasofer A M, Lind N C. Exact and invariant second-moment code format[J]. Journal ofEngineering Mechanics,1974,100(EMl):111-121.
    [176] Rackwitz R, Fiessler B. Structural reliability under combined random load sequences[J].Computers and Structures,1978,9:489-494.
    [177] Breitung K. Asymptotic approximations for multi-normal integrals[J]. Journal of EngineeringMechanics, ASCE,1984,110(3):357-366.
    [178] Hohenbichler M, Rackwitz R. Improvement of second-order reliability estimations byimportance sampling[J]. Journal of Engineering Mechanics, ASCE,1988,114(12):2195-2199.
    [179] Tvedt L. Distribution of quadratic forms in normal space-Application to structuralreliability[J]. Journal of Engineering Mechanics, ASCE,1990,116(6):1183-1197.
    [180] Koyluoglu H U, Nielsen S R K. New approximations for SORM integrals[J]. Structural Safety,1994,13(4):235-246.
    [181] Cai G Q, Elishakoff I. Refined second-order reliability analysis[J]. Structural Safety,1994,14(4):267-276.
    [182] Melchers R E. Importance sampling in structural system[J]. Structural Safety,1989,6(1):3-10.
    [183] Bucher C G. Adaptive sampling–an iterative fast Monte Carlo procedure[J]. Structural Safety,1988,5(2):119-126.
    [184] Mori Y, Kato T. Multi-normal integrals by importance sampling for series system reliability[J].Structural Safety,2003,25(4):363-378.
    [185]张崎,李兴斯.结构可靠性分析的模拟重要抽样方法[J].工程力学,2007,24(1):33-34.
    [186] Bucher C G, Bourgund U. A fast and efficient response surface for structural reliabilityproblems[J]. Structural Safety,1990,7(1):57-66.
    [187] Kim S, Na S. Response surface method using vector projected sampling points[J]. StructuralSafety,1997,19(1):3-19.
    [188] Guan X L, Melchers R E. Eeffect of response surface parameter variation on structuralreliability estimates[J]. Structural Safety,2001,23(4):429-444.
    [189]刘成立,吕震宙.结构可靠性分析中考虑高次项修正的组合响应面法[J].航空学报,2006,27(4):594-599.
    [190] Schueremans S, Gemert D V. Benefit of splines and neural networks in simulation basedstructural reliability analysis[J]. Structural Safety,2005,27(3):246-261.
    [191] Deng Jian, Gu Desheng, Li Xibing, etal. Structure reliability analysis for implicit performancefunctions using artificial neural network[J]. Structure Safety,2005,27(1):25-48.
    [192]吕震宙,杨子政.基于神经网络的可靠性分析新方法[J].机械强度,2006,28(5):699-702.
    [193] Kaymaz I. Application of Kriging method to structural reliability problems[J]. StructuralSafety,2005,27(2):133-151.
    [194]谢延敏,于沪平,陈军等.基于Kriging模型的可靠度计算[J].上海交通大学学报,2007,41(2):177-180.
    [195] Li Hongshuang, Lu Zhenzhou, Yue Zhufeng. Support vector machine for structural reliabilityanalysis[J]. Applied Mathematic and Mechanics,2006,27(10):1295-1303.
    [196]马超,吕震宙.结构可靠性分析的支持向量机分类迭代算法[J].中国机械工程,2007,18(7):816-819
    [197]陈建军,马洪波,马娟等,基于随机因子的结构分析方法[J].工程力学,2012,29(4):15-23.
    [198]陈建军.机械与结构系统的可靠性[M].西安:西安电子科技大学出版社,1995.
    [199] Daniel W J T. The subcycled newmark algorithm[J]. Computational Mechanics,1997,20(3):272-281
    [200]陈建军,车建文,陈勇,崔明涛.基于概率的桁架结构动力分析[J].振动与冲击,2000,19(1):64-67.
    [201]陈建军,车建文,马洪波,戴君.桁架结构动力特性可靠性优化设计[J].固体力学学报,2001,22(1):54-60.
    [202]雒卫廷,陈建军,姜培刚,等.基于完全概率的随机桁架结构动力响应分析[J].振动工程学报,2006,19(3):302-306.
    [203]王小兵,陈建军,梁震涛.随机温度场Monte-Carlo法的一类近似处理[J].系统仿真学报,2007,19(10):2156-2160.
    [204]梁震涛,陈建军,张建国.天线结构动力特性分析的未确知因子法[J].兵工学报,2007,28(4):440-444.
    [205]杨辉.刚-柔耦合动力学系统的建模理论与实验研究[D].上海:上海交通大学,2003
    [206]蔡国平,洪嘉振.旋转柔性梁的假设模态方法研究[J].力学学报,2005,37(1):48-56.
    [207] Cameron R, Marin W. The orthogonal development of nonlinear functional in series ofFourier-Hermite functional[J]. Ann. Math.1947,(48):385.
    [208] Isulapalli S S, Roy A, Georgopoulos P G. Stochastic response surface methods for uncertaintypropagation: application to environmental and biological system[J]. Risk Analysis,1998,18(3):351-363.
    [209] J C Ower, J Van De Vegte. Classical control design for a flexible manipulator: modeling andcontrol system design[J]. Robotics and Automation,1987,3(5):485-489.
    [210] V O G Rosado, E A O Yuhara, Dynamic modeling and simulation of a flexible roboticmanipulator[J]. Robotica,1999,17:523-528.
    [211]戈新生,崔玮,赵秋玲.刚柔性耦合机械臂轨迹跟踪与振动抑制[J].工程力学,2005,22(6):188-191.
    [212]陈志煌,陈力.漂浮基闭链空间机械臂抓持载荷基于神经网络的反演自适应控制[J].工程力学,2012,29(3):205-211.
    [213]曹青松,周继惠,黎林等.基于模糊自整定PID算法的压电柔性机械臂振动控制研究[J].振动与冲击,2010,29(12):181-186.
    [214] Kermani M R, Wong M, Patel R V, et al. Friction compensation in low andhigh-reversal-velocity manipulators[C]//Robotics and Automation,2004. Proceedings.ICRA'04.2004IEEE International Conference on. IEEE,2004,5:4320-4325.
    [215] Erkaya S, Uzmay I. Experimental investigation of joint clearance effects on the dynamics of aslider-crank mechanism[J]. Multibody system dynamics,2010,24(1):81-102.
    [216] Ali Azimi Olyaei, Mohammad Reza Ghazavi. Stabilizing slider-crank mechanism withclearance joints[J]. Mechanism and Machine Theory,2012,53:17-29.
    [217]武起立.基于多体动力学船舶柴油机推进轴系轴承润滑研究[D].大连:大连海事大学,2012.
    [218] Tian Qiang, Zhang Yunqing, Chen Liping, et al. Dynamics of spatial flexible multibodysystems with clearance and lubricated spherical joints[J]. Computers and Structures,2009,87:913-929.
    [219] Muvengei O, Kihiu J, Ikua B. Dynamic analysis of planar rigid-body mechanism systems withtwo-clearance revolute joints[J]. Nonlinear Dyanmics,2013,73(1-2):259-273.
    [220]同长虹,黄建龙.曲柄滑块机构中滑块输出位移的可靠性分析[J].上海交通大学学报,2010,44(12):1716-1720.
    [221]拓耀飞,陈建军,陈永琴等.基于神经网络的弹性连杆机构动力响应分析[J].西安电子科技大学学报,2006,33(5):711-715.
    [222]郭惠昕,邱文辉.含间隙平面连杆机构运动精度的稳健优化设计[J].机械工程学报,2012,48(3):75-81.
    [223] Luo Kang, Du Xiaoping. Probabilistic mechanism analysis with bounded random dimensionvariables[J]. Mechanism and Machine Theory,2013,60(1):112-121.
    [224] J.H Choi, S.J Lee, D.H Choi. Tolerance optimization for mechanisms with lubricated joints[J].Multibody System Dynamics,1998,2:145-168.
    [225] Pai P F. System reliability forecasting by support vector machines with genetic algorithms[J].Mathematical and Computer Modelling,2006,43(3):262-274.
    [226]雷英杰等. Matlab遗传算法工具箱及应用[M].西安:西安电子科技大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700