基于基础结构法的柔顺机构拓扑优化设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柔顺机构是通过其部分或全部具有柔性构件的弹性变形来传递力和运动的机构。它具有结构简单、容易制造、无摩擦磨损、容易装配、高精度、高可靠性、轻质量及实现微型化等优点。它已经在微机电系统器件设计、生物工程显微操作、光纤对接和航空航天等领域得到广泛应用。采用拓扑优化方法设计柔顺机构,只需给定设计域和指定输入输出位置,无需从一个已知的刚性机构出发,且所得机构具有优化的力-位移输入输出关系,因而引起了人们的重视。本文基于基础结构法,对柔顺机构动力学、可靠性及几何非线性拓扑优化设计进行了深入的研究,主要研究内容如下:
     (1)基于基础结构法进行了多输入多输出柔顺机构多目标拓扑优化。建立了柔顺机构多目标拓扑优化的数学模型,目标函数以应变能最小和互应变能最大来满足机构的刚度和柔度需求。在此基础上,推导了描述多输入多输出柔顺机构柔性的互应变能公式和描述机构刚性的应变能公式,给出了抑制输出耦合效应的计算公式,建立了考虑抑制输出耦合效应时多输入多输出柔顺机构的多目标拓扑优化数学模型。通过数值算例验证该模型的有效性。
     (2)基于基础结构法进行了柔顺机构动力学拓扑优化。以动力放大系数最大化与应变能最小化的加权函数为目标,采用标准化方法定义多目标拓扑优化的目标函数,满足在动态条件下柔顺机构具有足够柔度和刚度;并且对目标函数进行规一化避免不同性质目标函数在数量级上的差异。通过数值算例分析了不同外激励频率、不同结构阻尼和不同输出刚度对拓扑优化结果影响。
     (3)基于基础结构法进行了柔顺机构可靠性拓扑优化设计。在确定性柔顺机构多目标拓扑优化数学模型基础上,将作用荷载及几何尺寸视为随机变量,机构的失效模式视为应变能和互应变能双模式的串联系统,采用一次可靠度方法计算串联系统的失效概率,建立了柔顺机构可靠性多目标拓扑优化数学模型。数值算例表明基于可靠性拓扑优化方法所得机构比确定性拓扑优化更合理可靠。并以确定性和可靠性拓扑优化机构为基础,加入最小尺寸约束,采用线切割加工工艺,研制确定性和可靠性设计反向器原型,对其进行了位移性能测试,结果表明反向器的实验结果与理论分析结果基本吻合,达到设计要求。
     (4)基于基础结构法进行了柔顺机构几何非线性拓扑优化。建立增量形式的平衡方程,采用随转坐标的全拉格朗日法有限元描述方法和迭代增量混合法来求解获得平面框架单元结构的几何非线性响应。推导描述柔顺机构柔度的几何增益公式和描述机构刚度的应变能公式,建立了适合求解几何非线性的多目标拓扑优化数学模型,目标函数以几何增益最大化和应变能最小化来满足柔顺机构柔度和刚度。与线性结果比较,利用非线性理论获得的机构具有更好的性能,同时也说明了进行几何非线性拓扑优化的必要性。
Compliant mechanisms achieve force and motion transmission through elastic deformation of relative flexibility of its members. Compared with rigid-body mechanisms, compliant mechanisms have many advantages such as a simple structure, simplified manufacturing processes, reduced friction, reduced assembly time, reduced weight, increased precision, reduced weight and miniaturization. Thus, it has been applied widely in the micro-electro-mechanical systems device design, biological engineering micro-manipulation, fiber alignment and aerospace. Topology optimization of compliant mechanisms has drawn more and more attentions because it only needs to designate a design domain and the positions of the inputs and outputs. In this paper, dynamic topology optimization of compliant mechanisms, reliability-based topology optimization of compliant mechanisms and topology optimization of compliant mechanisms with geometrical nonlinearity using the structure approach are investigated deeply. The main contributions of this thesis are listed as follows:
     A methodology for multi-objective topology optimization of multiple inputs and multiple outputs compliant mechanisms using the ground structure approach is presented. The multi-objective is developed by the minimum strain energy and the maximum mutual potential energy to design a mechanism, which meets both stiffness and flexibility requirements, respectively. Based on this, the multi-objective function of topology optimization of multiple inputs multiple outputs compliant mechanism is also developed by the strain energy and the mutual potential energy. The suppression strategy of output coupling terms is studied,and the expression of the output coupling terms is further developed. Numerical simulations are presented to show that the proposed optimization model is valid.
     A methodology for dynamic topology optimization of compliant mechanisms using the ground structure approach is presented. The function is developed by the maximum dynamic magnification factor and the minimum strain energy to design a mechanism which meets both stiffness and flexibility requirements under harmonic excitation, respectively. The objective function is normalized to eliminate magnitude difference of the objectives. Some numerical examples with different driving frequencies, different structural damping factors and different output spring stiffness are presented to illustrate the effect of driving frequency, damping factor and output spring stiffness.
     A methodology for reliability-based topology optimization of compliant mechanisms using the ground structure approach is presented. The applied load and the structural geometry size are considered as the uncertain variables. That the strain energy and mutual potential energy have upon system reliability are evaluated by regarding as a series systems. The first-order reliability method is adopted to solve the failure probability of the series system. The numerical example is simulated to show that the proposed method is correct and effective because it helps to obtain mechanisms with higher performance than those obtained by the deterministic topology optimization. Based on the topology mechanisms and the restriction of fabrication technology, the prototypes of the compliant inverters are determined. The prototypes are manufactured by means of wire cutting technology. The displacements of the compliant inverters are measured by using the measurement system. The experimental results approximately agree with the numerical results. It shows that properties of compliant inverters can meet the designing demands.
     A topology optimization method of compliant mechanisms with geometrical nonlinearity under displacement loading is presented in this paper. Geometrically nonlinear plane frame structural response is solved using the co-rotational Total Lagrange finite element formulation and the equilibrium is solved using the incremental scheme combined with Newton-Raphson iteration. The multi-objective function is developed by the minimum strain energy and maximum geometric advantage to design a mechanism which meets both stiffness and flexibility requirements. Compared with the result using linear formulation, the benefits of the optimal mechanisms obtained by nonlinear formulation are illustrated by the numerical example.
引文
[1]裴灵.轨迹输出平面柔顺机构的轮廓提取与形状优化方法研究[D].上海:上海交通大学,2008.
    [2] Kota S., Joo J., Zhe L., et al. Design of compliant mechanisms: Application to MEMS [J]. Analog Integrated Circuits and Signal Processing, 2001, 29: 7-15.
    [3] Shuib S., Ridzwan M.I.Z., Kadarman A. H. Methodology of compliant mechanism in application: a review [J]. American Journal of Applied Sciences, 2007, 4: 160-167.
    [4]张宪民,陈永健.考虑输出耦合时柔顺机构机构拓扑与压电驱动单元的优化设计[J].机械工程学报,2005,41(8):69-74.
    [5] Kirsch U.Integration of reduction and expansion process in layout optimization [J].Structural Optimization, 1996, 11: 13-18.
    [6]许素强,夏人伟.结构优化设计研究方法综述[J].航空学报,1995,16(4):385-396.
    [7] Rozvany G.I.N. Aims, scope, method, history and unified terminology of computer -aided topology optimization in structural mechanics [J]. Structural Optimization, 2001, 21: 90-108.
    [8] Michell A.G.M. The limits of economy of material in frame structure, Philosophical Magazine, Series 6-8: 589-597, 1904.
    [9] Dorn W.S., Gomory R.E., Greenberg H.J.Automatic design of optimal structures [J]. Journal of Mechanics, 1964, 36, pp: 25–52.
    [10] Jog C.S., Haber R.B.Stability of finite element models for distributed-parameter optimization and topology design[J].Computer Methods in Applied Mechanics and Engineering, 1996, 130 (3-4): 203-226.
    [11] Petersson J., Sigmund O.Slope constrained topology optimization [J]. International Journal For Numerical Methods In Engineering, 1998, 41 (8): 1417-1434.
    [12] Zhou M., Shyy Y.K., Thomas H.L.Checkerboard and minimum member size control in topology optimization [J]. Structural and Multidisciplinary Optimization, 2001, 21(2): 152-158.
    [13] Ringertz U.On optimal optimization of trusses [J]. Engineering Optimization, 1985, 9(3): 209-218.
    [14]程耿东.关于桁架结构拓扑优化设计中的奇异最优解[J].大连理工大学学报, 2000, 40(2):379-383.
    [15] Bendsoe M.P., Kikuchi N.Generating optimal topologies in structural design using a homogenization method[J].Computer Methods in Applied Mechanics and Engineering, 1988, 71: 197-224.
    [16]王健,程耿东.应力约束下薄板结构的拓扑优化[J].固体力学学报,1997,18(4):317-322.
    [17] Tenek L.H., Hagiwara I. Optimal rectangular plate and shallow shell topologies using thickness distribution or homogenization method [J]. Computer Methods in Applied Mechanics and Engineering, 1994, 115(1-2): 111-124.
    [18]周克民,胡云昌.用可退化有限单元进行平面连续体拓扑优化[J].应用力学学报,2002,19(1):124-126.
    [19]周克民,胡云昌.结合拓扑分析进行平面连续体拓扑优化[J].天津大学学报,2001,34(3):340-345.
    [20] Cheng K.T., Olhoff N.An investigation concerning optimal design of solid elastic plates [J]. International Journal of Solids and Structures, 1981, 17: 305-323.
    [21] Bendsoe M.P., Rodrigues H.C. Integrated topology and boundary shape optimization of 2-D solids [J]. Computer Methods in Applied Mechanics and Engineering, 1991, 87: 15-34.
    [22] Bendsoe M.P., Sigmund O. Material Interpolations in Topology Optimization [J]. Archive of Applied Mechanics, 1999, 69: 725-741.
    [23] Olhoff N., Bendsoe M.P., Rasmussan J. On CAD-integrated Structural Topology and Design Optimization [J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89(1-3): 259-279.
    [24] Tenek L.H., Hagiwara I. Optimization of Material Distribution Within Isotropic and Anisotropic Plates Using Homogenization [J]. Computer Methods in Applied Mechanics and Engineering, 1993, 109(1-2): 155-167
    [25] Rozvany G.I.N., Zhou M., Birker T. Why Multi-load Topology Design Based on Orthogonal Microstructures Are in General Non-optimal [J]. Structural Optimization, 1993, 6(3): 200-204.
    [26] Diaz A.R., Bendsoe M.P. Shape Optimization of Structures for Multiple Loading Conditions Using the Homogenization Method [J]. Structural Optimization, 1992, 4(1): 17-22.
    [27] Suzuki K., Kikuchi N. Layout Optimization Using the Homogenization Method:Generalized Layout Design of 3-D Shells for Car Bodies[J]. In theInternational Conference of NATO/DFG ASI Optimization of Large Structural System 1991, Lecture No.3: 110-126.
    [28] Tenek L.H., Hagiwara I. Static and Viberational Shape and Topology Optimization Using Homogenization and Mathematical Programming [J]. Computer Methods in Applied Mechanics and Engineering, 1993, 109(1-2): 143-154.
    [29] Ma Z.D., Kikuchi N., Cheng H.C. Topological Design for Viberating Structures [J]. Computer Methods in Applied Mechanics and Engineering, 1995, 121: 259-280.
    [30] Rodrigues H., Fernandes P. A Material Based Model for Topology Optimization of Thermoelastic Structures [J]. International Journal Numerical Methods in Engineering. 1995, 38: 1951-1965.
    [31] Neves M.M., Rodrigues H., Gudes J.M. Generalized Topology Design of Structures with a Buckling Load Criterion [J]. Structural Optimization, 1995, 10(2): 71-78.
    [32] Fukushima J., Suzuki K. Applications to Car Bodies: Generalized Layout Design of 3-D Shells for Car Bodies [J]. In the International Conference of NATO/DFG ASI Optimization of Large Structural System 1991, Lecture No.3: 127-138.
    [33] Cheng H.C., Kikuchi N., Ma Z.D. An Improved Approach for Determining the Optimal Orientation of Orthotropic Material [J]. Structural Optimization, 1994, 8(2-3): 101-112.
    [34] Hassani B., Hinton E. A Review of Homogenization and Topology Optimization I—Homogenization Theory for Media with Periodic [J]. Computers and Structures, 1998, 69: 707-717.
    [35] Mlejnek H.P. Some Aspects of the Genesis of Structures [J]. Structural Optimization, 1992, 5(1-2): 64-69.
    [36] Yang R.J. Topology Optimization Analysis with Multiple Constraints [J]. American Society of Mechanical Engineers, Design Engineering Division, 1995, 147: 393-398.
    [37]王健,程耿东.应力约束下平面弹性结构拓扑优化设计——密度法[J].计算力学学报,1997,14:541-546.
    [38]袁振,吴长春,庄守兵.基于杂交元和变密度法的连续体结构拓扑优化设计[J].中国科学技术大学学报,2001,31(6):694-699.
    [39] Querin O.M., Steven G.P., Xie Y.M.Evolutionary structural optimization (ESO) using a bi-directional algorithm [J]. Engineering Computation, 1998, 15(8): 1031-1048.
    [40] Tanskanen P.The evolutionary structural optimization method: theoretical aspects [J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(47-48): 5485-5498.
    [41] Zhou M., Rozvany G.L.N.On the validity of ESO type methods in topology optimization [J]. Structural and Multidisciplinary Optimization, 2001, 21(1): 80-83.
    [42] Rozvany G.L.N.Stress ratio and compliance based methods in topology optimization - a critical review [J]. Structural and Multidisciplinary Optimization, 2001, 21(1): 109-119.
    [43] Steven G.P., Querin O.M., Xie Y.M.Evolutionary structural optimization (ESO) for combined topology and size optimization of discrete structures [J]. Computer Methods in Applied Mechanics and Engineering, 2000, 188(4): 743-754.
    [44] Li Q., Steven G.P., Querin O.M.Shape and topology design for heat conduction by Evolutionary Structural Optimization [J]. International Journal of Heat and Mass Transfer, 1999, 42(17): 3361-3371.
    [45] Xie Y.M., Steven G.P.Evolutionary structural optimization for dynamic problems [J]. Computers and Structures, 1996, 58(6): 1067-1073.
    [46] Kim H., Querin O.M., Steven G.P., Xie Y.M.Improving efficiency of evolutionary structural optimization by implementing fixed grid mesh [J]. Structural and Multidisciplinary Optimization, 2003, 24(6): 441-448.
    [47] Sethian J.A., Wiegmann A.Structural boundary design via level set and immersed interface methods [J]. Journal of Computational Physics, 2000, 163(2): 489-528.
    [48] Allaire G., Jouve F. A level-set method for vibaration and multiple loads structural optimization [J]. Computer Mechods in Applied Mechanics and Engineering, 2005, 194: 3269-3290.
    [49] Wang M.Y., Chen S., Wang X.M., et al. Design of multimaterial compliant mechanisms using level-set methods [J]. Journal of Mechanical Design, 2005, 127: 941-956.
    [50] Amstutz S., Andra H. A new algorithm for topology optimization using a level-set method[J]. Journal Computational Physics, 2006, 216: 573-588.
    [51] Eschenauer H.A., Kobelev H.A., Schumacher A.Bubble Method for Topology and Shape Optimization of Structures [J]. Structural and Multidisciplinary Optimization, 1994, 8: 142-151.
    [52]隋允康,任旭春,龙连春,等.基于ICM方法的刚架拓扑优化[J].计算力学学报,2003,6(20):286-289.
    [53] Burns R.H., Crossley F.R.E. Kinetostatic synthesis of flexible link mechanisms [C].ASME Paper, 1968, No.68-MECH-36.
    [54] Her I. Methodology for compliant mechanism design [D]. Indiana: Purdue University, 1986.
    [55] Howell L.L.Compliant Mechanisms[M].New York,McGraw-Hill,2001.
    [56]陈永健.柔顺机构的拓扑优化与驱动单元配置的集成设计研究[D].汕头:汕头大学,2005.
    [57] Her I., Midha A.A compliance number concept for compliant mechanisms and type synthesis [J]. Journal of Mechanisms Transmissions, and Automation in Design, 1987, 109(3): 348-355.
    [58] Howell L.L., Midha A. A method for design of compliant mechanisms with small-length flexural pivots [J]. Journal of Mechanical Design, 1994, 116(1): 280-290.
    [59] Her I., Chang J.C. A linear Scheme for the Displacement Analysis of Micro-positioning Stages with Flexure hinges [J]. Journal of Mechanical design, 1994, 116(9): 770-776.
    [60] Yu Y.Q., Howell L.L., Yue Y., et al. Dynamic modeling of compliant mechanisms based on the pseudo-rigid-body model [J]. Journal of Mechanical Design, 2005, 127(4): 760-765.
    [61]于靖军,周强,毕树生,等.基于动力学性能的全柔性机构优化设计[J].机械工程学报,2003,39(8):32-36.
    [62] Ananthasuresh G.K., Kota S.Design and Fabrication of Microelectromechanical Systems [J]. Proceeding of ASME Mechanism Conference, 1992, 45:251-258.
    [63] Shield R.T., Prager W.Optimal structural design for given deflection [J].Applied Mathematics and Physics,1970, 21: 513-523
    [64] Frecker M.I., Ananthasuresh G.K., Nishiwaki S., et al. Topological synthesis of compliant mechanisms using multi-Criterion optimization [J]. Journal of Mechanical Design, 1997, 119(1): 238-245.
    [65] Kikuchi N., Nishiwaki, S., Fonseca E.C.N., et al. Design optimization method for compliant mechanisms and material microstructure [J]. Computer Methods in Applied Mechanics and Engineering, 1998, 151(1): 401-417.
    [66] Larsen U.D., Sigmund O., Bouwstra S . Design and fabrication of compliant micromechanics and structures with negative Poisson’s ration [J]. Journal of Microelectromechanical. System, 1997, 6(2): 99-106.
    [67] Lau G.K., Du H., Lim M.K.Use of functional specifications as objective function intopological optimization of compliant mechanism [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 4421-4423.
    [68] Sigmund O.Design of Multiphysics Actuators using Topology Optimization—Part I: One-material Structures [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49-50): 6577-6604.
    [69] Sigmund O.Design of Multiphysics Actuators using Topology Optimization—Part II: Two-material Structures [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190(49-50): 6605-6627.
    [70] Pedersen C.B.W., Buhl T., Sigmund O.Topology synthesis of large-displacement compliant mechanisms [J]. International Journal for Numerical Methods in Engineering, 2001, 50: 2683-2705.
    [71] Saxena A.Synthesis of compliant mechanisms for path generation using algorithm [J]. Journal of mechanical design, 2001, 4(127): 745-752.
    [72] Joo J.Y., Kota S. Topology synthesis of compliant mechanisms using nonlinear beam elements [J]. Mechanics Based Design of Structures and Machines, 2004, 32(1): 17-38.
    [73] Du Y.X., Chen L.P., Tian Q.H., et al. Topology synthesis of thermomechanical compliant mechanisms with geometrical nonlinearities using meshless method[J]. Advances in Engineering Software, 2008, (2): 1-8.
    [74] Yin L., Ananthasuresh G.K. A novel topology design scheme for the multi-Physics problems of electro-thermally actuated compliant micromechanisms [J]. Sensors and Actuators, 2002: 599-609.
    [75] Jonsmann J., Sigmund O., Bouwstra S.Compliant thermal micro actuators [J]. Sensors and Actuators, 1999, 76: 463-469.
    [76] Hetrick J.A., Kota S.An energy formulation for parametric size and shape optimization of compliant mechanisms [J]. Journal of mechanical design, 1999, 121: 229-233.
    [77] Kota S., Joo J., Zhe L., et al. Design of compliant mechanisms: Application to MEMS [J]. Analog Integrated Circuits and Signal Processing, 2001, 29: 7-15.
    [78]张宪民.柔顺机构拓扑优化设计[J].机械工程学报,2003,39(11):47-51.
    [79]谢先海,廖道训.基于均匀化方法的柔顺机构的设计[J].中国机械工程.2003,14(11):953-955.
    [80]孙宝元,杨桂玉,李震.拓扑优化方法及其在微型柔性结构设计中的应用[J].纳米技术与精密工程,2003,1(1):24-30.
    [81]杨桂玉.拓扑优化方法及其在微型柔性机构设计中应用的研究[D].大连:大连理工大学,2004.
    [82]刘震宇.微型及小型柔性机械结构的拓扑优化设计方法[D].大连:大连理工大学,2000.
    [83]梅玉林.拓扑优化的水平集方法及其在刚性结构、柔性机构和材料设计中的应用[D] .大连:大连理工大学,2003.
    [84]李震.柔性机构拓扑优化方法及其在微机电系统中的应用[D].大连:大连理工大学,2005.
    [85]李路明,王立鼎,MEMS研究的新进展一微型系统及其发展应用的研究[J].光学精密工程,1997,15(1):67一73.
    [86] Frecker M.I.Optimal design of compliant mechanisms [D]. Michigan:University of Michigan, 1997.
    [87] Frecker M.I., Kikuchi N., Kota S.Topology optimization of compliant mechanisms with multiple outputs [J]. Structural Optimization, 1999, 17: 269-278.
    [88]张宪民,陈永健.多输入多输出柔顺机构拓扑优化及输出耦合的抑制[J] .机械工程学报,2006,42(3):162-165.
    [89]张宪民,陈永健.考虑输出耦合时柔顺机构拓扑与压电驱动单元的优化设计[J].机械工程学报,2005,41(8):69-74.
    [90] Carbonari R.C., Silva E.C.N., Nishiwaki S.Topology optimization applied to the design of multi-actuated piezoelectric micro-tools [J]. Smart materials and structures, 2004, 5383: 277-288.
    [91] Silva E.C.N., Nishiwaki S., Kikuchi N.Topology optimization design of flextensional actuators [J]. IEEE transactions on ultrasonic ferroelectrics and frequency control, 2000, 47(3): 657 -671.
    [92] Saxena A., Ananthasuresh G.K.On an optimal property of compliant topologies [J]. Structural and Multidisciplinary Optimization, 2000, 19(1): 36–49.
    [93] Saxena A.Topology design of large displacement compliant mechanisms with multiple materials and multiple output ports [J]. Structural and Multidisciplinary Optimization, 2005, 30: 477-490.
    [94] Canfield S., Frecker M.Topology optimization of compliant mechanical amplifiers for piezoelectric actuators [J]. Structural and Multidisciplinary Optimization, 2000, 20: 269-279.
    [95] Lee O.J., Yang S.Y., Ruy S.W. A comparative study on reliability-index and target-performance-based probabilistic structural design optimization [J]. Computers and Structures, 2002, 80: 257-269
    [96] Kharmanda G., Olhoff N., Mohamed A., et al.Reliability-based topology optimization [J]. Structural and Multidisciplinary Optimization, 2004, 26: 295-307.
    [97] Jung H., Seonho C.Reliability-based topology optimization of geometrically nonlinear structures with loading and material uncertainties [J]. Finite Element in Analysis and Design, 2004, 43: 311-331.
    [98] Maute K., Frangopol M.D.Reliability-based design of MEMS mechanisms by topology optimization [J]. Computers and Structures, 2003, 81: 813-824.
    [99] Allen M., Raulli M., Maute K., et al.Reliability-based analysis and design optimization of electrostatically actuated MEMS [J]. Computers and Structures, 2004, 82: 1007-1020.
    [100] Mogami K., Nishiwaki S., Izui K., et al.Reliability-based structural optimization of frame structures for multiple failure criteria using topology optimization techniques [J]. Structural and Multidisciplinary Optimization, 2006, 32: 299-311.
    [101] Thoft C.P., Murotsu Y.Application of structural systems reliability theory [M]. Berlin Heidelberg, New York, 1986.
    [102] Papadrakakis M., Lagaros N.D.Reliability-based structural optimization using neural networks and Monte Carlo simulation [J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191: 3491-3505.
    [103] Barakat S., Kallas N.Single objective reliability-based optimization of prestressed concrete beams [J]. Computers and Structures, 2003, 81(26): 2501-2512.
    [104] Stocki R., Kolanek K., et al . Study on discrete optimization techniques in reliability-based optimization of truss structures [J].Computers and Structures, 2001, 79(22): 2235-3347.
    [105] Gea H. C., Luo J. H.Topology optimization of structure with geometrical nonlinearities [J]. Computers and Structures, 2001, 79: 1977-1985.
    [106] Jung D., Gea H.C.Compliant mechanism design with non-linear materials using topology optimization[J].International Journal of Mechanics and materials in Design, 2004, 1: 157-171.
    [107] Bruns T.E., Tortorelli D.A. Topology optimization of non-linear elastic structures and compliant mechanisms [J]. Computer Methods in Applied Mechanics and Engineering, 2001, 190: 3443-3459.
    [108]欧阳高飞.基于水平集方法的柔顺机构拓扑优化设计研究[D].广州:华南理工大学,2007.
    [109]李兆坤.柔顺机构几何非线性及可靠性拓扑优化设计研究[D].广州:华南理工大学,2008.
    [110] Mlejnek H.P., Schirrmacher R . An engineering approach to optimal material distribution and shape finding [J]. Computer Methods in Applied Mechanics and Engineering, 1993, 106, 1-26.
    [111] Theocaris P.S., Stavroulakis G.E.Optimal material design in composites: An iterative approach based on homogenizaed cells [J]. Computer Methods in Applied Mechanics and Engineering, 1999, 169: 31-42.
    [112] Ramrakhyani D.S, Frecker M.I, Lesieutre G.A. Hinged beam elements for topology design of compliant mechanisms using the ground structure approach [J]. Structural and Multidisplinary Optimization, 2009, 30: 557-567.
    [113] Saxena A.Topology design of large displacement compliant with multiple materials and multiple output ports [J].Structural and Multidisciplinary Optimization, 2005, 30: 477-190.
    [114] Marker R. Arora J.Survey of multi-objective optimization methods for engineering [J]. Structural and Multidisciplinary Optimization, 2004, 26(6): 369-395.
    [115] Li Y.Optimal design of thermally actuated compliant mechanisms and its application to product-embedded disassembly [D]. University of Michigan, 2002
    [116] Sigmund O.On the design of compliant mechanisms using topology optimization [J]. Mechanics of Structures and Machines, 1997, 25(4): 495-526.
    [117] Carbonari R.C., Silva E.C.N., Nishiwaki S.Topology optimization applied to the design of multi-actuated piezoelectric micro-tools [J]. Smart materials and structures, 2004, 5383: 277- 288.
    [118] Rozvany G.I.N., Zhou M.The COC algorithm, part I: cross-section optimization sizing [J]. Computer Methods in Applied Mechanics and Engineering, 1991, 89, 129-144
    [119] Fleuty C.Sequential convex programming for structural optimization problems in G.I.N. Rozvany (ed.) optimization of large structural systems [J]. Kluwer AcademicPublishers, 1993, 1: 567-578.
    [120] Svanberg K.The method of moving asymptotes: a new method for structural optimization [J]. International Journal for Numerical Methods and Engineering, 1987, 24: 359 -373.
    [121]左孔天.连续体结构拓扑优化理论与应用研究[D].武汉:华中科技大学,2004
    [122] Nishiwaki S., Saitou K., Min S., et al.Topological design considering flexibility under periodic loads[J].Structural and Multidisciplinary Optimization, 2000, 19: 4-16.
    [123]徐斌,管欣,荣见华.谐和激励下的连续体拓扑优化.西北工业大学学报, 2004, 22(3): 314-316.
    [124] Du H., Lau G.K., Lim M.K., et al.Topological optimization of mechanical amplifiers for piezoelectric actuators under dynamic motion[J].Smart Material and Structures,2000, 9: 788-800.
    [125] Lau G.K., Du H., Lim M.K., et al.Systematic design of displacement-amplifying mechanism for piezoelectric stacked actuators using topology optimization [J]. Journal of Intelligent Material Systems and Structures, 2000, 11: 583-591.
    [126] Maddisetty H., Frecker M. Dynamic topology optimization of compliant mechanisms and piezoceramic actuators [J]. Journal of Mechanical Design, 2004, 126: 975-983.
    [127] Abdalla M., Frecker M., Gurdal Z., et al.Design of a piezoelectric actuator and compliant mechanism combination for maximum energy efficiency [J].Smart Material and Structures, 2005, 14:1421-1430.
    [128]彭细荣.连续体结构静动力学拓扑优化[D].北京:北京工业大学,2004.
    [129] Min S., Nishiwaki S., Kikuchi N.Unified topology design of static and vibrating structures using multiobjective optimization [J]. Computers and Structures, 2000, 75: 93-116.
    [130] Chen T.Y., Shieh C.C.Fuzzy multiobjective topology optimization [J]. Computers and Structures, 2000, 78: 459-466.
    [131] Luo Z., Yang J.Z., Cheng L.P, et al.A new hybrid fuzzy-goal programming scheme for multi-objective topology optimization of static and dynamic structures under multiple loading conditions [J]. Structural and Multidisciplinary Optimization, 2006, 31: 26-39.
    [132] Luo Z., Cheng L.P., Yang J.Z., et al.Multiple stiffness topology optimization of continuum structures [J]. Advanced and Manufactural Technology, 2006, 30: 203-214.
    [133] Sigmund O., Jensen J.S.Systematic design of phononic band-gap materials and structures by topology optimization [J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 2003, 361: 1001-1019.
    [134] Saxena A., Ananthasuresh G.K.Topology synthesis of compliant mechanisms for nonlinear force-deflection and curved path specifications [J]. Journal of mechanical design, 2001, 5(123): 33-42.
    [135]秦权,林道锦,梅刚.结构可靠度随机有限元:理论及工程应用[M].清华大学出版社,2006
    [136]马洪波.随机结构可靠性分析和优化设计研究[D].西安:西安电子科技大学,2004
    [137] Mogami K., Nishiwaki S., Izui K., et al. Reliability-based structural optimization of frame structures for multiple failure criteria using topology optimization techniques [J]. Structural and Multidisciplinary Optimization, 2006, 32(4): 299-311.
    [138]崔明涛,陈建军,陈永琴,等.整体式柔性机构的多目标可靠性拓扑优化设计[J].西安电子科技大学学报,2007,34(5):784-788.
    [139]陈建军,王芳林,等.多工况下杆系结构的概率优化设计[J].工程力学,2001,18(2):113-119.
    [140] Lin K.Y., Frangopol D.M.Reliability-based optimum design of reinforced concrete girders [J]. Structural Safety, 1996, 18(2-3): 239–258.
    [141] Der K.A., Liu P.L.Structural reliability under incomplete probability information [J]. Jouranl of Egineering Mechanics, 1986, 112(1): 85-104.
    [142] Hohenbichler M., Rackwitz R.Nonnormal dependent vector in structural reliability [J]. Journal of Egineering Mechanics, 1981, 107: 1127-1238.
    [143] Enevoldsen I., Srensen J.D. Reliability-based optimization in structural engineering [J]. Structural Safety, 1994, 15: 169-196.
    [144] Jog C.S.Topology design of structures using a dual algorithm and a constraint on perimeter [J]. International Journal for Numerical Methods in Engineering, 2002, 54: 1007-1019.
    [145] Buhl T., Pedersen C.B.W., Sigmund O.Stiffness design of geometrically non-linear structures using topology optimization [J]. Structural Multidisciplinary Optimization, 2000, 19(2): 93-104.
    [146]郭棋武.大跨斜拉桥的非线性及可靠性分析[J].长沙:湖南大学,2007.
    [147] Crisfield M.A. Non-linear finite element analysis of solids and structures, Volume 1 :Essentials[M]. New York: John Wiley & Sons (Publisher) Ltd, 1991.
    [148] Mankame N.D. Investigations on contact-aided compliant mechanisms [D]. Philadelphia: University of Pennsylvania, 2004.
    [149]凌道盛,徐兴.非线性有限元及程序[M].浙江大学出版社,2004.
    [150]王勖成,邵明.有限单元法基本原理和数值方法[M].清华大学出版社,1995.
    [151]陈至达.杆、板、壳大变形理论[M].科学出版社,1994.
    [152] Huang X., Xie Y.M. Topology optimization of nonlinear structures under displacement loading [J]. Engineering Structures, 2008, 30: 2057-2068.
    [153] Bruns T.E.Topology optimization of nonlinear elastic structures and compliant mechanisms [D] .Urbana: University of Illinois, 2001.
    [154] Saleeb A.E., Wilt T.E., Li W. An implicit integration scheme for generalized viscoplasticity with dynamic recovery [J]. Computational Mechanics, 1998, 21: 429-440.
    [155] Esche S.K., Kinzel G.L., Altan T. Issues in convergence improvement for non-linear finite element programs [J]. International Journal for Numerical Methods and Engineering, 1997, 40, 4577-4594.
    [156] Bruns T., Tortorelli D.A. An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms [J]. International Journal for Numerical Methods and Engineering, 2003, 57, 1413-1430.
    [157]邓俊广.基于压电陶瓷驱动器的精密定位平台控制系统研究[D].汕头:汕头大学,2006.
    [158] Ananthasuresh G.K.A New Design Paradigm for Micro-Electro-Mechanical Systems & Investigations on the Compliant Mechanism Synthesis [D]. Michigan:University of Michigan, 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700